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1 Introduction.

Remark 1.1 This notes is based on the textbook "Elementary Di¤erential Equations & Bound-
ary Value Problems, 10th Edition" by Boyce & DiPrima. However, I will not follow the
book exactly. Lecture notes will be given to you via email whenever necessary.

1.1 Notation and terminology.

Here are some basics you need to know:

� What is an ordinary di¤erential equation (ODE)?

Let x (t) be a function depending on time. Roughly speaking, an equation relating x (t) and
its derivatives x0 (t) ; x00 (t) ; :::, and perhaps some known functions of t, is called an ODE. For
example, the following are all ODEs for x :

x0 + ex = sin t; x000 + 5x00 � 7x = 0; sin
�
x00 + x2

�
= cos

�
x+ t3

�
; (x0)

2
+ x2 = 1 + t2 (1)

where x = x (t) ; x0 = x0 (t) ; etc.

� To "solve" an ODE, say x0 + ex = sin t; means to �nd a family of explicit functions
x = x (t) (with integration constant C as a parameter), where each one of them is di¤er-
entiable on some open interval I = (a; b) ; so that we have

x0 (t) + ex(t) = sin t; for all t 2 (a; b) : (2)

In such a case we say the function x (t) is a solution of the ODE on (a; b) : Note that although
the variable t in the above ODE (2) can be allowed to be t 2 (�1;1) ; its solution x (t)may, in
general, not be de�ned on all t 2 (�1;1) : You will know the domain of x (t) only after you
have solved the equation. The size of the domain interval (a; b) of solution x (t) also depends
on the integration constant C: In case there is di¢ culty �nding explicit solutions x (t) ; we
will try to derive "solution formula" (involving inde�nite integrals) or derive "method of
solutions" for the ODE.

� There are only a few types of ODEs that can be (easily) solved explicitly. Note that one can
rewrite the above ODE (2) in the general explicit form

x0 (t) =
dx

dt
= f (t; x (t)) (or, for simplicity, just write it as just x0 = f (t; x) ) (3)

for some 2-variable continuous function f (t; x) ; where f (t; x) = sin t � ex is de�ned and
continuous on its domain D := (�1;1)� (�1;1) :

� (Existence and Uniqueness Theorem, EUT.) If an ODE has the form (3) where f (t; x)
is a continuous function on a domain D � R2, then for each point (t0; x0) 2 D; there is a
solution (may not be unique) x (t) de�ned on the interval (t0 � "; t0 + ") for some " > 0
satisfying (t; x (t)) 2 D for all t 2 (t0 � "; t0 + ") and(

x0 (t) = f (t; x (t)) ; 8 t 2 (t0 � "; t0 + ")

x (t0) = x0:
(4)
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In this course, we always assume f (t; x) is at least a continuous function on its domain
D � R2 unless otherwise stated. The condition x (t0) = x0 in (4) is called an initial condition
of the ODE x0 = f (t; x). Its purpose is to determine the integration constant C
uniquely.

� Moreover, if f (t; x) is "better than continuous" (will explain this later on) near (t0; x0) 2
D; then the solution x (t) of (4) is unique near t = t0; i.e. there exists some small � > 0 such
that there is only one solution satisfying(

x0 (t) = f (t; x (t)) ; 8 t 2 (t0 � �; t0 + �)

x (t0) = x0:

� If the ODE x0 = f (t; x) (continuous function) has no initial condition, then it has in�nitely
many solutions (with integration constant C as a parameter). For ODE not of the form
(3), it may have have no solution at all (no matter what the initial condition is). For
example, the ODE

ex
0(t) = �1

has no solution at all. Note that one cannot rewrite the above ODE in the form (3). That
also explains why it has no solution at all. Another example with no solution is the following
ODE with initial condition

x (t)x0 (t) = 1; x (0) = 0; (5)

i.e. one cannot �nd a di¤erentiable function x (t) de�ne on some (�"; ") satisfying (5) (im-
possible to have x (0) x0 (0) = 0x0 (0) = 1). Note that the initial condition happens to be at a
bad place if we write the equation as

x0 (t) =
1

x (t)
= f (t; x (t)) ; x (0) = 0:

One can see that it has no solution at all since f (t; x) = 1=x is unde�ned at (0; 0) : On the
other hand, if we replace x (0) = 0 by x (0) = � 6= 0; then it has a solution de�ned near t = 0:

� The order of an ODE is "the order of the highest derivative" involved in the equation. For
example, the order in the equations of (1) is 1; 3; 2; 1 respectively. A �rst-order ODE for
an unknown function x = x(t) has the general explicit form

x0 = f (t; x) : (6)

In some rare situation, we also look at �rst-order ODE with the general implicit form
F (t; x; x0) = 0: For example, sin (x0 + x) = ex:

� We say a di¤erentiable function x = x (t) is a solution to the �rst-order equation x0 =
f (t; x) if there is some open interval (a; b) � R (domain of x) such that (t; x (t)) 2 D (domain
of f (t; x)) for all t 2 (a; b) and

dx

dt
= f (t; x (t)) ; 8 t 2 (a; b) : (7)

The graph of the curve (t; x (t)) ; t 2 (a; b) ; in the tx-plane is also called an integral (so-
lution) curve of the equation. Geometrically, the slope of the integral curve is equal to the
"slope �eld" (in the (t; x) plane) determined by the function f (t; x) everywhere.
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� The problem of solving a di¤erential equation (7) subject to an initial condition x (t0) = x0,
that is (

x0 = f (t; x)

x (t0) = x0
(8)

is called an initial value problem (ivp). Here, t0 is a �xed value of time and x0 is a �xed
value of x and we assume that (t0; x0) 2 D (the domain of f (t; x)). Geometrically, the ivp
(8) requires an integral curve x = x(t) plotted in the tx-plane to pass through the �xed point
(t0; x0) : The curve is everywhere tangent to the slope �eld on the region D given by f (t; x) :

Example 1.2 Consider the ODE with initial condition

x (t)x0 (t) = 1; x (0) = " > 0; (9)

where " > 0 is a constant. Show that the initial value problem has a unique solution x (t) and �nd
it explicitly. What is the domain (maximal domain) of x (t) ?

Solution:

Any di¤erentiable function x (t) satisfying x (t)x0 (t) = 1 near t = 0 must satisfy

d

dt

�
x2 (t)

2

�
= 1;

which gives
x2 (t)

2
= t+ C for some integration constant C

and the initial condition implies

x2 (t)

2
= t+

"2

2
(i.e. x (t) =

p
2t+ "2; the function x (t) = �

p
2t+ "2the is not a solution).

The solution of the ivp is de�ned on t 2 (�"2=2;1) and is unique. �
Remark 1.3 If the initial condition is x (0) = 0; we get x (t) =

p
2t; which is not di¤erentiable at

t = 0 (or you may say x0 (0) = +1). This matches with our previous discussion in (5).

Example 1.4 Find domain interval for solutions x (t) of the ODE with initial condition:

x0 = f (t; x) = tx2; x (0) = 1; (10)

where t is allowed to lie on the interval (�1;1) in the equation. What is the answer if we change
the condition as x (0) = �1:

Solution:

We shall see that the ODE is separable shortly and the solution (unique in this example) is
given by

x (t) =
1

1� t2=2
; t 2

�
�
p
2;
p
2
�
; x (0) = 1: (11)

It is de�ned on the maximal time interval
�
�
p
2;
p
2
�
only (even if f (t; x) = tx2 is de�ned

on (�1;1)� (�1;1)). The maximal time interval is �nite is due to the term x2; not
the term t: The solution blows up to +1 as t! �

p
2:

For x (0) = �1; the answer is

x (t) =
�1

1 + t2=2
; t 2 (�1;1) ; x (0) = �1: (12)

Now it is de�ned on the maximal time interval (�1;1) : �
Remark 1.5 Plot integral curves for (11) and (12) roughly.
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1.2 Simple example: a falling object.

Example 1.6 (This is Examples 1, 2 in p. 2-4.). A falling object equation in physics has the
form (based on Newtonian mechanics)

m
dv

dt
= F (force) = mg (gravitational force)� 
v (air resistance);

where v = v (t) is the velocity of the falling object (with mass m), g is the gravitational constant,
and 
 is also a constant related to air resistance. To �nd the solutions of the equation (we take
m = 10kg; g = 9:8m=s2; 
 = 2kg=s)

dv

dt
= 9:8� v

5
; v = v (t) ; t 2 [0; T ] (some interval, at t = T the object hit the ground), (13)

we can rewrite it as dv
dt
+ v

5
= 9:8 and multiply the equation by e

1
5
t (this is a trick !!!, the function

e
1
5
t is called an integrating factor of the ODE) to get

e
1
5
t

�
dv

dt
+
v

5

�
= 9:8e

1
5
t;

which can be written as
d

dt

�
e
1
5
tv (t)

�
= 9:8e

1
5
t; t 2 [0; T ] : (14)

Now there are two ways to solve it (I prefer the �rst way). The �rst way is to integrate (inde�nite
integral) both sides of (14) and obtain the identity

e
1
5
tv (t) = 49e

1
5
t + C; (15)

for some integration constant C: The constant C is determined by the initial velocity (given initial
condition) v (0) of the object (we take it positive in the downward direction, negative in the upward
direction). Letting t = 0 in (15) gives C = v (0)� 49 and we conclude

v (t) = (v (0)� 49) e� 1
5
t + 49; t 2 [0; T ] : (16)

The second way is to integrate (de�nite integral) both sides of (14) over the interval [0; t] ; t >
0; and obtain

e
1
5
tv (t)� e0v (0) =

Z t

0

9:8e
1
5
sds = 49e

1
5
t � 49; t 2 [0; T ]

and conclude the same result as in (16). Note that, for any v (0) ; if we forget the existence of the
ground, the solution (16) can be de�ned on the time interval (�1;1) satisfying the asymptotic
behavior limt!1 v (t) = 49 (no matter what the initial velocity is), which is called the asymptotic
stable solution of the equation. It is also an equilibrium solution (a solution which is inde-
pendent of time) of the equation (i.e. the function v (t) � 49 is also a solution of the equation).
Note that if v (0) = 49; then we will have v (t) � 49 for all time.

Remark 1.7 Draw a picture of the "slope �eld" and "equilibrium solution".

Example 1.8 (Example 3 in p. 5-6). Read it yourself.
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1.3 Existence of a solution.

