- 1. (10 points) Do Exercise 1 in p. 123.
- 2. (10 points) Do Exercise 2 in p. 123.
- 3. (10 points) Let $C_0(\mathbf{R}^n)$ be the space of all continuous functions on \mathbf{R}^n with compact support. We know that it is dense in the space $L^1(\mathbf{R}^n)$ (Lemma 7.3 of the book). It is also clear that each $g(x) \in C_0(\mathbf{R}^n)$ is uniformly continuous on \mathbf{R}^n . Use this dense property to show that if $f \in L^1(\mathbf{R}^n)$, then we have the following property called "Continuity of Translation in L^1 ": Z

$$\lim_{y \to 0} \int_{\mathbf{R}^n} |f(x+y) - f(x)| \, dx = 0.$$

4. (10 points) There are many applications of the use of convolution in analysis. One easy example is the following. Let

$$h(t) = \frac{\frac{y_2}{2}}{e^{-\frac{1}{t}}} \quad \text{if } t \le 0$$

З

It is known that h(t) is a C^{∞} function on **R**. Next let $g(x) = h |1 - |x|^2$, $x \in \mathbf{R}^n$, then $g(x) \in C_0^{\infty}(\mathbf{R}^n)$. One can divide it by its integral over \mathbf{R}^n so that the new function $\varphi(x) \in C_0^{\infty}(\mathbf{R}^n)$ satisfies $\mathbf{R}^n \varphi(x) dx = 1$. For any number $\varepsilon > 0$, let $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi(x) \frac{1}{\varepsilon}$. Then it satisfies $\varphi_{\varepsilon}(x) \in C_0^{\infty}(\mathbf{R}^n)$, $\varphi_{\varepsilon}(x) \ge 0$, $\varphi_{\varepsilon}(x) > 0 \iff |x| < \varepsilon$, $\mathbf{R}^n \varphi_{\varepsilon}(x) dx = 1$. Show that:

- (a) If $f \in C(\mathbb{R}^n)$, then $(f * \varphi_{\varepsilon})(x)$ converges uniformly to f(x) on compact subsets of \mathbb{R}^n as $\varepsilon \to 0^+$. (It is easy to see that $(f * \varphi_{\varepsilon})(x) \in C^{\infty}(\mathbb{R}^n)$. You do not have to show this.)
- (b) If $f \in C_0(\mathbb{R}^n)$, then $(f * \varphi_{\varepsilon})(x)$ also has compact support.