1. (10 points) Do Exercise 1 in p. 123.

<u>Solution</u>: f is defined and measurable on \mathbb{R}^n . Assume |f| > 0 on a set E with |E| > 0. We know that there exists $N \in \mathbb{N}$ such that $|f| > \frac{1}{N} > 0$. Denote the set $|f| > \frac{1}{N}$ by E_N . We have $\frac{1}{N}\chi_{E_N}(x) \le |f(x)|$ on E_N (and on \mathbb{R}^n also) so

$$\frac{1}{N}\chi_{E_N}^*(x) \le f^*(x) \quad \text{on} \quad \mathbf{R}^n.$$

Hence by estimate (7.7) in p. 104, there exists a large number d such that

$$\frac{\mu_{c_1|E_N|}}{N} \prod_{|x|^n} \frac{1}{|x|^n} \le \frac{1}{N} \chi_{E_N}^* (x) \le f^* (x) \quad \text{for all} \quad |x| \ge d.$$

On the compact set $S = \{x \in \mathbb{R}^n : 1 \le |x| \le d\}$, since $f^*(x)$ is lower semicontinuous on \mathbb{R}^n with $f^*(x) > 0$ everywhere, it attains its positive minimum on S (see exercise 2, p. 61). Hence there exists a small positive constant c_2 such that $f^*(x) \ge \frac{c_2}{|x|^n}$ on S. Let $c = \min \frac{c_1|E_N|}{N}$, c_2 . We have

$$f^{*}(x) \ge \frac{c}{|x|^{n}}$$
 for all $|x| \ge 1$.

	2. ((10	points)	Do	Exercise	2	in	p.	123
--	------	-----	---------	----	----------	---	----	----	-----

Solution: Assume $|\phi| \leq M$ on \mathbb{R}^n and x is in the Lebesgue set of f. We have

$$\begin{aligned} |(f * \phi_{\varepsilon})(x) - f(x)| &\leq \sum_{\substack{Z \in \mathcal{P}^n \\ B_{\varepsilon}(O)}} |f(x - y) - f(x)| |\phi_{\varepsilon}(y)| dy \\ &= \sum_{\substack{B_{\varepsilon}(O)}} |f(x - y) - f(x)| |\phi_{\varepsilon}(y)| dy \leq \frac{M}{\varepsilon^n} \sum_{\substack{B_{\varepsilon}(O)}} |f(x - y) - f(x)| dy \end{aligned}$$

where $B_{\varepsilon}(O) = \{|y| \leq \varepsilon\}$ has measure $C(n) \varepsilon^n$. Hence

$$|(f * \phi_{\varepsilon})(x) - f(x)| \le C(n) M \cdot \frac{1}{|B_{\varepsilon}(O)|} \int_{B_{\varepsilon}(O)}^{L} |f(x - y) - f(x)| dy$$

and we know that

$$\lim_{\varepsilon \to 0} \frac{1}{|B_{\varepsilon}(O)|} \sum_{B_{\varepsilon}(O)}^{Z} |f(x-y) - f(x)| \, dy = 0$$

due to Theorem 7.16.

3. (10 points) Let C₀ (**R**ⁿ) be the space of all continuous functions on **R**ⁿ with compact support. We know that it is dense in the space L¹ (**R**ⁿ) (Lemma 7.3 of the book). It is also clear that each g (x) ∈ C₀ (**R**ⁿ) is uniformly continuous on **R**ⁿ. Use this dense property to show that if f ∈ L¹ (**R**ⁿ), then we have the following property called "Continuity of Translation in L¹": Z

$$\lim_{y \to 0} |f(x + y) - f(x)| dx = 0.$$

¤

¤

<u>Solution</u>: For any $\varepsilon > 0$, choose a function $g(x) \in C_0(\mathbb{R}^n)$ with $\frac{\mathbb{R}^n}{\mathbb{R}^n} |f(x) - g(x)| dx < \frac{\varepsilon}{3}$. Then for any $y \in \mathbb{R}^n$ we also have

Z
$$|f(x+y) - g(x+y)| \, dx < \frac{\varepsilon}{3}.$$

Let $B_r(O)$ be the ball centered at the origin with large radius r > 0 such that it contains the support of g. Then g is uniformly continuous on $B_r(O)$ and so there exists $0 < \delta < 1$ such that if $|y| \le \delta$, then

$$|g(x+y) - g(x)| \le rac{arepsilon}{|B_{r+1}(O)|}$$
 for all $x \in \mathbf{R}^n$.