Theorem 1.9 (Existence of a solution.) Let a; b > 0 be two constants. Let R : jt� t0j �
a; jx� x0j � b be a rectangle contained in D and f (t; x) : D � R2 ! R is continuous with

jf (t; x)j �M for all (t; x) 2 R � D; (17)

for some constant M > 0: Then there exists a solution x (t) to the ODE (ivp)(
x0 = f (t; x)

x (t0) = x0;
(18)

de�ned for jt� t0j � h; where h = min (a; b=M) : Moreover, we also have (t; x (t)) 2 R for all
jt� t0j � h; i.e.

jx (t)� x0j = jx (t)� x (t0)j � b; 8 jt� t0j � h:

Note that the solution to (18) may not be unique.

Proof. We will not prove the theorem. It is enough to know the result. �

Remark 1.10 We will discuss the issue concerning the uniqueness of a solution later on. At
this moment, it is important to know that for the ivp(

x0 = f (t; x)

x (t0) = x0; (x0; t0) 2 D
(19)

may have more than one (or in�nitely many) solutions if we only assume that f (t; x) : D �
R2 ! R is continuous. Look at the example(

x0 = x
1
3

x (0) = 0; (0; 0) 2 R2;
(20)

where now f (t; x) = x
1
3 : R2 ! R is a continuous function on R2. Note that the function f (t; x) =

x
1
3 is only continuous near the point (0; 0) ; not di¤erential at (0; 0) (or more precisely, not Lip-
schitz continuous with respect to x near (0; 0)). One can see that the following two functions
are both solutions to the ivp (20) de�ned on (�1;1):

(1) : x (t) � 0; 8 t 2 (�1;1) ;

(2) : x (t) =

8<:
0; t 2 (�1; 0)q

8
27
t
3
2 ; t 2 [0;1):

Note that both functions are continuously di¤erentiable satisfying (20) on (�1;1).

1.4 Gronwall inequality and uniqueness of a solution.

To prove uniqueness of solution to a given ODE with initial condition, we need the following famous
inequality:

Lemma 1.11 (Gronwall inequality, simple form.) Let a < b: Assume u (t) : [a; b] ! R is
continuous and satis�es the inequality

u (t) � C +K

Z t

a

u (s) ds for all t 2 [a; b] ; (21)

where C 2 (�1;1) and K � 0 are constants. Then we have

u (t) � CeK(t�a) for all t 2 [a; b] : (22)
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Remark 1.12 In particular, if u (t) � 0 and C = 0; then we have

0 � u (t) � CeK(t�a) = 0

and so u (t) � 0 on [a; b] : This is what we need later on.

Remark 1.13 Note that the function v (t) = CeK(t�a); t 2 [a; b] ; satis�es

v (t) = C +K

Z t

a

v (s) ds; 8 t 2 [a; b] :

Therefore, the estimate (22) is optimal.

Remark 1.14 (Gronwall inequality, another version.) If we replace (21) by

u (t) � C +K

Z b

t

u (s) ds for all t 2 [a; b] ; (23)

then we have
u (t) � CeK(b�t) for all t 2 [a; b] : (24)

Proof. Let

U (t) = C +K

Z t

a

u (s) ds; U (a) = C; t 2 [a; b] :

By the assumption, we have u (t) � U (t) on [a; b] : Also U 0 (t) = Ku (t) � KU (t) on [a; b] (here we
use K � 0): Hence we have

U 0 (t) � KU (t) on [a; b] ; U (a) = C;

which gives
d

dt

�
U (t) e�K(t�a)

�
= [U 0 (t)�KU (t)] e�K(t�a) � 0

for all t 2 [a; b] ; and so U (t) e�K(t�a) � U (a) e�K(a�a) = C for all t 2 [a; b] : Therefore U (t) �
CeK(t�a) for all t 2 [a; b] and so

u (t) � U (t) � CeK(t�a); 8 t 2 [a; b] :

The proof is done. �

We can use Gronwall inequality to prove the uniqueness of a solution to the ivp x0 =
f (t; x) ; x (t0) = x0:

De�nition 1.15 Let D � R2 be a domain (open connected set) and let f (t; x) : D � R2 ! R be a
continuous function. If there exists a constant k > 0 such that

jf (t; x1)� f (t; x2)j � k jx1 � x2j ; 8 (t; x1) ; (t; x2) 2 D;

then we say f (t; x) is Lipschitz continuous on D with respect to x with Lipschitz constant
k > 0 (the size of k is not important here): Note that the constant k depends on the domain D; but
not on the point (t; x) 2 D:

Exercise 1.16 Which of the following single-variable function f (x) is Lipschitz continuous with
respect to x on the domain [0; 1] (for some Lipschitz constant k > 0): (1) : f (x) = x�; 0 < � <
1: (2) : f (x) = x�; � � 1: (3) : f (x) = sin x: (4) : f (x) is di¤erentiable on [0; 1] with bounded
derivative f 0 (x) on [0; 1] :
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We can now prove the uniqueness theorem:

Theorem 1.17 (Uniqueness of a solution.) Assume that f (t; x) : D � R2 ! R is continuous
on domain D and is Lipschitz continuous on D with respect to x for some constant k > 0.
If (t0; x0) 2 D and x (t) ; ~x (t) are two solutions to x0 = f (t; x) on some common interval I =
(t0 � h; t0 + h) ; h > 0; with x (t0) = ~x (t0) = x0; then x (t) � ~x (t) for all t 2 I. In particular, any
two integral curves (graphs of solutions) cannot intersect at any point of D:

Remark 1.18 Since x (t) ; ~x (t) are both solutions to the equation x0 = f (t; x) on I; by de�nition,
we must have (t; x (t)) 2 D and (t; ~x (t)) 2 D for all t 2 I;

Proof. We have
x0 (t) = f (t; x (t)) and ~x0 (t) = f (t; ~x (t)) ; 8 t 2 I;

where x (t0) = x (t0) = x0. We can rewrite the di¤erential equations as integral equations (equa-
tion involving x (t) and its integral):

x (t) = x0 +

Z t

t0

f (s; x (s)) ds and ~x (t) = x0 +

Z t

t0

f (s; ~x (s)) ds; t 2 I: (25)

Hence, for t 2 (t0; t0 + h) ; we have

0 � jx (t)� ~x (t)j �
Z t

t0

jf (s; x (s))� f (s; ~x (s))j ds �
Z t

t0

k jx (s)� ~x (s)j ds; 8 t 2 (t0; t0 + h)

ByGronwall inequality, we have x (t) = ~x (t) on (t0; t0 + h) : The proof of x (t) = ~x (t) on (t0 � h; t0) is
similar (see Remark 1.19 below). �

Remark 1.19 In the above proof, for t 2 (t0 � h; t0) ; we have

x (t) = x0 �
Z t0

t

f (s; x (s)) ds and ~x (t) = x0 �
Z t0

t

f (s; ~x (s)) ds; t 2 (t0 � h; t0)

and then

0 � jx (t)� ~x (t)j �
Z t0

t

jf (s; x (s))� f (s; ~x (s))j ds �
Z t0

t

k jx (s)� ~x (s)j ds; 8 t 2 (t0 � h; t0) :

Now by the Gronwall inequality in the form in Remark 1.14, we have x (t) = ~x (t) on (t0 � h; t0) :

Remark 1.20 (See Remark 1.10 also.) The "Lipschitz condition" in the above theorem is nec-
essary due to the non-uniqueness of a solution to the ivp on any interval t 2 (�"; ") :

dx

dt
= x

1
3 ; x (0) = 0: (26)

Note that if we change the ivp as

dx

dt
= x

1
3 ; x (0) = x0 > 0; (27)

then near t = 0 there exists a unique solution given by (here, since x0 > 0; near x0 we have x > 0 and
one can rewrite the equation as x�1=3dx = dt and integrate both sides)

x (t) =

�
x
2=3
0 +

2

3
t

�3=2
> 0; t 2 (�"; ") for some small " > 0: (28)

Another way to see uniqueness is that now the function x1=3 is Lipschitz continuous near x =
x0 > 0 and we can apply Theorem 1.17 near x = x0:
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Remark 1.21 Let f (x) : I ! R be a continuously di¤erentiable function, where I � R is an
interval. Assume there exists a constant M > 0 such that jf 0 (x)j �M for all x 2 I: Then we have

jf (p)� f (q)j = jf 0 (�) (p� q)j �M jp� qj ; 8 p; q 2 I:

With this, we say f (x) is a Lipschitz continuous function on I with Lipschitz constant M:

Remark 1.22 (A simple way to test Lipschitz continuous condition.) By Remark 1.21,
if f (t; x) : D � R2 ! R is continuous and @f

@x
(t; x) : D � R2 ! R is also continuous,

where D � R2 is a domain, then for �xed (t0; x0) 2 D there exists a small closed rectangle
R centered at (t0; x0) and a constant M > 0 such that����@f@x (t; x)

���� �M; 8 (t; x) 2 R:

By the mean value theorem, we have

jf (t; x1)� f (t; x2)j =
����@f@x (t; �) � (x1 � x2)

���� �M jx1 � x2j ; 8 (t; x1) ; (t; x2) 2 R;

where � lies between x1 and x2 (� may depend on t): This implies that f is Lipschitz continuous
on R with respect to x: Therefore, the initial value problem x0 = f (t; x) ; x (t0) = x0; has a
unique solution x (t) de�ned on (t0 � "; t0 + ") for some " > 0: This is Theorem 2.4.2 in p. 70
of the book.

Remark 1.23 (Important.) If a continuous function f (t; x) is not Lipschitz continuous near
a point (t0; x0) 2 D; then it is still possible for the initial value problem(

x0 = f (t; x)

x (t0) = x0;
(29)

to have a unique solution. One example is (compare with (26))

dx

dt
= x

1
3 + 1; x (0) = 0: (30)

The function f (x) = x
1
3 + 1 is not Lipschitz continuous near (0; 0) : However, it has unique

solution x (t) de�ned near t = 0: You can prove the uniqueness by use of simple calculus argument
or apply Lemma 1.24 below. Another interesting example for a unique solution is the following:

dx

dt
= f (x) ; x (0) = 0; where f (x) =

(
x sin 1

x
; x 6= 0

0; x = 0:
(31)

Note that f (x) is continuous on R but not Lipschitz continuous near x = 0 (why ?). However, the
above ivp has the unique solution x (t) � 0; t 2 (�1;1) : I will leave the proof as a homework
problem.

