1. (10 points) Given the function

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad (x,y) \in I = (0,1) \times (0,1)$$

compute the following iterated integrals (hint: use trigonometric substitution) :

Is $f(x, y) \in L(I)$ or not? Give your reasons.

Solution:

For fixed x we have

$$Z_{1} = \frac{1}{x} \int_{0}^{0} f(x,y) \, dy = \int_{0}^{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} \, dy = \int_{0}^{1} \frac{x^{2} - x^{2} \tan^{2} \theta}{(x^{2} + x^{2} \tan^{2} \theta)^{2}} \, d(x \tan \theta)$$

$$= \frac{1}{x} \int_{0}^{1} \frac{1}{x} \cos 2\theta \, d\theta = \frac{1}{x} \cdot \sin^{1} \tan^{-1} \frac{1}{x} \int_{0}^{1} \cos \theta \tan^{-1} \frac{1}{x} = \frac{1}{1 + x^{2}}.$$

Hence

$$Z_{1} \mu Z_{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dy \quad dx = \frac{\pi}{4}.$$

Similarly (by symmetry) we have

2. (10 points) Do Exercise 1 in p. 96.

$$Z_{0} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dx = \frac{-1}{1 + y^{2}}$$

and so

$$Z_{1} \mu Z_{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dx \quad dy = -\frac{\pi}{4}.$$

Since the two iterated integrals are **different**, by Fubini theorem, $f(x, y) \notin L(I)$.

Ø

Solution:

(a). We set
$$E_x = \{y \in \mathbb{R} : (x, y) \in E\}$$
 and $E_y = \{x \in \mathbb{R} : (x, y) \in E\}$. By Tonelli's Theorem, we have ZZ $Z \mu Z$ $\P Z \tilde{A}Z$!
 $\chi_E(x, y) dxdy = \chi_E(x, y) dy dx = \chi_E(x, y) dx dy.$

By assumption we know $\sum_{E_x} \chi_E(x, y) dy = 0$ a.e. in $x \in \mathbf{R}$ and so $\sum_E \chi_E(x, y) dx dy = |E| = 0$. By Tonelli's Theorem again, we have $|E_y| = 0$ a.e. in $y \in \mathbf{R}$.

(b). Let $E = (x, y) \in \mathbb{R}^2$: $f(x, y) = \infty$. It is a measurable set in \mathbb{R}^2 . Set $E_x = \{y \in \mathbb{R} : f(x, y) = \infty\}$ and $E_y \{x \in \mathbb{R} : f(x, y) = \infty\}$. By (a) we have

$$|E| = 0 \text{ in } \mathbf{R}^2 \iff egin{array}{c} |E_x| = 0 & ext{in } \mathbf{R} & ext{for a.e. } x \in \mathbf{R} \\ |E_y| = 0 & ext{in } \mathbf{R} & ext{for a.e. } y \in \mathbf{R}. \end{array}$$

3. (10 points) Do Exercise 2 in p. 96.

Solution:

Let $h_1(x, y) = f(x)$. As a function on \mathbb{R}^{2n} , it is measurable since $f(x) : \mathbb{R}^n \to \mathbb{R}^S \{\pm \infty\}$ is measurable. More precisely, for any $a \in \mathbb{R}$ we have

$$^{\circ}(x,y) \in \mathbf{R}^{2n} : f(x,y) > a^{\circ} = \{x \in \mathbf{R}^{n} : f(x) > a\} \times \mathbf{R}^{n}$$

where by repeated application of Lemma 5.2, we know that the RHS is a measurable set in \mathbf{R}^{2n} . Similarly, the function $h_2(x, y) = g(y)$ is also a measurable function on \mathbf{R}^{2n} . Then by Theorem 4.10, we know that

$$h_1(x,y) \cdot h_2(x,y) = f(x) g(y) : \mathbf{R}^{2n} \to \mathbf{R}^{\perp} \{\pm \infty\}$$

is also a measurable function on \mathbf{R}^{2n} .

Given $E_1 \subset \mathbf{R}^n$, $E_2 \subset \mathbf{R}^n$, both are measurable in \mathbf{R}^n . By $\chi_{E_1}(x) \times \chi_{E_2}(y) = \chi_{E_1 \times E_2}(x, y)$, we know that $\chi_{E_1 \times E_2}(x, y) \ge 0$ is a measurable function on \mathbf{R}^{2n} . Hence the set $E_1 \times E_2$ is measurable in \mathbf{R}^{2n} .

By Tonelli's Theorem

$$|E_{1} \times E_{2}| = \begin{array}{c} Z & Z & \mu Z & \P \\ \chi_{E_{1} \times E_{2}}(x, y) \, dx dy = & \chi_{E_{1} \times E_{2}}(x, y) \, dy \, dx \\ Z & \mu Z^{E_{1} \times E_{2}} & \P & \mathbb{R}^{n} Z & \mu Z & \P \\ = & \chi_{E_{1} \times E_{2}}(x, y) \, dy \, dx = & [\chi_{E_{1}}(x) \times \chi_{E_{2}}(y)] \, dy \, dx \\ Z^{E_{1}} & E_{2} & Z & E_{1} & E_{2} \\ = & \chi_{E_{1}}(x) \, dx \cdot & \chi_{E_{2}}(y) \, dy = |E_{1}| \times |E_{2}| \, . \end{array}$$

4. (10 points) Do Exercise 3 in p. 96.

Solution:

We first know that f(x) - f(y) is measurable on $(0, 1) \times (0, 1)$. By Fubini Theorem, if F(x, y) = f(x) - f(y) is integrable on $(0, 1) \times (0, 1)$, then for a.e. $y \in (0, 1)$, $F(x, y) \in L^1(0, 1)$ (as a function of x). Hence $f(x) \in L^1(0, 1)$.

Ø