1. (10 points) Let $E \subset \mathbf{R}^n$ be a measurable set ($|E| < \infty$ or not). If for any $0 we have <math>f \in L^p(E)$ and $||f||_p \leq K$, where K is a constant independent of p. Show that $f \in L^{\infty}(E)$ and $||f||_{\infty} \leq K$ also.

Solution:

We first assume $|E| < \infty$. In this case, we have (see Theorem 8.1) $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$. Hence $f \in L^{\infty}(E)$ and $||f||_{\infty} \le K$. If $|E| = \infty$, decompose $E = S_{k=1}^{\infty} E_k$, where each $|E_k| < \infty$. On each E_k , we have $f \in L^{\infty}(E_k)$

If $|E| = \infty$, decompose $E = \int_{k=1}^{\infty} E_k$, where each $|E_k| < \infty$. On each E_k , we have $f \in L^{\infty}(E_k)$ and $||f||_{\infty, E_k} \leq K$. Since the constant K is independent of the set E_k , we have $f \in L^{\infty}(E)$ and $||f||_{\infty, E} \leq K$.

2. (10 points) Do Exercise 5 in P. 143.

Solution:

We have $1 \le p < \infty$, $0 < |E| < \infty$, and

$$N_p[f] = \frac{\mu}{|E|} \sum_{E} |f|^p = \frac{1}{|E|^{1/p}} ||f||_p.$$

If $p_1 < p_2$, $1 \le p_1$, $p_2 < \infty$, then set $s = \frac{p_2}{p_1} \in (1, \infty)$. Its conjugate exponent is $t = \frac{s}{s-1} = \frac{p_2}{p_2-p_1} \in (1, \infty)$. By Hölder inequality we get

$$\begin{aligned} \|f\|_{p_{1}}^{p_{1}} &= \int_{E} |f(x)|^{p_{1}} \cdot 1dx \\ & \mu Z \qquad & \P_{1/s} \,\mu Z \qquad & \P_{1/t} \quad \mu Z \qquad & \P_{p_{1}/p_{2}} \\ & \leq \int_{E} |f(x)|^{p_{1}s} \,dx \qquad & E^{1^{t}} dx \qquad & = \int_{E} |f(x)|^{p_{2}} \,dx \qquad & |E|^{(p_{2}-p_{1})/p_{2}} \,. \end{aligned}$$

Taking $\frac{1}{p_1}$ power on both sides gives the conclusion.

Also by Minkowski inequality we have

$$N_p[f+g] = \frac{1}{|E|^{1/p}} \|f+g\|_p \le \frac{1}{|E|^{1/p}} \|f\|_p + \|g\|_p = N_p[f] + N_p[g].$$

Furthermore, Hölder inequality implies

$$\frac{1}{|E|} \sum_{E}^{L} |fg| \le \frac{1}{|E|^{1/p}} \|f\|_{p} \cdot \frac{1}{|E|^{1/p^{0}}} \|g\|_{p^{0}} = N_{p}[f] \cdot N_{p^{0}}[g], \qquad \frac{1}{p} + \frac{1}{p'} = 1$$

Finally since $0 < |E| < \infty$, we have

$$\tilde{A} = \lim_{p \to \infty} N_p[f] = \lim_{p \to \infty} \frac{1}{|E|^{1/p}} ||f||_p = \lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

¤

3. (10 points) Prove the converse of Hölder inequality (Theorem 8.8) for the case p = 1 and $p = \infty$.

Solution:

Assume p = 1. Clearly we have

Ζ $||f||_1 \ge \sup_{F} fg$ (1)

for all $g \in L^{\infty}(E)$ with $||g||_{\infty} \leq 1$. Conversely, take $g = sign \ f \in L^{\infty}(E)$. Then $||g||_{\infty} \leq 1$ and

$$\|f\|_1 = \sum_E |f| = \sum_E fg$$

which implies RHS of $(1) \ge LHS$ of (1).