1.5 Another method to check the uniqueness of a solution for an au-
tonomous ODE.

In case the ODE x0 = f (t; x) has the form x0 = f (x) ; we call it an autonomous equation. There is
another way to determine uniqueness of a solution (do not have to involve the concept of "Lipschitz
continuity") for an autonomous ODE. We �rst note the following simple situation:
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Lemma 1.24 (The case f (x0) 6= 0:) Consider the ivp

dx

dt
= f (x) ; x (t0) = x0; (32)

where f (x) is a continuous function de�ned on I = (x0 � �; x0 + �) for some � > 0 and f (x) >
0 on I (or f (x) < 0 on I): Then if x (t) ; ~x (t) : J ! I are two solutions to (32) on some interval
J = (t0 � h; t0 + h) ; h > 0; then x (t) � ~x (t) for all t 2 J . Here f (x) may not be Lipschitz
continuous on I:

Remark 1.25 The existence of a solution to (32), de�ned near t = t0; is guaranteed due to Theorem
1.9.

Remark 1.26 (Important.) In case f (x) is a continuously di¤erentiable function on I =
(x0 � �; x0 + �) ; then by the mean value theorem, f (x) is automatically Lipschitz continuous
near x = x0 and we have uniqueness of a solution. Therefore, in practical examples, the function
f (x) is only continuous near x = x0 and not Lipschitz continuous near x = x0. For example,
the problem

dx

dt
= x

1
3 + 1; x (0) = 0; (33)

has a unique solution de�ned near t = 0 since the function f (x) = x1=3+1 is positive near x = 0 (it
is not Lipschitz continuous near x = 0).

Remark 1.27 (Important.) By Lemma 1.24, the "non-uniqueness" of solutions can happen
only when f (x0) = 0:

Proof. We have x (t) ; ~x (t) : J ! I with x (t0) = ~x (t0) = x0 and f (x (t)) > 0; f (~x (t)) > 0 for all
t 2 J: Let F (x) : I ! R be the function

F (x) =

Z x

x0

1

f (s)
ds; x 2 I = (x0 � �; x0 + �) ;

which is a continuously di¤erentiable, strictly increasing function on I with F (x0) = 0: We now
have the two identities (use di¤erentiation to verify them)

F (x (t)) = t� t0 and F (~x (t)) = t� t0; 8 t 2 J = (t0 � h; t0 + h)

and so F (x (t)) � F (~x (t)) for all t 2 J: As F (x) is one-one on I; we have x (t) � ~x (t) for all t 2 J .
The proof is done. �

1.5.1 Using integral behavior to determine uniqueness of a solution.

By Lemma 1.24, it remains to deal with the case f (x0) = 0: For convenience, we may assume
t0 = x0 = 0 in (32) and now we look at the ivp:

dx

dt
= f (x) ; x (0) = 0; f (0) = 0; (34)

where f (x) is a continuous function de�ned on I = (��; �) for some � > 0 with f (0) = 0; f (x) >
0 on (0; �) ; f (x) < 0 on (��; 0) : Clearly the function x (t) � 0 is an equilibrium solution to
(34) (and no others). However, Lemma 1.24 is not applicable here due to f (0) = 0:
We have the following interesting result:
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Lemma 1.28 (The case f (x0) = 0:) Let f (x) be a continuous function only, de�ned near x =
0; and is described as in the above. Let x (t) : J ! I; x (0) = 0; be a solution to (34) on some
interval J = (�h; h) ; h > 0: Then ifZ 0

��=2

1

f (x)
dx = �1 and

Z �=2

0

1

f (x)
dx = +1; (35)

we must have x (t) � 0 on J (i.e. we have uniqueness of a solution). Conversely, if the only solution
to the ivp (34) is x (t) � 0; then we have (35).

Remark 1.29 Note that f (x) may not be Lipschitz continuous on I = (��; �) : In case f (x) is
Lipschitz continuous on I = (��; �) ; then we must have (35), and then we get uniqueness.

Remark 1.30 If we haveZ 0

��=2

1

f (x)
dx = �1;

Z �=2

0

1

f (x)
dx converges,

then the solution is not unique on the interval (0; h) : Similarly, if we haveZ 0

��=2

1

f (x)
dx converges,

Z �=2

0

1

f (x)
dx = +1;

then the solution is not unique on the interval (�h; 0) :

Proof. Omit. �

Exercise 1.31 Show that if f (x) is Lipschitz continuous on I = (��; �) ; then we must have (35).

Exercise 1.32 Use Lemma 1.28 to show that the equation

dx

dt
= x1=3; x (0) = 0

has no unique solution.

Example 1.33 (Leave this as homework problem.) Which of the following initial value prob-
lems have a unique solution x (t) de�ned near t = 0?

(1) :
dx

dt
= (x� 1)

1
3 ; x (0) = 1;

(2) :
dx

dt
= x

1
3 + 1; x (0) = 0;

(3) :
dx

dt
= x

1
3 + 1; x (0) = �1;

(4) :
dx

dt
= f (x) ; x (0) = 0;

where in (4) the function f (x) is de�ned on (��; �) for some � > 0; given by

f (x) =

(
x
�
sin 1

x
+ 2
�
; x 6= 0

0; x = 0:

10



Solution:

For (1) ; we note that the function f (x) = (x� 1)1=3 is not Lipschitz continuous near x = 1: If
we let y (t) = x (t)� 1; we get

dy

dt
= y

1
3 ; y (0) = 0

and so it has no unique solution de�ned near t = 0: Hence the original equation has no unique
solution de�ned near t = 0:

For (2) ; the function f (x) = x1=3+1 is not Lipschitz continuous near x = 0; however, f (x)
is positive near x = 0. By Lemma 1.24, it has a unique solution x (t) de�ned near t = 0:

For (3) ; the function f (x) = x1=3 + 1 is Lipschitz continuous near x = �1 (since it is
di¤erentiable near x = �1). Hence it has a unique solution x (t) de�ned for t 2 (�"; ") for some
" > 0: One can also use Lemma 1.28 to derive uniqueness. Let y (t) = x (t) + 1: We have

dy

dt
= (y � 1)

1
3 + 1; y (0) = 0:

The function f (y) = (y � 1)
1
3+1 satis�es f (0) = 0; f (x) > 0 on (0;1) ; f (x) < 0 on (�1; 0) ; and f 0 (0) =

1=3: Therefore, we have (pick � = 1)Z 0

�1=2

1

f (y)
dy = �1 and

Z 1=2

0

1

f (y)
dy = +1; (36)

and the uniqueness follows. The unique solution is x (t) � �1:

For (4) ; we note that f (x) is continuous on (��; �) ; not di¤erentiable at x = 0; not Lipschitz
continuous on (��; �) (verify this), with f (0) = 0; f (x) > 0 on (0; �) ; f (x) < 0 on (��; 0) : The
best way is to use Lemma 1.28. We computeZ �=2

0

1

f (x)
dx =

Z �=2

0

1

x
�
sin 1

x
+ 2
�dx � Z �=2

0

1

3x
dx = +1

and Z 0

��=2

1

f (x)
dx =

Z 0

��=2

1

x
�
sin 1

x
+ 2
�dx � Z 0

��=2

1

3x
dx = �1:

Therefore, we have unique solution x (t) � 0:

2 Chapter 2: First order di¤erential equations.

2.1 First order linear di¤erential equations (this is Section 2.1 of the
book, see p. 31).

By a "�rst order linear di¤erential equation" we mean it is an equation of the standard form
(or can be rewritten in the form)

y0 + p (t) y = q (t) ; t 2 (a; b) ; (L)

where p (t) and q (t) are given continuous functions on (a; b) (some interval, usually it is (�1;1))
and the function y (t) is to be solved.

Remark 2.1 The reason of calling equation (L) a linear equation is that p (t) y+ q (t) is a linear
expression of y (but not of t).
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Remark 2.2 Another standard form for a �rst order linear di¤erential equation is the fol-
lowing:

a (t) y0 + b (t) y + c (t) = 0; t 2 (a; b) ;
where a (t) ; b (t) ; c (t) are given continuous functions on (a; b) : We will come back to it later on.

For a linear equation (L), one can use the method of integrating factor (due to Leibniz) to
�nd its general solution formula (that means all solutions of (L) are included in this
formula). Let

� (t) = e
R
p(t)dt; t 2 (a; b) (37)

where in the inde�nite integral
R
p (t) dt; you do not have to add integration constant (explain

this !!!). Multiply equation (L) by � (t) to get

� (t) (y0 + p (t) y) = � (t) q (t)

and note that the left hand side of the above is a "total derivative". Hence we get

d

dt

h
e
R
p(t)dt � y (t)

i
= e

R
p(t)dtq (t)

and so

e
R
p(t)dt � y (t) =

Z �
e
R
p(t)dtq (t)

�
dt+ C (integration constant)

and obtain the general solution formula (all solutions are included in this formula with
suitable choice of C):

y (t) = e�
R
p(t)dt

�Z �
e
R
p(t)dtq (t)

�
dt+ C

�
; t 2 (a; b) (38)

where in the underlined integral you have to add integration constant C (in order to include all
possible solutions).

Remark 2.3 In case there is an initial condition y (t0) = y0; t0 2 (a; b) ; for equation (L), �nd its
general solution (38) �rst (if you can integrate the integrals in (38)), then use the condition
y (t0) = y0 to �nd the constant C. Another way (if you cannot integrate the integrals in (38))
is to use the formula

y (t) = e
�
R t
t0
p(�)d�

�Z t

t0

�
e
R s
t0
p(�)d�

q (s)
�
ds+ y0

�
; t 2 (a; b) : (39)

From it we see that y (t0) = y0: Now we explain how to get (39). First we note that the function � (t) =

exp
�R t

t0
p (�) d�

�
is an integrating factor with � (t0) = 1; �0 (t) = p (t)� (t) : Hence the function

g (t) = � (t) y (t) satis�es g (t0) = y0 and

g0 (t) = �0 (t) y (t) + � (t) y0 (t) = p (t)� (t) y (t) + � (t) [�p (t) y (t) + q (t)] = � (t) q (t) ; t 2 (a; b) ;

and so

g (t) =

Z t

t0

� (s) q (s) ds+ y0 =

Z t

t0

�
e
R s
t0
p(�)d�

q (s)
�
ds+ y0; t 2 (a; b) :

From the above we get (39).

From the general solution formula (38) one can see that y (t) is also de�ned on the interval (a; b) ;
which is the common domain of p (t) and q (t) : Thus we can conclude the following existence and
uniqueness theorem for �rst order linear di¤erential equations of the form (L):
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Theorem 2.4 (This is Theorem 2.4.1 in p. 69 of the book.) Consider the linear equation
(L), where p (t) and q (t) are given continuous functions de�ned on some interval (a; b) : Then, for
any t0 2 (a; b) and y0 2 R; the initial value problem(

y0 + p (t) y = q (t)

y (t0) = y0
(40)

has a unique solution y (t) which is de�ned on the whole interval (a; b) : Moreover, it is given
by (38) for some unique constant C making y (t0) = y0 or by the formula (39).

