Real Analysis Homework 5, due 2007-10-16 in class

1. (10 points) Do Exercise 2 in p. 61.

<u>Solution</u>: Assume f takes distinct values a_1, \dots, a_N on disjoint sets E_1, \dots, E_N . We can express the function f(x) as

$$f(x) = a_1 \varkappa_{E_1}(x) + \dots + a_N \varkappa_{E_N}(x), \qquad x \in E = \int_{k=1}^N E_k$$

If each E_k is measurable, then the characteristic function $\varkappa_{E_k}(x) : E \to \mathbb{R}$ is a measurable function on E. Hence if E_1, \dots, E_N are all measurable, so is f(x).

Conversely, assume f(x) is measurable. Then by definition we know that (we may assume $a_1 < a_2 < \cdots < a_N$) the set $\{f > a_{N-1}\}$ is measurable. Since $\{f > a_{N-1}\} = E_N$, the set E_N is measurable. Similarly by

$$E_{N-1} = \{f > a_{N-2}\} - E_N$$

we know that E_{N-1} is measurable. Keep going to conclude that E_1, \dots, E_N are all measurable. \mathbb{X}

2. (10 points) Do Exercise 3 in p. 61.

Solution: Let $F(x) = (f(x), g(x)), x \in \mathbb{R}^n$. $F : \mathbb{R}^n \to \mathbb{R}^2$.

 (\Longrightarrow) Assume F is measurable. For any open set $G_x \subset \mathbb{R}$, let $G = G_x \times \mathbb{R}$. Then $G \subset \mathbb{R}^2$ is open and by the identity

$$F^{-1}(G) = f^{-1}(G_x)$$

we know that $f^{-1}(G_x)$ is measurable for any open set $G_x \subset \mathbb{R}$. Hence $f : \mathbb{R}^n \to \mathbb{R}$ is measurable. The same for $g : \mathbb{R}^n \to \mathbb{R}$.

(\Leftarrow) Assume $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$ are both measurable. Let $G \subset \mathbb{R}^2$ be an arbitrary open set. We can express G as a countable union of nonoverlapping closed intervals $G = \sum_{k=1}^{\infty} I_k$, where $I_k = [a_k, b_k] \times [c_k, d_k]$. Note that

$$F^{-1}(I_k) = f^{-1}[a_k, b_k]$$
 $g^{-1}[c_k, d_k]$ (both sets are measurable)

and so $F^{-1}(I_k)$ is measurable. By

$$F^{-1}(G) = \sum_{k=1}^{\infty} F^{-1}(I_k)$$

the set $F^{-1}(G)$ is measurable in \mathbb{R}^n . Hence F is a measurable function.

3. (10 points) Do Exercise 4 in p. 61.

Solution: For any $a \in \mathbb{R}$, we have

$$\{x \in \mathbb{R}^{n} : f(Tx) > a\} = \{x \in \mathbb{R}^{n} : f(Tx) \in (a,\infty)\}^{\mathsf{L}} \{x \in \mathbb{R}^{n} : f(Tx) = \infty\}$$

$$\overset{\mathbb{C}}{=} x \in \mathbb{R}^{n} : T^{-1} \overset{\mathsf{I}}{f} f^{-1} (a,\infty) \overset{\mathbb{C}^{a}}{=} x \in \mathbb{R}^{n} : T^{-1} \overset{\mathsf{I}}{f} f^{-1} (\{\infty\}) \overset{\mathbb{C}^{a}}{=} .$$

$$(0.1)$$

г

As $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is linear and Lipschitz continuous, (0.1) is a measurable set. Hence f(Tx) is a measurable function.

¤

4. (20 points) Do Exercise 5 in p. 61.

First solution: We first prove the following

Lemma 0.1 The Cantor-Lebesgue function $f(x) : [0,1] \rightarrow [0,1]$ satisfies $f(x_1) = f(x_2)$, where x_1 and x_2 are in C, if and only if both x_1 and x_2 are endpoints of some interval removed.

Proof. The direction ($\Leftarrow=$) is trivial.

