Real Analysis Homework 3, due 2007-10-3 in class

Show Your Work to Each Problem

1. (20 points) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Define the collection of sets P as Х $= \overset{\circ}{B} \subset \mathbb{R}: f^{-1}(B) \text{ is measurable}^{A}.$

Does P form a σ -algebra? If $B \subset \mathbb{R}$ is a Borel set, does it follow that $f^{-1}(B)$ is a Borel set? Give your reasons.

<u>Solution:</u> Clearly \emptyset , $\mathbb{R} \in \overset{\mathsf{P}}{\sim}$. If $E \in \overset{\mathsf{P}}{\sim}$, by

$$f^{-1}(E^c) = {}^{\mathsf{i}} f^{-1}(E) {}^{\mathsf{c}_c} \tag{0.1}$$

we know that $E^c \in \Pr_{\tilde{a}}^{\mathsf{P}}$ also. Similarly if $\{E_k\}_{k=1}^{\infty}$ is a collection of subsets of $\stackrel{\mathsf{P}}{}$, then by

we know that $\cup_k E_k \in \mathsf{P}$ and $\cap_k E_\alpha \in \mathsf{P}$. Hence P is a σ -algebra.

Similarly we can show that the set

$$\Lambda = \overset{\otimes}{B} \subset \mathbb{R} : f^{-1}(B) \text{ is Borel measurable}^{\mathsf{a}}$$

forms a σ -algebra. For any open set $O \subset \mathbb{R}$, the set $f^{-1}(O)$ is also open. Hence $f^{-1}(O) \in \Lambda$. The same for closed set. Hence all open sets and closed sets are contained in Λ . Since Λ is a σ -algebra, if $B \subset \mathbb{R}$ is a Borel set, then $f^{-1}(B)$ must also be a Borel set.

2. (20 points) Do Exercise 12 in p. 48. Hint: You can use Theorem 3.29.

Solution: We first show that $E_1 \times E_2 \subset \mathbb{R}^2$ is measurable.

Write $E_1 = H_1 - Z_1$, H_1 is G_{δ} set and $|Z_1| = 0$. The same for $E_2 = H_2 - Z_2$. Then

$$E_1 \times E_2 = H_1 \times H_2 - Z_1 \times H_2 - H_1 \times Z_2$$

where

$$H_1 \times H_2 = \bigwedge_{n=1}^{\mathsf{A}} O_n \times \bigwedge_{n=1}^{\mathsf{N}} \tilde{O}_n = \bigwedge_{n=1}^{\mathsf{N}} O_n \times \tilde{O}_n$$

is a G_{δ} set in \mathbb{R}^2 (O_n and \tilde{O}_n are open set in \mathbb{R}^1). We see that $H_1 \times H_2 \subset \mathbb{R}^2$ is measurable.

Assume first that $|H_2| < \infty$. One can find open sets $G_1 \supset Z_1$, $G_2 \supset H_2$ such that $|G_1| < \infty$ ε , $|G_2| < |H_2| + \varepsilon$. Write

$$G_{1} = \bigcap_{\substack{j=1\\j=1}}^{\infty} I_{j} \quad (\text{nonoverlapping closed intervals in } \mathbb{R}^{1})$$

$$G_{2} = \bigcap_{k=1}^{\infty} \tilde{I}_{k} \quad (\text{nonoverlapping closed intervals in } \mathbb{R}^{1})$$

to see that

$$Z_1 \times H_2 \subset G_1 \times G_2 = \bigcap_{j, k=1}^{\infty} I_j \times \tilde{I}_k \quad \text{(nonoverlapping closed intervals in } \mathbb{R}^2\text{)}$$

with

$$|G_1 \times G_2| = \underset{j,k}{\mathsf{X}} \left[I_j \times \tilde{I}_k \right] = \underset{|I_j|}{\mathsf{X}} \left[I_j \right] \cdot \underset{|I_j|}{\mathsf{X}} \left[I_k \right] = |G_1| \cdot |G_2| < \varepsilon \left(|H_2| + \varepsilon \right)$$
(0.3)

which implies $|Z_1 \times H_2| = 0$. If $|H_2| = \infty$, decompose $H_2 = \underset{n=-\infty}{\mathsf{S}_{\infty}} (H_2 \cap [n, n+1))$, disjoint union, and see that $|Z_1 \times H_2| = 0$. The same for $|H_1 \times Z_2| = 0$. Hence $E_1 \times E_2 \subset \mathbb{R}^2$ is measurable.

Next we show that $|E_1 \times E_2| = |E_1| \times |E_2|$

Case 1: $|E_1| < \infty$, $|E_2| < \infty$.

From (0.3) we see that $|G_1 \times G_2| = |G_1| \times |G_2|$ for any two open sets in \mathbb{R}^1 .