Remark 2.5 (Important.) The general solution formula in (38) can be decomposed as

y (t) = g0 (t) + h (t) ; t 2 (a; b)

where
g0 (t) = Ce�

R
p(t)dt

is the general solution of the homogeneous linear equation y0 + p (t) y = 0; and

h (t) = e�
R
p(t)dt

�Z �
e
R
p(t)dtq (t)

�
dt+ C

�
is a particular solution of the nonhomogeneous linear equation y0 + p (t) y = q (t) : There will be
a theory explaining this later on.

Remark 2.6 (Important.) In case a linear equation is of the form

� (t) y0 + � (t) y = q (t) ; t 2 I = (a; b) ; (41)

where � (t) ; � (t) ; q (t) are given continuous functions on I with a (t) 6= 0 on I; then on I the
equation (41) is equivalent to the linear equation

y0 +
� (t)

� (t)
y =

q (t)

� (t)
; t 2 I; � (t) 6= 0 on I: (42)

If � (t0) = 0 at some t0 2 (a; b) ; then, in general (but not always), solutions of (41) cannot be
de�ned at the point t = t0: For example, look at the equation

ty0 (t) = 1; t 2 (�1;1) : (43)

We see that it is impossible to have any function y (t) di¤erentiable at t = 0 such that

0y0 (0) = 1:

Hence, it is impossible to have a solution y (t) of (43) on (�"; ") for some " > 0: Any solution y (t)
to (43) has the form

y (t) = log jtj+ C; t 2 (�1; 0)
[
(0;1) :

It is not de�ned at t = 0: On the other hand, it is possible to have certain particular solution
de�ned across t = t0 even if a (t0) = 0: For example, look at the equation

ty0 + 2y = 4t2; t 2 (�1;1) ; � (t) = t = 0 at t = 0: (44)

We see that y (t) = t2 is a solution which is also de�ned on (�1;1) : In fact, the only solution
of (44) that is de�ned across t = 0 is the solution y (t) = t2 and no others. See the example
below.
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Example 2.7 (This is Example 4 in book p. 37.) Solve the initial value problem:(
ty0 + 2y = 4t2

y (1) = 2:
(45)

Note that the equation is de�ned on t 2 (�1;1) : However, the solution may not be de�ned on
t 2 (�1;1) since the equation degenerates at t = 0:

Remark 2.8 Draw integral curves of the ODE. See p. 38.

Solution:

If we con�ne to the interval (�1; 0)
S
(0;1), then the equation is equivalent to

y0 +
2

t
y = 4t; t 2 (�1; 0)

[
(0;1)

and its general solution is given by (the integrating factor is t2)

y (t) = t2 +
C

t2
; t 2 (�1; 0)

[
(0;1) , C is an arbitrary constant (46)

and by the condition y (1) = 2 we get 1 + C = 2; which gives the unique solution of (45):

y (t) = t2 +
1

t2
; t 2 (0;1) (note that 1 2 (0;1) and we exclude the interval (�1; 0) ).

Note that the particular solution is de�ned on (0;1) ; not on (�1;1) (even though
t 2 (�1;1) is allowed in (45)). This is because when t = 0; equation (45) becomes singular.

We conclude that the general solution of the equation ty0 + 2y = 4t2 on (0;1)
S
(�1; 0) is

given by y (t) = t2 + C
t2
; C 2 R: The only solution which is de�ned on (�1;1) is y (t) = t2 (when

C = 0). It satis�es y (0) = 0: See the picture in p. 38 of the book. �

Example 2.9 (This is Example 5 in book p. 38.) Solve the initial value problem:(
2y0 + ty = 2; t 2 (�1;1)

y (0) = 1:
(47)

Remark 2.10 Draw integral curves of the ODE. See p. 39.

Solution:

The equation is equivalent to

y0 +
t

2
y = 1

and so the general solution formula in (38) becomes

y (t) = e�
t2

4

�Z
e
t2

4 dt+ C

�
(48)

and unfortunately we are not able to integrate
R
e
t2

4 dt: Hence, unlike what we usually do, we
cannot plug in the condition y (0) = 1 to �nd C: On the other hand, one can also express
the general solution formula as

y (t) = e�
t2

4

�Z t

0

e
s2

4 ds+ C

�
: (49)
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Now one can plug in t = 0 to �nd C = 1: Thus the particular solution to the initial value problem
is given by

y (t) = e�
t2

4

�Z t

0

e
s2

4 ds+ 1

�
; t 2 (�1;1) : (50)

See the picture in p. 39 of the book. �

Remark 2.11 (Important.) By the L�Hopital rule, for any constant C in (49) we have

lim
t!1

y (t) = lim
t!1

R t
0
es

2=4ds+ C

et2=4
= lim

t!1

et
2=4

et2=4 t
2

= 0: (51)

Note that the function y (t) � 0 is not an equilibrium solution of the equation. For the general
initial value problem (40), if the solution is de�ned on (�1;1) with y (t0) = y0; then we have

lim
t!1

y (t) = lim
t!1

R t
t0

�
e
R s
t0
p(�)d�

q (s)
�
ds+ y0

e
R t
t0
p(�)d�

(assume it is of
1
1 form)

= lim
t!1

e
R t
t0
p(�)d�

q (t)

e
R t
t0
p(�)d�

p (t)
= lim

t!1

q (t)

p (t)
(assume the limit exists). (52)

2.1.1 Bernoulli equations (this appears in p. 77 of the book).

This type of �rst order nonlinear equation can be converted to a �rst order linear equation by a
suitable change of variables. This method was found by Leibniz in 1696. Consider the equation

y0 + p (t) y = q (t) yn; n 2 Z: (53)

When n = 0 or 1; (53) is a linear equation and we know how to solve it. Otherwise, it is a nonlinear
equation. When n 6= 0 or 1; we can let v = y1�n (on the interval when y 6= 0) to get

v0 = (1� n) y�ny0 = (1� n) y�n [q (t) yn � p (t) y]

= (1� n) q (t)� (1� n) p (t) v;

i.e.,
v0 + (1� n) p (t) v = (1� n) q (t) : (54)

Now (54) becomes a linear equation for v (t) and one can solve it, and then one can �nd y (t) by
the identity v = y1�n:
The following is a good example of Bernoulli equation:

Logistic equation (this appears in p. 80 of the book).

Example 2.12 (This appears in p. 80 of the book.) Find the general solution of the logistic
equation (autonomous equation):

y0 = f (y) := r
�
1� y

K

�
y = � r

K
y (y �K) = ry� r

K
y2; r > 0; k > 0 are given constants. (55)

The function f (y) satis�es f (0) = f (K) = 0 with f 0 (0) > 0; f 0 (K) < 0:

Remark 2.13 Note that equation (55) has two equilibrium solutions y (t) � 0 and y (t) �
K due to f (0) = f (K) = 0:

Remark 2.14 See the pictures in p. 81 of the book.
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Solution:

Note that equation (??) is both a separable equation and a Bernoulli equation. Here we use
Bernoulli�s method to solve it. Let v = 1

y
: Then

v0 = � 1
y2
y0 = � 1

y2
� r
�
1� y

K

�
y = �1

y
r
�
1� y

K

�
= �rv + r

K

and we know that the general solution of the above equation for v is

v (t) =
1

K
+ Ce�rt; C is integration const.. (56)

Hence we get the general solution

y (t) =
1

1
K
+ Ce�rt

; lim
t!1

y (t) = K (equilibrium solution).

If we impose initial condition y (0) = y0 (we assume y0 6= 0; otherwise we get equilibrium solution
y (t) � 0) in the equation, we get C = 1

y0
� 1

K
and so

y (t) =
1�

1
y0
� 1

K

�
e�rt + 1

K

=
y0K

y0 + (K � y0) e�rt
; y (0) = y0: (57)

The above solution is de�ned on amaximal time interval (a; b) on which y0+(K � y0) e
�rt 6= 0 for

all t 2 (a; b) : We note that:

� If y0 2 (0; K) ; then y (t) is de�ned on (�1;1) ; strictly increasing on (�1;1) ; with

lim
t!�1

y (t) = 0 (equilibrium solution), lim
t!1

y (t) = K (equilibrium solution). (58)

This kind of solutions connect two equilibrium solutions during the time interval (�1;1) :

� If y0 2 (K;1) ; then (denominator is positive on the interval (�;1) ; � < 0)

y (t) =
y0K

y0 + (K � y0) e�rt
> K; 8 t 2 (�;1) (59)

is de�ned on (�;1) ; strictly decreasing on (�;1) ; where

� = �1
r
log

y0
y0 �K

< 0 (60)

and
lim
t!�+

y (t) =1; lim
t!1

y (t) = K (equilibrium solution). (61)

� By (58) and (61), for any y0 2 (0;1) ; the solution y (t) in (57) satis�es limt!1 y (t) = K: By
this, we say the equilibrium solution y (t) � K is an asymptotically stable solution of the
equation (55) (if we con�ne y0 2 (0;1)) or say it is a locally stable solution of the equation
(55) (if we con�ne y0 2 (K � �;K + �) for some � > 0) . In contrast, the equilibrium solution
y (t) � 0 is an unstable solution of the equation (55). In terms of derivatives, we see that
f 0 (0) > 0 (unstable) and f 0 (K) < 0 (stable or more precisely "locally stable"). We
call this the derivative test for stability (explain more on this !!!). See the picture on p.
81 of the book.
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� If y0 2 (�1; 0) ; then (denominator is positive on the interval (�1; �) ; � > 0)

y (t) =
y0K

y0 + (K � y0) e�rt
< 0; 8 t 2 (�1; �) ; (62)

is de�ned on (�1; �) ; strictly decreasing on (�1; �) ; where now

� = �1
r
log

y0
y0 �K

> 0 (63)

and
lim
t!�1

y (t) = 0 (equilibrium solution), lim
t!��

y (t) = �1: (64)

Again, the equilibrium solution y (t) � 0 is an unstable solution of the equation (55). We
have f 0 (0) > 0 (unstable).

The solution is complete. �

Remark 2.15 See the pictures in p. 81 of the book.