For $p = \infty$, again we have

$$\|f\|_{\infty} \ge \sup \sum_{E}^{L} fg$$

7

for all $g \in L^1(E)$ with $||g||_1 \leq 1$.

Ζ

Conversely, if $||f||_{\infty} = 0$, then it is clear. For $0 < ||f||_{\infty} < \infty$, we may assume $||f||_{\infty} = 1$. Let

$$E_n = x \in E : |f(x)| > 1 - \frac{1}{n}, \quad n \in \mathbb{N}^{3/4}.$$

Then $|E_n| > 0$ for all n. On each E_n one can choose $g_n(x)$ satisfying $g_n \ge 0$, $\underset{E_n}{\mathsf{R}} g_n = 1$, and let $g_n = 0$ outside E_n . Now

$$\sum_{E} |f| g_{n} = \sum_{E_{n}}^{Z} |f| g_{n} \ge \frac{\mu}{1 - \frac{1}{n}} \prod_{E_{n}}^{\P} Z_{n} = 1 - \frac{1}{n}, \qquad Z_{E} g_{n} = 1$$

and so

$$\|f\|_{\infty} = \sup_{E} |f|g$$

for all $g \in L^1(E)$ with $||g||_1 \le 1$. Finally it is easy to see that $\sup_{E}^{R} |f|g = \sup_{E}^{R} fg$. For the case $||f||_{\infty} = \infty$, just repeat the above process with

 $E_n = \{x \in E : |f(x)| > n, n \in \mathbb{N}\}.$

¤

4. (10 points) Assume $1 \le p < \infty$. Do Exercise 12 in P. 144.

Solution:

In this problem, we assume $1 \le p < \infty$ (in fact, as long as 0 , we have the sameconclusion).

 (\Longrightarrow) By Minkowski inequality we have

$$\|f\|_p - \|f_k\|_p \le \|f - f_k\|_p \to 0 \text{ as } k \to \infty.$$

Hence we have $||f_k||_p \to ||f||_p$ as $k \to \infty$.

(
$$\Leftarrow$$
) We assume that $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p$ as $k \to \infty$. By the inequality

$$2^{p} |f|^{p} + 2^{p} |f_{k}|^{p} - |f - f_{k}|^{p} \ge 0$$

we have (by Fatou's Lemma)

$$\sum_{k=1}^{n} \lim_{k \to \infty} \inf \left[2^{p} \left| f \right|^{p} + 2^{p} \left| f_{k} \right|^{p} - \left| f - f_{k} \right|^{p} \right] \le \lim_{k \to \infty} \inf \left[2^{p} \left| f \right|^{p} + 2^{p} \left| f_{k} \right|^{p} - \left| f - f_{k} \right|^{p} \right]$$

where

Z

$$\lim_{E} \lim_{k} \inf \left[2^{p} \left| f \right|^{p} + 2^{p} \left| f_{k} \right|^{p} - \left| f - f_{k} \right|^{p} \right] = \sum_{E} \left[2^{p} \left| f \right|^{p} + 2^{p} \left| f \right|^{p} \right]$$

and

Since

$$Z = \sum_{\substack{k \in \mathbb{Z}^p \\ k \in \mathbb{Z}}} \left[2^p |f|^p + 2^p |f_k|^p - |f - f_k|^p \right] = \sum_{\substack{k \in \mathbb{Z}^p \\ E}} \left[2^p |f|^p + 2^p |f|^p \right] - \limsup_{\substack{k \in \mathbb{Z}}} \left[f - f_k \right]^p.$$

Since we assume $f \in L^p$, the integral
$$R = \left[2^p |f|^p + 2^p |f|^p \right]$$
 is finite (this is essential). Hence we conclude Z

¤

 $\limsup_{k} \sum_{E}^{\mathsf{Z}} |f - f_k|^p \le 0.$

The proof is done.

Remark 1 When $p = \infty$, the conclusion in (\Leftarrow) fails. Just take f = 1 on **R** and $f_k = \chi_{(-k,k)}$.