(\Longrightarrow) Assume at least one of x_1 , x_2 is not endpoint, say x_2 . On the interval (x_1, x_2) , $x_1 < x_2$, x_1 , $x_2 \in C$, there exists some $p \notin C$. Let $I = (y_1, y_2)$ be the maximal open interval containing p such that $I \cap C = \emptyset$ (note that the complement of C is open). We now have $y_1, y_2 \in C$ and $y_2 < x_2$ (otherwise if $y_2 = x_2$, then x_2 must be an endpoint, impossible). Similarly one can find an open interval $J = (z_1, z_2)$ such that $J \subset (y_2, x_2)$ with $y_2 < z_1$ (otherwise y_2 is an isolated point of C, impossible). Now the open interval J is on the right hand side of the open interval I with a positive distance away. These two distinct intervals must be exactly equal to some removed intervals in the process of constructing the Cantor set. Hence f(I) < f(J), which gives $f(x_1) < f(x_2)$.

Corollary 0.2 If $x \in C$ but x is not endpoint of some interval removed (say $x = \frac{1}{4}$), then there is no $\tilde{x} \in C$, $\tilde{x} \neq x$, such that $f(\tilde{x}) = f(x)$.

Corollary 0.3 Let $\tilde{C} = C - \{\text{all right endpoints of the removed intervals}\}$, where *C* is the Cantor set. Then $f : \tilde{C} \to [0, 1]$ is **1-1** and **onto**, and is **strictly increasing** on \tilde{C} . Here *f* is the Cantor-Lebesgue function.

By the above corollary we have $g(y) : [0,1] \to \tilde{C} \subset [0,1]$, strictly increasing on [0,1], which is the inverse of $f : \tilde{C} \to [0,1]$. For any $a \in [0,1]$ the set

$$E_a := \{ y \in [0, 1] : g(y) \ge a \} = \{ y \in [0, 1] : y \ge f(a) \}$$

is measurable. Hence g is a measurable function on [0, 1].

Let $A \subset [0,1]$ be a nonmeasurable set. Its image under g has measure zero, hence measurable. Let

$$\varphi = \varkappa_{q(A)} : [0, 1] \to \mathbb{R}$$

then φ is a measurable function on [0, 1]. But the composite function $\varphi \circ g : [0, 1] \to \mathbb{R}$ is not measurable since the set $\frac{y_2}{34}$

$$y \in [0,1]: \varphi(g(y)) > \frac{1}{2}^{+} = A$$

is not measurable.

Second solution (much easier):

Let $f(x) : [0, 1] \rightarrow [0, 1]$ be the Cantor-Lebesgue function and let g(x) = x + f(x). It is easy to see that $g(x) : [0, 1] \rightarrow [0, 2]$ is a strictly increasing continuous function. Hence g(x) is a homeomorphism of [0, 1] onto [0, 2]. We denote its continuous inverse by $h : [0, 2] \rightarrow [0, 1]$. On each interval $I_1, I_2, I_3, ...$, removed in the construction of the Cantor set, say the interval

Ø

 $I_1 = \frac{i_1}{3}, \frac{2}{3}^{\textcircled{C}}$, the function g(x) becomes $g(x) = x + \frac{1}{2}$. Hence g(x) sends I_1 onto an open interval with the same length. Using this observation one can see that

$$\int_{a}^{b} \int_{k=1}^{b} I_{k} = \int_{k=1}^{b} \int_{k=1}^{b} g(I_{k}) = \bigotimes_{k=1}^{b} |g(I_{k})| = \bigotimes_{k=1}^{b} |I_{k}| = 1$$

which implies |g(C)| = 2 - 1 = 1, where *C* is the Cantor set. Since g(C) has positive measure, by Corollary 3.39 in the book, there exists a non-measurable set $B \subset g(C)$. Now consider the set $A = h(B) \subset C$. It has measure zero, hence *A* is measurable. Let

$$\varphi = \varkappa_A : [0, 1] \to \mathbb{R}, \qquad |A| = 0$$

then φ is a measurable function on [0, 1]. We now have two measurable functions $h : [0, 2] \rightarrow [0, 1]$ (continuous) and $\varphi : [0, 1] \rightarrow \mathbb{R}$. But the composite function $\varphi \circ h : [0, 2] \rightarrow \mathbb{R}$ is **not** measurable since the set $\frac{1}{2}$

$$\theta \in [0,2]: \varphi(h(\theta)) > \frac{1}{2}^{4} = A$$

is not measurable.

Ø