Real Analysis Homework 8, due 2007-10-31 in class

- 1. (10 points) Let $f: E \to \mathbb{R}^{S} \{\pm \infty\}$ be a nonnegative measurable function such that $\mathop{\mathbb{R}}_{E} f < \infty$. Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any measurable subset $E_1 \subset E$ with $|E_1| < \delta$ we have $\mathop{\mathbb{R}}_{E_1} f < \varepsilon$.
- 2. (10 points) Do Exercise 3 in p. 85.
- 3. (10 points) Let $f_k : E \to \mathbb{R}^S \{\pm \infty\}$ be a sequence of nonnegative measurable function satisfying $_E f_k \to 0$ as $k \to \infty$. Show that $f_k \to 0$ in measure as $k \to \infty$.
- 4. (10 points) Compute the limit

$$\lim_{n \to \infty} \sum_{0}^{\mathbf{Z}_{n}3} 1 - \frac{x}{n} e^{x/2} dx$$

and jusify your answer.