
Solutions to Homework 1

1. (10 points) Let Q be the set of all rationals in the interval [0, 1] . Let S = {I1, I2, ..., Im}
be a finite collection of closed intervals covering Q. Show that

mX
k=1

v (Ik) ≥ 1. (0.1)

On the other hand, for any ε > 0, one can find S = {I1, I2, ..., Im, · · ·} , which is a count-
able collection of closed intervals covering Q, such that

∞X
k=1

v (Ik) < ε. (0.2)

In particular, (0.2) implies that |Q|e = 0. (Now you see the difference between the use of
”finite cover” and ”countable cover”.)

Solution: For (0.1), we first assume that the intervals I1, I2, ... , Im are nonoverlapping.
In such case we clearly have (0.1).

For arbitrary intervals I1, I2, ... , Im with overlapping, one can throw away the over-
lapping part and the remaining nonoverlapping part, which we denote it as J1, J2, ... , Jn,
satisfies

Pn
k=1 v (Jk) ≥ 1. Therefore we have (0.1).

For (0.2), it has been done in class. ¤

2. (10 points) Find a set E ⊂ R with outer measure zero and a function f : E → R such that
f is continuous on E and f (E) = [0, 1] . This exercise says that a continuous function can
map a set with outer measure zero onto a set with outer measure one.

Solution: Choose E = C to be the Cantor set contained in [0, 1] and let f (x) be the
continuous Cantor Lebesgue function defined on [0, 1] (see book p. 35). We know that when
restricted to C, f (x) is still a continuous function on C. Moreover, one can easily see that
f (C) = f ([0, 1]) = [0, 1] (for example, we have f
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, etc.). ¤

3. (10 points) Let E1 and E2 be two subsets of Rn such that E1 ⊂ E2 and E2 − E1 is
countable. Show that

|E1|e = |E2|e .

Solution: Clearly we have |E1|e ≤ |E2|e . Also

|E2|e ≤ |E1|e + |E2 −E1|e = |E1|e

which implies |E1|e = |E2|e . ¤

4. (10 points) Find a continuous function f (x) defined on [0, 1] such that f (x) is differentiable
on a subset E ⊂ [0, 1] with |E|e = 1 and f 0 (x) = 0 for all x ∈ E, but f (x) is not a constant
function.
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Solution: Let f (x) be the Cantor Lebesgue function defined on [0, 1] as given in p. 35 of
the book. We know f (x) is differentiable on the open set O = O1 ∪O2 ∪O3 ∪ · · ·, where
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The total length of these open intervals is given by
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The example below shows you how to obtain a set which is measurable, but not Borel
measurable.

Let f (x) : [0, 1] → [0, 1] be the Cantor-Lebesgue function and let g (x) = x + f (x) . It is
easy to see that g (x) : [0, 1]→ [0, 2] is a strictly increasing continuous function. Hence g (x) is a
homeomorphism of [0, 1] onto [0, 2] . On each interval I1, I2, I3, ..., removed in the construction
of the Cantor set, say the interval I1 =
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, the function g (x) becomes g (x) = x+ 1

2 . Hence
g (x) sends I1 onto an open interval with the same length. Using this observation one can see
that

|g (∪∞k=1Ik)| = |∪∞k=1g (Ik)| =
∞X
k=1

|g (Ik)| =
∞X
k=1

|Ik| = 1

which implies |g (C)| = 2− 1 = 1, where C is the Cantor set.
Since g (C) has positive measure, by Corollary 3.39 in the book, there exists a non-measurable

set B ⊂ g (C) . Now consider the set A = g−1 (B) ⊂ C. It has measure zero, hence it is
measurable. However it can not be Borel measurable. If A were Borel measurable, then since
g (x) is a homeomorphism, it would imply that B = g (A) is also Borel measurable. But this is
impossible since B is a non-measurable set.
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