Now if $|y| < \delta < 1$, we have

$$Z = \begin{cases} |f(x+y) - f(x)| dx \\ \mathbf{R}_{\mathbf{Z}}^{*} & \mathbf{Z} \\ \leq & |f(x+y) - g(x+y)| dx + \\ \mathbf{R}_{\mathbf{R}}^{n} & \mathbf{Z} \\ \leq & \varepsilon_{\mathbf{X}}^{*} + \\ B_{r+1}(O) \end{bmatrix} |g(x+y) - g(x)| dx + \frac{\varepsilon}{\mathbf{X}} \leq \varepsilon. \end{cases}$$

4. (10 points) There are many applications of the use of convolution in analysis. One easy example is the following. Let

$$h(t) = \frac{\frac{y_2}{2}}{e^{-\frac{1}{t}}} \text{ if } t \le 0$$

3

It is known that h(t) is a C^{∞} function on **R**. Next let $g(x) = h |1 - |x|^2$, $x \in \mathbf{R}^n$, then $g(x) \in C_0^{\infty}(\mathbf{R}^n)$. One can divide it by its integral over \mathbf{R}^n so that the new function $\varphi(x) \in C_0^{\infty}(\mathbf{R}^n)$ satisfies $\mathbf{R}^n \varphi(x) dx = 1$. For any number $\varepsilon > 0$, let $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi^{\mathbf{I}} \frac{x}{\varepsilon}$. Then it satisfies $\varphi_{\varepsilon}(x) \in C_0^{\infty}(\mathbf{R}^n)$, $\varphi_{\varepsilon}(x) \ge 0$, $\varphi_{\varepsilon}(x) > 0 \iff |x| < \varepsilon$, $\mathbf{R}^n \varphi_{\varepsilon}(x) dx = 1$. Show that:

(a) If f ∈ C (**R**ⁿ), then (f * φ_ε) (x) converges uniformly to f (x) on compact subsets of **R**ⁿ as ε → 0⁺. (It is easy to see that (f * φ_ε) (x) ∈ C[∞] (**R**ⁿ). You do not have to show this.)
(b) If f ∈ C₀ (**R**ⁿ), then for any ε > 0, (f * φ_ε) (x) also has compact support.

<u>Solution</u>: (a). We know that f is uniformly continuous on compact subsets of \mathbb{R}^n . Let S be a compact subset of \mathbb{R}^n . For any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x-y) - f(x)| \le \varepsilon$$

for all $x \in S$, $|y| \le \delta$. For $x \in S$ we have

$$\begin{aligned} &|(f * \phi_{\delta}) (x) - f (x)| \\ &= \begin{bmatrix} Z \\ f (x - y) - f (x) \end{bmatrix} \cdot \phi_{\delta} (y) dy = \begin{bmatrix} Z \\ B_{\delta}(O) \end{bmatrix} \begin{bmatrix} f (x - y) - f (x) \end{bmatrix} \cdot \phi_{\delta} (y) dy \\ &\leq \begin{bmatrix} F^{n} \\ B_{\delta}(O) \end{bmatrix} + \begin{bmatrix} F^{n} \\ B_{\delta}(O) \end{bmatrix} \begin{bmatrix} F^{n} \\ B_{\delta}(O) \end{bmatrix} + \begin{bmatrix}$$

where $B_{\delta}(O) = \{|y| \leq \delta\}$. Hence $(f * \varphi_{\delta})(x)$ converges uniformly to f(x) on S as $\delta \to 0^+$.

(b). Assume S is the compact support of f. Then

$$(f * \varphi_{\varepsilon})(x) = \frac{\mathsf{Z}}{\mathsf{R}^{n}} f(x - y) \cdot \phi_{\varepsilon}(y) \, dy = \frac{\mathsf{Z}}{B_{\varepsilon}(O)} f(x - y) \cdot \phi_{\varepsilon}(y) \, dy.$$

From above we see that if $x \notin S$ with $dist(x, S) > \varepsilon$, then we also have $x - y \notin S$ for any $y \in B_{\varepsilon}(O)$. For such x, we have Z

$$(f * \varphi_{\varepsilon})(x) = \int_{B_{\varepsilon}(O)} f(x-y) \cdot \phi_{\varepsilon}(y) dy = 0.$$

Hence $(f * \varphi_{\varepsilon})(x)$ also has compact support.

r	
х	