Choose open sets $G_1 \supset E_1$, $G_2 \supset E_2$ with $|G_1 - E_1| < \varepsilon$, $|G_2 - E_2| < \varepsilon$. Then $E_1 \times E_2 \subset$ $G_1 \times G_2$ and so

$$|E_1 \times E_2| \le |G_1 \times G_2| = |G_1| \times |G_2| \le (|E_1| + \varepsilon) \cdot (|E_2| + \varepsilon)$$

which implies that

$$|E_1 \times E_2| \le |E_1| \times |E_2|.$$
 (0.4)

Write $G_1 = \sum_{j=1}^{\infty} I_j = S \cup N_1$, where

$$S = \bigcup_{j=1}^{M} I_j, \qquad N_1 = \bigcup_{j=M+1}^{\infty} I_j \qquad (M \text{ is some large number})$$

satisfies

$$|E_1| - \varepsilon \le |S| \le |E_1| + \varepsilon, \qquad |N_1| < \varepsilon.$$

$$(0.5)$$

Then one can express E_1 as

$$E_1 = (S \cup N_1) \text{ (open set)} - N_2, \text{ where } N_2 = G_1 - E_1, |N_2| < \varepsilon.$$

Do the same for G_2 and E_2 to get

$$E_{2} = \overset{3}{\tilde{S}} \cup \tilde{N}_{1} \quad (\text{open set}) - \tilde{N}_{2}, \quad \tilde{N}_{2} = G_{2} - E_{2}, \quad \overset{1}{\tilde{N}_{2}} < \varepsilon$$

$$|E_{2}| - \varepsilon \leq \overset{1}{\tilde{S}} \leq |E_{2}| + \varepsilon, \quad \overset{1}{\tilde{N}_{1}} < \varepsilon. \quad (0.6)$$

with

$$|E_2| - \varepsilon \le \tilde{\tilde{S}} \le |E_2| + \varepsilon, \qquad \tilde{\tilde{N}_1} < \varepsilon.$$

$$(0)$$

Now

$$E_1 \times E_2 = (S \cup N_1) \times \overset{3}{\tilde{S}} \cup \tilde{N}_1 - N_2 \times \overset{3}{\tilde{S}} \cup \tilde{N}_1 - (S \cup N_1) \times \tilde{N}_2 := A - B$$

where A and B are measurable sets with $B \subset A$, $|B| < \infty$. Hence

$$|E_1 \times E_2| = |A| - |B|$$

with

$$|A| = |S \cup N_1| \times \tilde{S} \cup \tilde{N_1} = (|S| + |N_1|) \cdot \tilde{S} + \tilde{N_1}$$
(0.7)

and by (0.4)

$$|B| = N_2 \times \tilde{S} \cup \tilde{N}_1 + (S \cup N_1) \times \tilde{N}_2 \le C\varepsilon$$

$$(0.8)$$

for some finite constant C. By (0.4), (0.7), (0.8), (0.5) and (0.6), we get the equality

$$|E_1 \times E_2| = |E_1| \times |E_2|.$$

Case 2: $|E_1| = \infty$, $|E_2| = 0$.

Consider $E_1^{(n)} := E_1 \cap [n, n+1), \ n \in \mathbb{Z}$, then we have $|E_1 \times E_2| = 0 = |E_1| \times |E_2|$ (we view $\infty \cdot 0 = 0$).

Case 3:
$$|E_1| = \infty$$
, $|E_2| = \lambda > 0$.

Consider $E_1^{(n)} := E_1 \cap [n, n+1)$, then we have $|E_1 \times E_2| = {}^{3} \mathsf{P}_{\substack{n=-\infty \\ n=-\infty}} [E_1^{(n)}] \cdot |E_2| = \infty = |E_1| \times |E_2|$.

Case 4: $|E_1| = \infty$, $|E_2| = \infty$.

Easy to see that $|E_1 \times E_2| = \infty = |E_1| \times |E_2|$.

3. (10 points) It has been proved in class that if $E \subset \mathbb{R}^n$ is an arbitrary measurable set $(|E| = \infty \text{ is allowed})$. We have

$$|E| = \inf_{G \supset E, \ G \text{ open in } \mathbb{R}^n} |G| = \sup_{F \subset E, \ F \text{ closed in } \mathbb{R}^n} |F| \,.$$

Show that if $E \subset \mathbb{R}^n$ is an arbitrary set satisfying the following $\begin{pmatrix} & & \\ & &$

$$|E|_e < \infty$$

 $\inf_{G \supset E, G}$ open in $\mathbb{R}^n |G| = \sup_{F \subseteq E, F}$ closed in $\mathbb{R}^n |F|$

then E must be measurable. Use an example to explain that the condition $|E|_e < \infty$ is necessary. That is, there exists a set E with $|E|_e = \infty$, $\inf_{G \supset E, G \text{ open in } \mathbb{R}^n} |G| = \sup_{F \subset E, F \text{ closed in } \mathbb{R}^n} |F|$, but it is not measurable.

<u>Solution</u>: By the assumption for any fixed $\varepsilon > 0$ one can choose open set $G \supset E$ and closed set $F \subset E$ so that

$$|E|_e - \varepsilon < |F| \le |G| < |E|_e + \varepsilon.$$

$$(0.9)$$

Since $|F| \leq |E|_e < \infty$ and then (0.9) gives

$$|G - F| = |G| - |F| < 2\varepsilon.$$

In particular we have $|G - E| \le |G - F| < 2\varepsilon$ and so E is measurable.

Let $E = (-\infty, 0) \cup A$, where $A \subset (1, 2)$ is some nonmeasurable set. Clearly E satisfies

$$|E|_e = \infty, \qquad \inf_{G \supset E, \ G \text{ open in } \mathbb{R}^n} |G| = \sup_{F \subset E, \ F \text{ closed in } \mathbb{R}^n} |F| = \infty$$

but it is nonmeasurable.

¤

¤