
Real Analysis Homework 14, due 2008-1-2 in class

1. (10 points) Let E ⊂ Rn be a measurable set (|E| <∞ or not). If for any 0 < p <∞ we have
f ∈ Lp (E) and kfkp ≤ K, where K is a constant independent of p. Show that f ∈ L∞ (E)
and kfk∞ ≤ K also.

Solution:

We first assume |E| <∞. In this case, we have (see Theorem 8.1) limp→∞ kfkp = kfk∞ . Hence
f ∈ L∞ (E) and kfk∞ ≤ K.

If |E| =∞, decompose E =
S∞
k=1 Ek, where each |Ek| <∞. On each Ek, we have f ∈ L∞ (Ek)

and kfk∞,Ek
≤ K. Since the constant K is independent of the set Ek, we have f ∈ L∞ (E) and

kfk∞,E ≤ K. ¤

2. (10 points) Do Exercise 5 in P. 143.

Solution:

We have 1 ≤ p <∞, 0 < |E| <∞, and

Np [f ] =

µ
1

|E|

Z
E
|f |p

¶1/p

=
1

|E|1/p
kfkp .

If p1 < p2, 1 ≤ p1, p2 <∞, then set s = p2

p1
∈ (1,∞) . Its conjugate exponent is t = s

s−1 = p2

p2−p1
∈

(1,∞) . By Hölder inequality we get

kfkp1
p1

=

Z
E
|f (x)|p1 · 1dx

≤
µZ

E
|f (x)|p1s dx

¶1/s µZ
E

1tdx

¶1/t

=

µZ
E
|f (x)|p2 dx

¶p1/p2

|E|(p2−p1)/p2 .

Taking 1
p1

power on both sides gives the conclusion.
Also by Minkowski inequality we have

Np [f + g] =
1

|E|1/p
kf + gkp ≤

1

|E|1/p
h
kfkp + kgkp

i
= Np [f ] + Np [g] .

Furthermore, Hölder inequality implies

1

|E|

Z
E
|fg| ≤ 1

|E|1/p
kfkp ·

1

|E|1/p0 kgkp0 = Np [f ] ·Np0 [g] ,
1

p
+

1

p0
= 1.

Finally since 0 < |E| <∞, we have

lim
p→∞

Np [f ] = lim
p→∞

Ã
1

|E|1/p
kfkp

!
= lim

p→∞
kfkp = kfk∞ .

¤

3. (10 points) Prove the converse of Hölder inequality (Theorem 8.8) for the case p = 1 and
p =∞.

1



Solution:

Assume p = 1. Clearly we have

kfk1 ≥ sup

Z
E
fg (1)

for all g ∈ L∞ (E) with kgk∞ ≤ 1.
Conversely, take g = sign f ∈ L∞ (E) . Then kgk∞ ≤ 1 and

kfk1 =

Z
E
|f | =

Z
E
fg

which implies RHS of (1) ≥ LHS of (1).
For p =∞, again we have

kfk∞ ≥ sup

Z
E
fg

for all g ∈ L1 (E) with kgk1 ≤ 1.
Conversely, if kfk∞ = 0, then it is clear. For 0 < kfk∞ <∞, we may assume kfk∞ = 1. Let

En =

½
x ∈ E : |f (x)| > 1− 1

n
, n ∈ N

¾
.

Then |En| > 0 for all n. On each En one can choose gn (x) satisfying gn ≥ 0,
R
En

gn = 1, and let
gn = 0 outside En. NowZ

E
|f | gn =

Z
En

|f | gn ≥
µ

1− 1

n

¶ Z
En

gn = 1− 1

n
,

Z
E
gn = 1

and so

kfk∞ = sup

Z
E
|f | g

for all g ∈ L1 (E) with kgk1 ≤ 1. Finally it is easy to see that sup
R
E |f | g = sup

R
E fg.

For the case kfk∞ =∞, just repeat the above process with

En = {x ∈ E : |f (x)| > n, n ∈ N} .

¤

4. (10 points) Assume 1 ≤ p <∞. Do Exercise 12 in P. 144.

Solution:

In this problem, we assume 1 ≤ p < ∞ (in fact, as long as 0 < p < ∞, we have the same
conclusion).

(=⇒) By Minkowski inequality we have¯̄̄
kfkp − kfkkp

¯̄̄
≤ kf − fkkp → 0 as k →∞.

Hence we have kfkkp → kfkp as k →∞.

(⇐=) We assume that fk → f a.e. and kfkkp → kfkp as k →∞. By the inequality

2p |f |p + 2p |fk|p − |f − fk|p ≥ 0

we have (by Fatou’s Lemma)Z
E

lim inf
k

[2p |f |p + 2p |fk|p − |f − fk|p] ≤ lim inf
k

Z
E

[2p |f |p + 2p |fk|p − |f − fk|p]
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where Z
E

lim inf
k

[2p |f |p + 2p |fk|p − |f − fk|p] =

Z
E

[2p |f |p + 2p |f |p]

and

lim inf
k

Z
E

[2p |f |p + 2p |fk|p − |f − fk|p] =

Z
E

[2p |f |p + 2p |f |p]− lim sup
k

Z
E
|f − fk|p .

Since we assume f ∈ Lp, the integral
R
E [2p |f |p + 2p |f |p] is finite (this is essential). Hence we

conclude

lim sup
k

Z
E
|f − fk|p ≤ 0.

The proof is done. ¤

Remark 1 When p =∞, the conclusion in (⇐=) fails. Just take f = 1 on R and fk = χ(−k,k).
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