Real Analysis Homework 4, due 2007-10-9 in class

1. (20 points)

- (a) (10 points) Use definition (do not use Theorem 3.33) to show that the Cantor-Lebesgue function $f(x): [0,1] \to [0,1]$ is not a Lipschitz continuous function.
- (b) (10 points) Show that the Cantor-Lebesgue function $f(x): [0,1] \to [0,1]$ satisfies the following

$$|f(x) - f(y)| \le 2|x - y|^{\alpha}, \quad \forall x, y \in [0, 1]$$

where $\alpha \in (0,1)$ is a constant given by $\alpha = \log 2/\log 3$. (Hint: Use the fact that if $x, y \in [0,1]$ with $|x-y| \leq 3^{-k}$ for some $k \in \mathbb{N}$, then the difference |f(x) - f(y)| is at most 2^{-k} . For arbitrary $x, y \in [0,1]$ one can choose an unique $k \in \mathbb{N}$ such that $3^{-k-1} < |x-y| \leq 3^{-k}$, which implies $|f(x) - f(y)| \leq 2^{-k}$. Rewrite the estimate without involving k.)

- 2. (10 points) Do Exercise 20 in p. 48.
- 3. (10 points) Do Exercise 21 in p. 48.
- 4. (10 points) Do Exercise 23 in p. 49.