Real Analysis Homework 4, due 2007-10-9 in class

Show Your Work to Each Problem

1. (20 points)

- (a) (10 points) Use definition (do not use Theorem 3.33) to show that the Cantor-Lebesgue function $f(x): [0,1] \to [0,1]$ is not a Lipschitz continuous function.
- (b) (10 points) Show that the Cantor-Lebesgue function $f(x): [0,1] \to [0,1]$ satisfies the following

$$|f(x) - f(y)| \le 2 |x - y|^{\alpha}, \quad \forall x, y \in [0, 1]$$

where $\alpha \in (0,1)$ is a constant given by $\alpha = \log 2/\log 3$. (Hint: Use the fact that if $x, y \in [0,1]$ with $|x-y| \leq 3^{-k}$ for some $k \in \mathbb{N}$, then the difference |f(x) - f(y)| is at most 2^{-k} . For arbitrary $x, y \in [0,1]$ one can choose an unique $k \in \mathbb{N}$ such that $3^{-k-1} < |x-y| \leq 3^{-k}$, which implies $|f(x) - f(y)| \leq 2^{-k}$. Rewrite the estimate without involving k.)

Solution: (a). For example, look at the function near the point $x = \frac{2}{9} = \frac{6}{27} = \frac{18}{81}$. We have $f \stackrel{1}{2} \stackrel{2}{9} = \frac{1}{4}$. We also have $f \stackrel{1}{2} \stackrel{7}{27} - f \stackrel{1}{2} \stackrel{2}{9} = \frac{1}{8}$, which gives

$$\frac{f^{\dagger}\frac{7}{27} - f^{\dagger}\frac{2}{9}}{\frac{7}{27} - \frac{2}{9}} = \frac{\mu_{3}}{2}$$

Keep going to get (note that $\frac{6}{27} = \frac{18}{81}, \frac{7}{27} = \frac{21}{81}$)

$$\frac{f \overset{i}{\frac{19}{81}} - f \overset{i}{\frac{29}{9}}}{\frac{19}{81} - \frac{2}{9}} = \frac{\mu_3}{2}$$

 \cdots , etc. Thus it is impossible to find a finite constant M > 0 such that

$$\frac{\left[f\left(y\right) - f\left(x\right)\right]}{y - x} \le M \quad \text{for all} \quad x, \ y \in [0, 1].$$

(b). First note that if $x, y \in [0,1]$ with $|x-y| \leq 3^{-k}$ for some $k \in \mathbb{N}$, then the difference |f(x) - f(y)| is at most 2^{-k} . For arbitrary $x, y \in [0,1]$ one can choose largest $k \in \mathbb{N}$ such that $|x-y| \leq 3^{-k}$; therefore

$$3^{-k-1} < |x-y| \le 3^{-k} \tag{0.1}$$

which will gives the best estimate

$$|f(x) - f(y)| \le 2^{-k}.$$
(0.2)

(0.1) is equivalent to

$$-(k+1)\log 3 < \log |x-y| \le -k\log 3$$

which gives

$$-k < 1 + \frac{\log|x-y|}{\log 3}.$$

By (0.2) we get

$$\log|f(x) - f(y)| \le -k\log 2 < \log 2 + \log|x - y|^{\alpha}, \quad \alpha = \frac{\log 2}{\log 3}$$
(0.3)

and so

$$|f(x) - f(y)| \le 2 |x - y|^{\alpha}, \quad x, y \in [0, 1].$$

2. (10 points) Do Exercise 20 in p. 48.

Solution: Let E be a non-measurable subset of [0,1], as established in Corollary 3.39 of the book. We know $|E|_e > 0$. Let $r_0 = 0$, r_1 , r_2 , ..., be the set of all rationals in [0,1] and let $E_k = E + r_k$ for $k = 0, 1, 2, 3, \ldots$ Each $E_k \subset [0,2]$ for all k with $|E_k|_e = |E|$, and $E_i \cap E_j = \emptyset$ for different i and j. We clearly have

$$\begin{bmatrix} & & \\ & & \\ & & E_k \end{bmatrix}_e \le 2 < \mathsf{X} \quad |E_k|_e = \infty$$

3. (10 points) Do Exercise 21 in p. 48.

Solution: Following the notation of Ex 20, we let

then $A_k \searrow \emptyset$, $|A_k|_e \le 2 < \infty$ (due to $E_k \subset [0,2]$ for all k), and $|A_k|_e \ge |E|_e > 0$ for all k. Hence we have $\lim_{k\to\infty} |A_k|_e > 0$.

4. (10 points) Do Exercise 23 in p. 49.

Solution: For each $n \in \mathbb{N}$ let

$$Z_n = Z \left[-n, n \right].$$

we have $|Z_n| = 0$ for all n. Also let

$$T_n(x) = \begin{array}{c} y_2 \\ x^2 & \text{if } x \in [-n,n] \\ n^2 & \text{otherwise.} \end{array}$$

Then $T_n : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous on \mathbb{R} . Hence $|TZ_n| = 0$ for all n. As $TZ \subset {\mathsf{S}}_n T_n Z_n$, we have |TZ| = 0.

Ø