Real Analysis Homework 6, due 2007-10-24 in class

1. (10 points) Do Exercise 7 in p. 62.

Solution: For any $x_0 \in E$ (compact) and $M_{x_0} > f(x_0)$ one can choose $\delta_{x_0} > 0$ such that

 $f(x) < M_{x_0}$ for all $x \in E$ with $|x - x_0| < \delta_{x_0}$.

The collection $\{x \in E : B(x_0; \delta_{x_0})\}$ forms an open cover of E and so there exist a finite cover $B(x_1; \delta_{x_1}), \dots, B(x_n; \delta_{x_n})$ of E. Set $M = \max\{M_{x_1}, \dots, M_{x_n}\}$. We have f(x) < M for all $x \in E$. Hence f is bounded above.

Let $M = \sup_{x \in E} f(x)$. For k = 1, 2, 3, ... choose $x_k \in E$ such that

$$\tilde{M} - \frac{1}{k} < f(x_k) < \tilde{M}.$$
(0.1)

As E is compact, by passing to a subsequence if necessary, we may assume that $x_k \in E$ converges to some $x_0 \in E$. Assume $f(x_0) < \tilde{M}$. Choose M with $f(x_0) < M < \tilde{M}$. Since f is use at x_0 , there exists some $\delta > 0$ such that

$$f(x) < M$$
 for all $x \in B(x_0; \delta) \cap E$. (0.2)

For k large enough, we have $x_k \in B(x_0; \delta) \cap E$. (0.1) will contradict to (0.2). Hence we must have $f(x_0) = \tilde{M}$, i.e., the maximum is attained.

2. (10 points) Show that the limit of a decreasing sequence of functions (with common domain E) use at $x_0 \in E$ is also use at x_0 . Give an example of a decreasing sequence of functions continuous at $x_0 \in E$ but its limit is not continuous at x_0 (by the first part of the problem we know that the limit is at least use at x_0).

<u>Solution</u>: Denote the decreasing sequence of functions by $f_k(x)$ and the limit by f(x). We have

$$f_1(x) \ge f_2(x) \ge \dots \ge f_k(x) \ge \dots, \quad x \in E$$

and each $f_k(x)$ is use at x_0 . Since we have $f(x) \leq f_k(x)$ on E for each k, we have

$$\limsup_{x \to x_0; x \in E} f(x) \le \limsup_{x \to x_0; x \in E} f_k(x) \le f_k(x_0) \quad \text{for each } k \in \mathbf{N}.$$

As k is arbitrary. Letting $k \to \infty$ gives the conclusion.

Let E = [0, 1] and let $\{x_k : k = 0, 1, 2, 3, ...\}$ be the set of all rationals in E. Set $f_0(x) \equiv 1$ and set for each $k \in \mathbb{N}$ the function

$$f_k(x) = \begin{pmatrix} y_2 \\ 0 & \text{at} \quad x = x_1, \ x_2, \ \cdots, \ x_k \\ 1 & \text{otherwise.} \end{cases}$$

Then $f_k(x)$ is a decreasing sequence of functions on E; all are continuous at $\sqrt{2}/2$. But the limit f(x) is not continuous at $\sqrt{2}/2$. However it is use at $\sqrt{2}/2$.

3. (10 points) Do Exercise 11 in p. 62.

<u>Solution</u>: We only show that h(x) is use on \mathbb{R}^n . The proof of the other case is similar.

For any $x_0 \in \mathbf{R}^n$, we first assume that $h(x_0) < \infty$ (otherwise we are done). It suffices to show that for any $M > h(x_0) = \inf \{f(y) : y \in B(x_0)\}$ there exists $\sigma > 0$ such that h(x) < M for all $x \in B(x_0; \sigma)$.

For any $M > h(x_0)$ choose $y_0 \in B(x_0)$ such that $f(y_0) < h(x_0) + \varepsilon < M$. Set $\eta = |y_0 - x_0| < r$ and $\delta = \frac{1}{2}(r - \eta) > 0$. Then for all x with $|x - x_0| < \delta$ we have

$$|x - y_0| \le |x - x_0| + |y_0 - x_0| \le \delta + \eta < r.$$

Hence $y_0 \in B(x)$ and by definition we get $h(x) = \inf \{f(y) : y \in B(x)\} \le f(y_0) < M$. Thus h(x) is use at x_0 .

For the case of using closed balls, consider in \mathbf{R}^2 the function

$$f(p) = {\begin{array}{*{20}c} y_2 & 0 & \text{if} & p = (1,0) \\ 1 & \text{if} & p \neq (1,0) \end{array}}, \quad p \in \mathbf{R}^2$$

and take r = 1, $B(x) = \stackrel{\circ}{p} \in \mathbb{R}^2$: $|p - x| \le 1^{\circ}$. Then h(0, 0) = 0 and for any $\delta > 0$ we have $h(-\delta, 0) = 1$. Hence h is not use at the point (0, 0).

4. (10 points) Do Exercise 12 in p. 62.

Solution: Assume $f(x) : [a, b] \to \mathbf{R}$ is continuous a.e. on [a, b]. Let Γ_k be a sequence of partitions of [a, b] with norms tending to zero. We also assume that each Γ_{k+1} is a refinement of Γ_k . For each k, if $x_1^{(k)} < x_2^{(k)} <_{\mathbf{h}} \cdot \cdot$ are the partitioning points of Γ_k , let $l_k(x)$ and $u_k(x)$ be defined in each semi-open interval $x_i^{(k)}, x_{i+1}^{(k)}$ as the inf and sup of f on $x_i^{(k)}, x_{i+1}^{(k)}$. Note that $l_k(x) \leq f(x) \leq u_k(x)$ for all $x \in [a, b)$ and all k. It is easy to see that for each k, $l_k(x)$ and $u_k(x)$ are measurable functions on [a, b) (even if it is possible that $l_k(x) = -\infty$ or $u_k(x) = +\infty$ on some intervals).

Let $x_0 \in (a, b)$ at which f(x) is continuous. For any $\varepsilon > 0$ there exists $\delta > 0$ such that

 $x \in (x_0 - \delta, x_0 + \delta)$ implies $|f(x) - f(x_0)| < \varepsilon$

and when k is large enough, the interval in Γ_k containing x_0 must lie inside $(x_0 - \delta, x_0 + \delta)$. This implies

$$|l_k(x_0) - f(x_0)| < \varepsilon$$
 and $|u_k(x_0) - f(x_0)| < \varepsilon$

for all k large enough. Hence $\lim_{k\to\infty} l_k(x) = f(x)$ a.e. on [a,b] (we also have $\lim_{k\to\infty} u_k(x) = f(x)$ a.e. on [a,b]). By Theorem 4.12 of the book, we know that f(x) is measurable on [a,b].

Remark 1 (be careful) If g(x) is a continuous function on [a, b] and f(x) = g(x) a.e. on [a, b], it does not, in general, imply that f(x) is continuous a.e. on [a, b]. For example, take g(x) = 1 and let

$$f(x) = \begin{bmatrix} 1, & x \text{ is irrational in } [0,1] \\ 0, & x \text{ is rational in } [0,1]. \end{bmatrix}$$

We see that f(x) = g(x) a.e. on [0,1], but f(x) is discontinuous everywhere on [0,1].