Remark 2.16 We can also use separable equation method (see next section) to solve (55). We
have Z

dy

y
�
1� y

K

� = Z rdt = rt+ c;

where by Z
dy

y
�
1� y

K

� = Z 1

y
dy �

Z
1

y �K
dy = ln

���� y

y �K

���� ;
we get ���� y

y �K

���� = Cert; C = ec > 0

and so
y

y �K
= Cert; C 6= 0

�
same as y =

KCert

K + Cert

�
:

To satisfy the initial condition y (0) = y0; we need C =
y0

y0�K ; and conclude the solution of (55):

y

y �K
=

y0
y0 �K

ert;

which is the same as

y (t) =
y0K

y0 + (K � y0) e�rt
; y (0) = y0: (65)

Exercise 2.17 (Put this as a HW problem.) Consider the nonlinear ODE

x0 (t) + ex(t) = sin t: (66)

Convert it into a Bernoulli equation and �nd its general solution.
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2.2 Separable equations (this is Section 2.2 of the book, see p. 42).

The easiest type of a �rst order ODE is probably the following:

De�nition 2.18 Consider the equation x0 = f (t; x) : If f (t; x) has the form f (t; x) = g (t)h (x) for
some continuous functions g (t) and h (x) de�ned on some intervals I; J � R respectively, then the
equation

x0 = f (t; x) = g (t)h (x) ; x = x (t) (67)

is called a separable di¤erential equation (because the function f (t; x) is in separable form). A
separable equation can be solved using a standard method.

Remark 2.19 If h (x0) = 0 at some x0 2 J; then the function x (t) � x0; de�ned on t 2 I; is an
equilibrium solution of the ODE (67).

Remark 2.20 Unlike a �rst order linear equation, a solution x (t) of (67) may not be de�ned
on the whole interval t 2 I even if g (t) is de�ned on I: Its domain also depends on the form of
h (x) and the initial condition. In general, the domain ~I of x (t) is only a subinterval of I:

Remark 2.21 Any �rst-order equation which can be rewritten in the form (67) is also called a
separable di¤erential equation. For example, the following are all separable equations:

h (x)x0 = g (t) ; g (t)x0 = h (x) ; g (t)h (x)x0 = 1;

because one can rewrite them as

x0 =
g (t)

h (x)
; x0 =

h (x)

g (t)
; x0 =

1

g (t)h (x)
:

However, there are some minor di¤erences due to the "zero denominator" problem (however,
in this elementary course, we will not pay too much attention on this !!!). For example,
compare the two equations

(1) : tx0 = x; (2) : x0 =
x

t
; x = x (t) :

In the �rst equation, the value t = 0 is allowed (although the equation will degenerate);
however, in the second equation, the value t = 0 is not allowed. So the �rst equation is de�ned on
t 2 (�1;1) ; and the second equation is de�ned only on t 2 (�1;1) n f0g : The general solution
for the �rst equation is x (t) = Kt; t 2 (�1;1) ; where K is an arbitrary constant. Each solution
x (t) = Kt is a di¤erentiable function de�ned on t 2 (�1;1) : On the other hand, the general
solution for the second equation is

x (t) =

(
K1t; t 2 (�1; 0)

K2t; t 2 (0;1) ;
(68)

where K1 and K1 are two arbitrary constants, which can be di¤erent !! Each solution x (t) given by
(68) is a di¤erentiable function de�ned on t 2 (�1;1) n f0g :

There is a routine method to solve a separable equation (67) (as long as you can �nd inde�nite
integrals). For each (t0; x0) 2 I � J; by existence theory, there is a solution x (t) of (67) de�ned
on (t0 � "; t0 + ") satisfying x (t0) = x0: In case h (x0) 6= 0 (this is crucial); by making " > 0
smaller, we can have x (t) 6= 0 for all t 2 (t0 � "; t0 + ") : Hence we can rewrite the identity x0 (t) =
g (t)h (x (t)) ; t 2 (t0 � "; t0 + ") ; as

x0 (t)

h (x (t))
= g (t) ; t 2 (t0 � "; t0 + ") (this is to "separate" x and t) (69)
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and integrate both sides of (69) with respect to t 2 (t0 � "; t0 + ") to getZ
x0 (t)

h (x (t))
dt =

Z
g (t) dt: (70)

If we let H (x) =
R

1
h(x)

dx be the antiderivative of 1
h(x)

(which is de�ned at least near x0 since
h (x0) 6= 0), the above will give us the identity

H (x (t)) = G (t) + C; where G0 (t) = g (t) ; 8 t 2 (t0 � "; t0 + ") ; (71)

i.e. x (t) ; near the point (t0; x0) ; will satisfy the identity

H (x) = G (t) + C; (72)

where C is some integration constant determined by the condition x (t0) = x0: Therefore, one can
solve x = x (t) from the above equation (72) and it will be a solution of the equation (67). In
summary, as long as h (x (t)) 6= 0; you can always use the above method to �nd x (t) :
More precisely, we have the following Lemma 2.22, Lemma 2.24, and Theorem 2.25:

Lemma 2.22 Let I; J be two open intervals in R; where g (t) is a continuous function de�ned on
I and h (x) is a continuous function de�ned on J: Assume h (x) 6= 0 on J: If x (t) : ~I � I ! J (~I
is a subinterval of I) is a solution to the equation

x0 = g (t)h (x) ; t 2 ~I;

then x (t) ; t 2 ~I; will satisfy the equation

H (x) = G (t) + C; t 2 ~I (73)

for some constant C: Here G (t) is an antiderivative of g (t) on I and H (x) is an antiderivative of
1

h(x)
on J:

Remark 2.23 If h (x0) = 0 at some point x0 in its domain, then the equation x0 = g (t)h (x) has
an equilibrium solution x (t) � x0; t 2 (�1;1):

Proof. We have
x0 (t) = g (t)h (x (t)) ; 8 t 2 ~I; where x (t) : ~I ! J

and so (note that h (x) 6= 0 on J)

x0 (t)

h (x (t))
= g (t) ; 8 t 2 ~I:

By integration with respect to t 2 ~I; we getZ
x0 (t)

h (x (t))
dt =

Z
g (t) dt:

Hence x (t) ; t 2 ~I; satis�es the equation

H (x (t)) = G (t) + C; 8 t 2 ~I

for some integration constant C: The proof is done. �

Conversely, we have:
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Lemma 2.24 Assume h (x) 6= 0 on J: Let G (t) and H (x) be antiderivatives of g (t) and 1
h(x)

on

I; J respectively. If x = x (t) : ~I � I ! J is a di¤erentiable function which satis�es the equation

H (x) = G (t) + C; t 2 ~I

for some constant C; then x (t) is a solution to the ODE x0 = g (t)h (x) on ~I:

Proof. We have
H (x (t)) = G (t) + C; t 2 ~I

and by di¤erentiation we get
x0 (t)

h (x (t))
= g (t) ; t 2 ~I:

Therefore x0 (t) = g (t)h (x (t)) for all t 2 ~I: The proof is done. �

By the above two lemmas, we conclude the following:

Theorem 2.25 Assume h (x) 6= 0 is a continuous function on J; and g (t) is a continuous function
on I; and x (t) : ~I � I ! J is a di¤erentiable function. Then x (t) : ~I ! J is a solution to the
separable equation

x0 = g (t)h (x) ; t 2 ~I (74)

if and only if it satis�es the equation

H (x) = G (t) + C; t 2 ~I; (75)

for some constant C: Here G (t) is an antiderivative of g (t) on I and H (x) is an antiderivative of
1

h(x)
on J:

Remark 2.26 By allowing C to be any possible constant, the formula (75) can describe all possible
solutions of the equation (74). We say the general solution of the ODE (74) is given by the equation
(75). From (75), if you can solve x as a function of t 2 I explicitly, then you get general explicit
solutions; otherwise, you will get general implicit solutions.

Remark 2.27 If there is an initial condition x (t0) = x0 for the equation, then one can substitute
the condition x (t0) = x0 into (75) to solve the constant C or use the formulaZ x

x0

1

h (s)
ds =

Z t

t0

g (s) ds (76)

to get the unique solution satisfying x (t0) = x0 (in implicit form).

Example 2.28 Find the general solution of the equation

dx

dt
= tx: (77)

Solution:

We �rst note that x (t) � 0 is an equilibrium solution, de�ned on t 2 (�1;1) : If x (t) is a
solution de�ned on some interval I and x (t) 6= 0 on some interval I, then we haveZ

x0 (t)

x (t)
dt =

Z
tdt; t 2 I
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and so

ln jx (t)j = t2

2
+ C;

which gives jx (t)j = Ket
2=2; K = eC > 0; i.e. x (t) = ~Ket

2=2; where ~K = �eC 6= 0: Finally, we note
that ~K = 0 will also give rise to a solution (the equilibrium solution). Hence the general solution
of the equation is given by x (t) = ~Ket

2=2; where ~K is an arbitrary constant. Note that for any ~K
the solution x (t) = ~Ket

2=2 is de�ned on t 2 (�1;1) : �

Example 2.29 Find the solution of the equation

dx

dt
= tx2; x (0) = 1; (78)

where x = x (t) is a function of t:

Solution:

We �rst note that x (t) � 0 is an equilibrium solution of dx
dt
= tx2, de�ned on t 2 (�1;1) : For

the ivp, we have Z
dx

x2
=

Z
tdt;

�1
x
=
t2

2
+ C;

which gives the general solution

x (t) =
1

K � t2

2

; K is a constant.

and by the condition x (0) = 1; we have K = 1 and so

x (t) =
1

1� t2

2

; t 2
�
�
p
2;
p
2
�
:

It is de�ned on the maximal time interval
�
�
p
2;
p
2
�
only (even if f (t; x) = tx2 is de�ned

on (�1;1)� (�1;1)). The maximal time interval is �nite is due to the term x2; not
the term t: �

Remark 2.30 Note that the domain interval of the solution x (t) =
�
1� t2

2

��1
has to contain the

number t = 0 due to the initial condition x (0) = 1: Therefore, the interval is
�
�
p
2;
p
2
�
:

Remark 2.31 If we change the initial condition as

dx

dt
= tx2; x (0) = �1; (79)

then the solution is given by

x (t) = � 2

t2 + 2
; t 2 (�1;1) :

Surprisingly, the solution is now de�ned on (�1;1) : As t! �1; the solution x (t) converges to
the equilibrium solution x (t) � 0:

Example 2.32 (This is Example 1 in p. 43.) Find the general solution of the equation

dy

dx
=

x2

1� y2
; (80)

where y = y (x) is a function of x:
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Remark 2.33 (Important.) This is intuitive feeling: Since 1�y2 appears in the denominator,
a solution y (x) of (80) is de�ned on some maximal interval (a; b) � R such that y (x) ! �1 or
y (x)! �1 as x! a+: The same behavior applies for y (x) as x! b�:

