1. (10 points) Let $f: E \to \mathbb{R}^{S} \{\pm \infty\}$ be a nonnegative measurable function such that $\underset{E}{\overset{R}{}} f < \infty$. Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any measurable subset $E_1 \subset E$ with $|E_1| < \delta$ we have $\underset{E_1}{\overset{R}{}} f < \varepsilon$.

Solution: Let

$$f_k(x) = \begin{pmatrix} f(x), & \text{if } f(x) < k \\ k, & \text{if } f(x) \ge k \end{pmatrix}, \quad x \in E.$$

Then $0 \leq f_k(x) \nearrow f(x)$ on E and by the Monotone Convergence Theorem we have

$$\lim_{k \to \infty} f_k dx = \int_E f < \infty$$

and so for any $\varepsilon > 0$ there exists N such that $\sum_{E}^{K} f - \sum_{E}^{K} f_N < \varepsilon/2$. Note that $f_N \le N$ on E and so if $E_1 \subset E$ with $|E_1| < \delta := \frac{\varepsilon}{2N}$ we would have $\sum_{E_1}^{K} f_N \le N |E_1| \le \varepsilon/2$. Therefore for any $E_1 \subset E$ with $|E_1| < \delta$ we get Z Z Z Z Z

$$f = f_1 - f_N + f_N < \varepsilon.$$

2. (10 points) Do Exercise 3 in p. 85.

Solution: Since $f_k \leq f$ a.e. on E (both are nonnegative), we have $\underset{E}{\overset{R}{\overset{K}}} f_k \leq \underset{E}{\overset{R}{\overset{K}}} f$ for all k. On the other hand, by Fatou's lemma we get

$$\sum_{\substack{E \ k \to \infty}} \sum_{k \to \infty} f_{k}$$

$$Z \qquad Z$$

which implies

$$f \leq \liminf_{k \to \infty} f_k \leq \limsup_{k \to \infty} f_k dx \leq f.$$

Hence we have $\lim_{k\to\infty} \frac{\mathsf{R}}{E} f_k = \frac{t_{\mathsf{R}}}{E} f$.

3. (10 points) Let $f_k : E \to \mathbf{R}^{\widetilde{S}} \{\pm \infty\}$ be a sequence of nonnegative measurable function satisfying ${}^{\mathbf{R}}_{E} f_k \to 0$ as $k \to \infty$. Show that $f_k \to 0$ in measure as $k \to \infty$.

7

Solution: For any $\varepsilon > 0$ by Tchebyshev's inequality we have

$$|\{x \in E : |f_k - 0| > \varepsilon\}| = |\{x \in E : f_k > \varepsilon\}| \le \frac{1}{\varepsilon} \int_E^{-\varepsilon} f_k.$$

Letting $k \to \infty$, the conclusion follows.

Remark 1 (be careful) $\mathop{\mathsf{R}}_{E} f_k \to 0$ as $k \to \infty$ does not, in general, imply that $f_k \to 0$ a.e. on E.

4. (10 points) Compute the limit

$$\lim_{n \to \infty} \int_{0}^{2} 1 - \frac{x}{n} e^{x/2} dx$$

and justify your answer.

Solution: Let

$$f_n(x) = \begin{cases} & i_{1-\frac{x}{n}} e^{x/2}, & \text{if } x \in [0,n] \\ & 0, & \text{if } x > n. \end{cases}$$

One can check that $f_n(x) \nearrow f(x) = e^{-x/2}$ on $E = [0, \infty)$. By Monotone Convergence Theorem we have $\lim_{n \to \infty} f_n = f_n = f_n = e^{-x/2} dx = 2.$

¤

Ø

¤