Solution:

We can formally rewrite the equation as (assume y (x) is a solution de�ned on I and y (x) 6=
�1 on I) �

1� y2
�
dy = x2dx (this is to "separate" x and y)

and integrate both sides to get Z �
1� y2

�
dy =

Z
x2dx;

and obtain the identity
y3 � 3y + x3 = K (81)

for some constant K: Since it is di¢ cult to solve y (x) explicitly and di¢ cult to �nd the domain of
y (x), the solution is de�ned implicitly by the identity (81).
The integral curve C passing through (x0; y0) satis�es the equation

f (x; y) = y3 � 3y + x3 = y30 � 3y0 + x30 (82)

and at (x0; y0) 2 C we have
@f

@y
(x0; y0) = 3y

2
0 � 3: (83)

At any point (x0; y0) 2 C; as long as y0 6= �1 (same as @f@y (x0; y0) 6= 0); then by the implicit func-
tion theorem, there exists a unique solution y (x) of the equation (82) de�ned on (x0 � "; x0 + ") for
some " > 0 and satis�es y (x0) = y0: Note that the ODE is unde�ned at y0 = �1 due to the function
1� y2 in the denominator. The slope y0 (x) will tend to �1 as y ! �1: �

Remark 2.34 If we impose the initial condition y (0) = 0 (i.e. (x0; y0) = (0; 0)), then we get the
equation of integral curve C, which passes through the point (0; 0) :

C : y3 � 3y + x3 = 0: (84)

One can see the picture of C on p. 44 of the book. Along the curve C : y3 � 3y + x3 = 0 we have

@f

@y
(x; y) = 3y2 � 3 = 0 (if and only if y = �1). (85)

When y = �1; the corresponding x-coordinates are x = �21=3: Therefore we have
�
�21=3;�1

�
2

C: As x! �21=3, we have y ! �1; and so

lim
x!�21=3

y0 (x) = lim
y!�1

x2

1� y2
= �1:

Therefore the domain of the solution y (x) on C cannot contain the point x0 = 21=3 or x0 = �21=3:
The domain of the solution y (x) on C passing through (0; 0) is x 2

�
�21=3; 21=3

�
: One can see the

picture on p. 44 of the book to con�rm this.

Exercise 2.35 Find the domain of the solution y (x) of the equation (80) passing through the point�
0;
p
3
�
and the domain of the solution y (x) passing through the point

�
0;�

p
3
�
:

Solution:

The answer for the �rst question is
�
�1; 21=3

�
and the answer for the second question is�

�21=3;1
�
: �
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Example 2.36 (This is Example 2 in p. 45.) Find the solution of the equation

dy

dx
=
3x2 + 4x+ 2

2 (y � 1) ; y (0) = �1; (86)

where y = y (x) is a function of x:

Solution:

First note that the equation has no equilibrium solution. Since it is a separable equation, as long
as y 6= 1; the equation can be solved by the separation method and we getZ

2 (y � 1) dy =
Z �

3x2 + 4x+ 2
�
dx

and then
y2 � 2y = x3 + 2x2 + 2x+ C;

and by y (0) = �1 we have C = 3: By the quadratic formula we see that

y (x) = 1�
p
x3 + 2x2 + 2x+ 4 (87)

is the explicit solution to the ivp (86). Since we must require

x3 + 2x2 + 2x+ 4 = (x+ 2)
�
x2 + 2

�
� 0

we know that the domain of y (x) is x 2 (�2;1) with y (�2) = 1 and y (x) is not di¤erentiable
at x = �2: This corresponds to the fact that y = 1 is unde�ned on the right hand side of the
equation. �

Remark 2.37 See the picture in p. 46. The solution (87) is unique, in explicit form, and is de�ned
on x 2 (�2;1) : As x > �2 is close to �2; y (x) < 1 is close to 1 and so the slope

3x2 + 4x+ 2

2 (y � 1)

is close to �1: This explains why y (x) cannot be di¤erentiable at x = �2:

Exercise 2.38 Find the solution y (x) of the equation (86) with the initial condition y (0) = 3:What
is the domain of y (x)?

Solution:

The answer is y (x) = 1 +
p
x3 + 2x2 + 2x+ 4 with domain (�2;1) : �

Exercise 2.39 Find the solution y (x) of the equation (86) with the initial condition y (0) = 0:What
is the domain of y (x)?

Solution:

The answer is y (x) = 1�
p
x3 + 2x2 + 2x+ 1 with domain (�1;1) : �
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2.2.1 Homogeneous equations (this is in p. 49 of the book).

De�nition 2.40 A function f (t; y) is called homogeneous if we have

f (�t; �x) = f (t; x)

for any constant � 6= 0 and any (t; x) 2 R2 such that both (�t; �x) and (t; x) are in the domain of
f:

For example, the following are all homogeneous:

f (t; x) =
at+ bx

ct+ dx
; a; b; c; d are constants

or
f (t; x) =

t

x
sin
�x
t

�
; f (t; x) = log x� log t = log x

t
; f (t; x) =

2tx

t2 + x2
;

etc.

Remark 2.41 By choosing � = 1
t
; a homogeneous function f (t; x) will satisfy the identity

f (t; x) = f
�
1;
x

t

�
(whenever t 6= 0): (88)

Thus one can also say that a function f (t; x) is homogeneous if and only if it can be expressed as
a function of the variable x

t
: That is

f (t; x) = F
�x
t

�
for some one-variable function F: For example, we have

f (t; x) =
2tx

t2 + x2
=

2x
t

1 +
�
x
t

�2 = F
�x
t

�
; F (v) =

2v

1 + v2
:

Remark 2.42 In some homogeneous equation, solutions cannot be de�ned across t = 0 if the
variable t appears in the denominator. See (90) below.

A �rst order homogeneous ODE

dx

dt
= f (t; x) = F

�x
t

�
(89)

can be converted into a separable equation. Let

v =
x

t
; v = v (t) :

Then x = tv and so dx
dt
= v + tdv

dt
: Hence (89) becomes a separable equation:

v + t
dv

dt
= F (v)

and then one can separate t and v as

dv

F (v)� v
=
1

t
dt:
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Example 2.43 Solve the equation
dx

dt
=
t2 + 3x2

2tx
; (90)

which is clearly not a separable equation. However, it is a homogeneous equation.

Solution:

First note that any solution x (t) of (90) cannot be de�ned across t = 0; nor can we have
x (t0) = 0 at some t0 6= 0: Note that the function f (t; x) = t2+3x2

2tx
is homogeneous. We can write it

as
dx

dt
=
1 + 3

�
x
t

�2
2
�
x
t

�
and, according to the method, get

v + t
dv

dt
=
1 + 3v2

2v
:

Hence Z
2vdv

1 + v2
=

Z
1

t
dt

and then
ln
�
1 + v2

�
= ln jtj+ C

which gives

1 + v2 = 1 +
�x
t

�2
= K jtj ; K = eC > 0

and then
x = �t

p
K jtj � 1; t 6= 0 (91)

is the general solution. Here K > 0 is an arbitrary constant.
Note that the domain of x (t) is (�1;�1=K)

S
(1=K;1) (at the endpoint t = �1=K we have

x (t) = 0; which is not allowed since x appears in the denominator of the equation). �

Example 2.44 Find the solution of the ivp:

dx

dt
= log x� log t; x (3) = 18; t 2 (0;1) :

Solution:

We have dx
dt
= log x

t
and so it is a homogeneous equation. By the method, we let v (t) = x

t
and

get

v + t
dv

dt
= log v;

Z
dv

log v � v
=

Z
1

t
dt; v (3) =

x (3)

3
=
18

3
= 6:

Since we cannot integrate
R

dv
log v�v ; the solution for v (t) is de�ned implicitly by the identityZ v(t)

6

ds

log s� s
=

Z t

3

1

s
dt

and the unique solution x (t) is given by x (t) = tv (t) for t lying on the interval (3� �; 3 + �) for
some � > 0: �

Example 2.45 Solve the equation

dx

dt
=
2t+ 3x+ 5

3t� 7x� 4 ; x = x (t) : (92)
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Solution:This equation does not look like a homogeneous equation. But if we let s be the

new independent variable given by s = t + � for some suitable constant � and let y (s) be the
new function satisfying y (s) = x (t) + � (which means y (t+ �) = x (t) + �) for another suitable
constant �; then one can convert it into a homogeneous equation for the function y (s). We can
write the original equation as

dx

dt
(t) =

2 (t+ �) + 3 (x+ �) + (5� 2�� 3�)
3 (t+ �)� 7 (x+ �) + (�4� 3�+ 7�) ; x = x (t)

and if we choose � = � = 1; the above becomes

dx

dt
(t) =

2s+ 3y (s)

3s� 7y (s) ; y (s) = x (t) + 1; (93)

which is not a self-contained ODE. However, by the chain rule, we know that

dy

ds
(s) =

dx

dt
(t) � dt

ds
=
dx

dt
(t) : (94)

Hence, the self-contained ODE for y (s) is given by

dy

ds
(s) =

2s+ 3y (s)

3s� 7y (s) ; (95)

which has become a homogeneous equation. Letting v = y
s
(v is a function of s); we get the

separable equation for v (s) ; which is

v + s
dv

ds
=
2 + 3v

3� 7v (same as s
dv

ds
=
2 + 7v2

3� 7v ), v = v (s) ;

and then Z
3� 7v
2 + 7v2

dv =

Z
1

s
ds = log jsj+ C (C is integ. const.);

where we note that (recall the formula d
dx

�
1
�
tan�1 (�x)

�
= 1

1+(�x)2
)

Z
3

2 + 7v2
dv =

3

2

Z
1

1 + 7
2
v2
dv =

3

2

r
2

7
tan�1

 r
7

2
v

!

and

�
Z

7v

2 + 7v2
dv = �1

2

Z
14v

2 + 7v2
dv = �1

2
log
�
2 + 7v2

�
:

We conclude the identity

3

2

r
2

7
tan�1

 r
7

2
v

!
� 1
2
log
�
2 + 7v2

�
= log jsj+ C; v (s) =

y (s)

s
=
x (t) + 1

t+ 1

and, back to the variable t and the function x (t) ; we get the identity

3

2

r
2

7
tan�1

 r
7

2

x+ 1

t+ 1

!
� 1
2
log

 
2 + 7

�
x+ 1

t+ 1

�2!
� log jt+ 1j = C (96)

for arbitrary integration constant C: The above de�nes the general solution of the equation (92)
implicitly. �
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2.3 Section 2.3 Example 4 in p. 58; escape velocity.

Example 2.46 (This is Example 4 in p. 58. of the textbook.) ... See book statement ...

Remark 2.47 My method of solution for this example is slightly di¤erent from the book method.

Solution:

According to the statement of the problem, the equation to be solved is

m
d2x

dt2
= � mgR2

(R + x)2
;

dx

dt
(0) = v0; x (0) = 0; x = x (t) : (97)

This is a second order di¤erential equation (therefore we need two initial conditions). There is a
trick to solve (97) (also see Remark 2.48 below). We can multiply the equation by dx

dt
(t) ; after

that it can be reduced to a �rst order separable equation (this trick can be applied to
any equation of the form d2x

dt2
= f (x)). We have

m
dx

dt
(t)

d2x

dt2
(t) = � mgR2

(R + x (t))2
dx

dt
(t)

which is same as
d

dt

"
1

2

�
dx

dt
(t)

�2#
=

d

dt

�
gR2

R + x (t)

�
and so

1

2

�
dx

dt
(t)

�2
=

gR2

R + x (t)
+ C1 (98)

for some integration constant C1: In view of the condition dx
dt
(0) = v0 and x (0) = 0; we get C1 =

1
2
v20 � gR: Hence (98) becomes �

dx

dt
(t)

�2
=

2gR2

R + x (t)
+ v20 � 2gR

and then
dx

dt
(t) = �

s
2gR2

R + x (t)
+ v20 � 2gR; (99)

where in the above we choose the plus sign if the body is rising, and the minus sign if it is
falling back to the earth. Note that now (99) is a �rst order separable equation which can
be solved by the integration Z x

0

dxq
2gR2

R+x
+ v20 � 2gR

= �
Z t

0

dt: (100)

In general, it can be di¢ cult to �nd the integral on the LHS (left-hand side). However, we do not
have to integrate it here. We can use (99) to get the relation between the maximum height and
the initial velocity (note that velocity dx

dt
(t) is zero at some time t = T at the maximum height

�; where x (T ) = �). We have

0 =
dx

dt
(T ) =

2gR2

R + x (T )
+ v20 � 2gR =

2gR2

R + �
+ v20 � 2gR; � = x (T ) = maximal height,
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which gives the relation between the maximum height � and the initial velocity v0 :

v0 =

s
2gR

�

R + �

�
same as � =

v20R

2gR� v20

�
: (101)

By letting � ! 1 (we want the maximum height as large as possible), the escape velocity ve of
the projectile is

v0 = ve =
p
2gR: (102)

In this situation, equation (99) becomes the separable equation

dx

dt
(t) =

s
2gR2

R + x (t)
; x (0) = 0;

Z p
R + xdx =

Z p
2gR2dt (103)

and can be integrated to get

x (t) =

�
3

2

p
2gR2t+R

3
2

� 2
3

�R; x (0) = 0; t 2 [0;1);

with
dx

dt
(t) =

�
3

2

p
2gR2t+R

3
2

�� 1
3 p

2gR2 > 0; 8 t 2 [0;1) :

It satis�es limt!1 x (t) =1; limt!1
dx
dt
(t) = 0 (the projectile stops at � =1 at time T =1). �

Remark 2.48 (This is a remark on book method.) In the textbook, the equation is in terms
of v (t) (v (t) = dx=dt) ; given by

m
dv

dt
= � mgR2

(R + x)2
:

But then the equation does not seem to be self-contained. The book says that one can view v (t) as
a function of x (in the physical situation here, before the body starts to fall back to the
earth, this is allowed) and get the identity:

dv

dt
=
dv

dx

dx

dt
= v

dv

dx
(104)

and conclude the self-contained equation

mv
dv

dx
= � mgR2

(R + x)2
;

which gives
v2 (x)

2
=

gR2

R + x
+ c

for some constant c: When t = 0; we have x = 0 and v (0) = v0; we get

v2 (x)

2
=

gR2

R + x
+
1

2
v20 � gR;

which is the same as the above.

Remark 2.49 In fact the integral on the LHS of (100) is of the formZ r
a+ bx

c+ dx
dx

for some constants a; b; c; d: One can �nd its inde�nite integral formula from calculus books.
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Example 2.50 (Leave this as homework problem.) (This is Exercise 25 in p. 65.) A body of
mass m is projected vertically into the space with an initial velocity v0 > 0 and with a resistance
force k jvj due to the air resistance. Here k > 0 is a constant. Assume we have constant gravitational
force mg: Find the maximum height xm attained by the object and the time tm at which the maximum
height is reached.

Solution:

Let v = dx=dt: It has the equation

m
dv

dt
= �mg � kv; v (0) = v0 > 0: (105)

We see that v (t) is decreasing in time. We get the identity

m

k
log

�
mg + kv

mg + kv0

�
= �t

and so
mg + kv = e�

k
m
t � (mg + kv0) :

At time tm we have v (tm) = 0: Hence we get the identity

tm =
m

k
log

�
mg + kv0

mg

�
=
m

k
log

�
1 +

kv0
mg

�
: (106)

To get xm; we view v as a function of x and equation (105) becomes

mv
dv

dx
= �mg � kv; v (0) = v0 > 0: (107)

Hence Z
mv

mg + kv
dv =

Z m
k
(mg + kv)� m2g

k

mg + kv
dv = �

Z
dx

and by the fact that at x = 0; v (0) = v0, we get

xm =

Z v0

0

mv

mg + kv
dv =

Z v0

0

 
m
k
(mg + kv)� m2g

k

mg + kv

!
dv

=
m

k
v0 �

m2g

k2
log

�
mg + kv0

mg

�
=
m

k
v0 �

m2g

k2
log

�
1 +

kv0
mg

�
: (108)

We conclude the answer as

tm =
m

k
log

�
1 +

kv0
mg

�
; xm =

m

k
v0 �

mg

k

m

k
log

�
1 +

kv0
mg

�
:

Finally, to obtain the Taylor series expansion of tm and xm; we use the expansion formula

log (1 + x) = x� x2

2
+
x3

3
� x4

4
+ � � �; valid for � 1 < x � 1:

�
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2.4 Section 2.5: Exponential growth and logistic growth (did not cover
this section in class).

2.4.1 Exponential growth.

Consider the initial value problem 8<:
dy

dt
= ry;

y (0) = y0 2 (�1;1) ;
(109)

where r 2 R; r 6= 0; is a given constant. The number r is called the growth rate (if r > 0) of decline
rate (if r < 0) of the problem. It y (t) represents the quantity of something (for example, population)
at time t; then the equation dy=dt = ry means that the rate of change dy=dt is proportional to
the current value of y; with r as the constant of proportionality. Note that the equation is both
separable and linear.
The general solution of (109) is given by

y (t) = y0e
rt; t 2 (�1;1) (110)

and the only equilibrium solution of the equation is y (t) � 0 (same as y0 = 0). Note that if
r > 0; then as long as y0 6= 0 (no matter how small it is), we have

lim
t!1

y (t) = lim
t!1

y0e
rt (r > 0) =

(
+1; if y0 > 0

�1; if y0 < 0:
(111)

In such a case we say y (t) � 0 is an unstable equilibrium solution. On the other hand, if r < 0; then
for any y0 6= 0 (no matter how large it is), we have

lim
t!1

y (t) = lim
t!1

y0e
rt (r < 0) = 0: (112)

In such a case we say y (t) � 0 is an asymptotically stable equilibrium solution.
If we let f (y) = ry; then the equation becomes dy=dt = f (y) : The only zero of the function

f (y) is y = 0; which means that the only equilibrium solution of the equation is y (t) � 0. Moreover,
if the derivative f 0 (y) at y = 0 is positive (same as r > 0), then we have unstable equilibrium
solution, and if the derivative f 0 (y) at y = 0 is negative (same as r < 0), then we have asymptot-
ically stable equilibrium solution. This observation can be applied to equation dy=dt = f (y) for
arbitrary function f (y) :

Remark 2.51 Draw two pictures on blackboard.

2.4.2 Logistic growth (see Example 2.12.)

2.5 Section 2.6: Exact equations and integrating factors (this is in p.
95 of the book).

In this section we shall write a �rst order ODE in the form

M (x; y) +N (x; y)
dy

dx
= 0; (x; y) 2 D (113)

where D � R2 is an open and connected set in R2 (in topology, an open connected set is also
called a domain). It is the common domain of the continuous functions M (x; y) and N (x; y) : In
this section we shall also assume that M (x; y) and N (x; y) have continuous �rst order partial
derivatives with respect to x and y; i.e. M (x; y) and N (x; y) are C1 functions on D:
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De�nition 2.52 If there exists a C2 function  (x; y) : D ! R such that

 x (x; y) =M (x; y) and  y (x; y) = N (x; y) ; 8 (x; y) 2 D; (114)

then we call (113) an exact di¤erential equation on D.

Remark 2.53 There will be a speci�c method to solve an exact equation.

Remark 2.54 It is possible that equation (113) is not exact on D; but exact on a smaller domain
~D � D: In this case, the method is valid only on ~D:

Lemma 2.55 If (113) is an exact di¤erential equation on D � R2, then we have

My (x; y) = Nx (x; y) ; 8 (x; y) 2 D: (115)

Here the domain D � R2 can be arbitrary.

Remark 2.56 Note that (115) is a necessary condition of an exact equation. It is not a su¢ cient
condition.

Proof. This is obvious since, by de�nition, there exists a C2 function  (x; y) : D ! R satisfying
(114) on D; and then

My (x; y) =  xy (x; y) ; Nx (x; y) =  yx (x; y) ; (x; y) 2 D

and by the identity  xy (x; y) =  yx (x; y) on D for a C2 function, we have (115). �

Example 2.57 Consider the equation

3xy +
�
x2 + y2

� dy
dx
= 0; (x; y) 2 D � R2:

The equation is not exact since it does not satisfy (115) on D: However, the equation

2xy +
�
x2 + y2

� dy
dx
= 0; (x; y) 2 D � R2

satis�es the necessary condition My (x; y) = Nx (x; y) for all (x; y) 2 D: Hence it is very likely
to be an exact equation (no applicable lemma at this moment). Since we can �nd

 (x; y) = x2y +
y3

3
+ C

satisfying
 x (x; y) = 2xy and  y (x; y) = x2 + y2; 8 (x; y) 2 D; (116)

the equation is indeed exact on D:

The bad thing is that if we have (115) on D; then in general it may not imply that the equation
is exact (for example, D is a ring-shaped domain). However, if D is a rectangle in the plane,
then (115) will imply that (113) is exact on D. More precisely, we have:

Theorem 2.58 (Theorem 2.6.1. in p. 96.) Assume M (x; y) ; N (x; y) are C1 functions on a
rectangle R = (�; �)� (
; �) � R2 satisfying

My (x; y) = Nx (x; y) ; 8 (x; y) 2 R: (117)

Then there exists a C2 function  (x; y) on R such that

 x (x; y) =M (x; y) and  y (x; y) = N (x; y) ; 8 (x; y) 2 R: (118)

Therefore, on a rectangular domain, the equation M (x; y) + N (x; y) dy
dx
= 0 is exact on R if

and only if (117) is satis�ed.
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Remark 2.59 One can replace the rectangle R by any simply-connected domain in R2: Also,
the whole plane R2 can be regarded as a rectangle. Similarly, any half-plane can be regarded as
a rectangle.

Proof. (The proof is di¤erent from the book proof and is easier). The direction (=)) is
due to Lemma 2.55.
For the proof of the direction ((=) ; we use the method in p. 101, Exercise 17. Fix some

(x0; y0) 2 R and for any (x; y) 2 R we can consider the line segment Lx going from (x0; y0) to
(x; y0) and then the line segment Ly going from (x; y0) to (x; y) : Because R is a rectangle, we have
Lx
S
Ly � R. Now de�ne

 (x; y) =

Z x

x0

M (s; y0) ds+

Z y

y0

N (x; t) dt; (x; y) 2 R; (119)

which is a C2 function on R: We �rst have  y (x; y) = N (x; y) for all (x; y) 2 R: Next we have
(here one can move di¤erentiation @

@x
into the integral sign)

 x (x; y) =M (x; y0) +
@

@x

Z y

y0

N (x; t) dt

=M (x; y0) +

Z y

y0

Nx (x; t) dt =M (x; y0) +

Z y

y0

Mt (x; t) dt

=M (x; y0) +M (x; y)�M (x; y0) =M (x; y) ; 8 (x; y) 2 R:

Hence we have found a C2 function  (x; y) de�ned on R satisfying  x (x; y) =M (x; y) ;  y (x; y) =
N (x; y) for all (x; y) 2 R: The proof is done. �

Remark 2.60 (Important.) If D � R2 is a domain with the property that for some �xed (x0; y0) 2
D and for any (x; y) 2 D one can connect (x0; y0) and (x; y) by the line segments: (x0; y0) !
(x; y0) ! (x; y) ; then if we have My = Nx on D; the equation M (x; y) + N (x; y) dy

dx
= 0 must be

exact on D. For example D can be an open disc in R2 or other shapes. Similarly, if we can connect
(x0; y0) and (x; y) by the line segments: (x0; y0)! (x0; y)! (x; y) ; then the function (compare with
(119))

 (x; y) =

Z y

y0

N (x0; t) dt+

Z x

x0

M (s; y) ds (120)

will satisfy  x (x; y) = M (x; y) ;  y (x; y) = N (x; y) for all (x; y) 2 D: Hence the equation
M (x; y) +N (x; y) dy

dx
= 0 is exact on D if and only if we have My = Nx on D:

Theorem 2.61 (Solving an exact equation on D:) Assume the ODE

M (x; y) +N (x; y)
dy

dx
= 0; (x; y) 2 D (an arbitrary domain in R2) (121)

is exact on D and  (x; y) is any function de�ned on D satisfying(
 x (x; y) =M (x; y)

 y (x; y) = N (x; y)
; 8 (x; y) 2 D: (122)

Then y (x) is a solution to (121) on interval I = (a; b) (hence (x; y (x)) 2 D for all x 2 I) if and
only if it satis�es

 (x; y (x)) = C; 8 x 2 (a; b) (123)

for some constant C:
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Remark 2.62 Roughly speaking, the above lemma says that the level curves of the function
 (x; y) are integral curves of the ODE (121).

Remark 2.63 (Important.) For equation (121) with an initial condition y (x0) = y0; one can
�nd a small rectangle R with (x0; y0) 2 R � D: If on R we have My (x; y) = Nx (x; y) for all
(x; y) 2 R; then near (x0; y0) the ODE is exact and we can use the above theorem to solve it (at
least near (x0; y0)).

Remark 2.64 (Important.) Hence to solve an exact equation it su¢ ces to �nd  (x; y) from
(122), and solve the algebraic equation  (x; y) = C (solve y in terms of x; C). The method of
�nding  (x; y) from (122) is: integrate  x (x; y) =M (x; y) �rst and get an "integration constant
function" h (y) : Then substitute it into  y (x; y) = N (x; y) to �nd h (y) = � � �+C; where C is an
integration constant.

Proof. Since equation (121) is exact, there exists a C2 function  (x; y) satisfying (122) on D: If
y (x) is a solution on I = (a; b) ; then (x; y (x)) 2 D for all x 2 (a; b) and by chain rule we have

d

dx
 (x; y (x))

=  x (x; y (x)) +  y (x; y (x)) y
0 (x) =M (x; y (x)) +N (x; y (x)) y0 (x) = 0; 8 x 2 (a; b) :

Hence  (x; y (x)) = C for some constant and for all x 2 I:
On the other hand, if (123) holds, then we have

0 =
d

dx
 (x; y (x)) =M (x; y (x)) +N (x; y (x)) y0 (x) ; 8 x 2 (a; b) ;

which means that y (x) is a solution to (121) on the interval I = (a; b) : The proof is done. �

Example 2.65 (This is Example 1 in p. 95.) Solve (�nd the general solution) the equation

2x+ y2 + 2xyy0 = 0: (124)

Solution:

For this problem, we haveM (x; y) = 2x+y2; N (x; y) = 2xy; both are de�ned on R2 (rectangle)
with My = Nx = 2y: Hence it is an exact equation on R2. We need to �nd  (x; y) satisfying(

 x (x; y) = 2x+ y2

 y (x; y) = 2xy
; 8 (x; y) 2 R2:

By the �rst equation we have  (x; y) = x2 + xy2 + h (y) for some integration function h (y) :
Substitute this  (x; y) into the second equation to get

 y (x; y) = 2xy + h0 (y) = 2xy:

Therefore, h (y) is a constant function. We conclude  (x; y) = x2+ xy2+C and any solution y (x)
to the equation (124) on some interval x 2 I is included in the general equation

 (x; y) = x2 + xy2 + C = K (same as x2 + xy2 = C)

for arbitrary constants C and K: Thus the general solution of (124) is de�ned implicitly by the
equation x2 + xy2 = C; where now y can be solved explicitly in terms of x and C as

y (x) = �
r
C

x
� x; x 6= 0: (125)
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The domain I of y (x) depends on the constant C and we need C
x
�x > 0: For example, if C > 0; then

we need C
x
> x: In case x > 0; we have C > x2; giving 0 < x <

p
C: In case x < 0; we have C < x2;

giving �1 < x < �
p
C: Thus for C > 0; the domain of y (x) is

�
�1;�

p
C
�S�

0;
p
C
�
: One can

do similar discussions for C < 0 and for C = 0: In any case, the solution y (x) cannot be de�ned at
x = 0 (even for C = 0 since y (x) = �

p
�x is not di¤erentiable at x = 0).

Remark 2.66 (Interesting.) One can rewrite (124) as

y0 +
1

2x
y = �1

y
;

which is a Bernoulli equation. One can also use Bernoulli�s method to solve it.

Example 2.67 (This is Example 2 in p. 98.) Solve the equation

(y cosx+ 2xey) +
�
sin x+ x2ey � 1

�
y0 = 0: (126)

Solution:

For this problem, we haveM (x; y) = y cosx+2xey; N (x; y) = sinx+x2ey�1; both are de�ned
on R2 (rectangle) with My = Nx = cos x + 2xe

y: Hence it is an exact equation on R2. We need
to �nd  (x; y) satisfying(

 x (x; y) = y cosx+ 2xey

 y (x; y) = sin x+ x2ey � 1
; 8 (x; y) 2 R2:

We get  (x; y) = y sin x+ x2ey + h (y) for some integration function h (y) : Substitute this  (x; y)
into the second equation to get

 y (x; y) = sin x+ x2ey + h0 (y) = sinx+ x2ey � 1;

which implies h (y) = �y + C is a constant function. We conclude that the general solution of the
equation is de�ned implicitly by the equation

y sin x+ x2ey � y = C; (127)

where C is an arbitrary constant. For this equation it seems very di¢ cult to solve y in terms of
x and C explicitly. One can only obtain general implicit solutions. �

Remark 2.68 A separable equation (it can be written in the form M (x) + N (y) dy
dx
= 0) is an

exact equation with

 (x; y) =

Z
M (x) dx+

Z
N (y) dy:

The solution de�ned by the identity

 (x; y) =

Z
M (x) dx+

Z
N (y) dy = C

is the same as the solution obtained by the previous separable method.
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2.5.1 Integrating factors for non-exact equations.

The idea is to multiply a non-exact equationM+N dy
dx
= 0 by some function � (x; y) (an integrating

factor) so that the new equation becomes an exact equation. More precisely, the new equation

� (x; y)M (x; y) + � (x; y)N (x; y)
dy

dx
= 0 (128)

is exact if we have the identity (here we assume that equation (128) is de�ned on some rectangular
region in R2)

[� (x; y)M (x; y)]y = [� (x; y)N (x; y)]x ;

which is the same as

� (x; y) [My (x; y)�Nx (x; y)] = �x (x; y)N (x; y)� �y (x; y)M (x; y) : (129)

Since it is not easy to �nd � (x; y) satisfying (129), we assume that � (x; y) depends only on x
or only on y: In the �rst case, (129) becomes

� (x) [My (x; y)�Nx (x; y)] = �x (x)N (x; y) ; (130)

which we rewrite it as

�x (x) =
My (x; y)�Nx (x; y)

N (x; y)
� (x)| {z } : (131)

Therefore, if My�Nx
N

depends only on x; i.e. My � Nx = Q (x)N for some function Q (x) ; then
� (x) can be found and equation (128) will become exact.
On the other hand, in the second case, (129) becomes

� (y) [My (x; y)�Nx (x; y)] = ��y (y)M (x; y) ; (132)

which we rewrite it as

�y (y) =
Nx (x; y)�My (x; y)

M (x; y)
� (y)| {z } : (133)

Therefore, if Nx�My

M
depends only on y; i.e. Nx �My = H (y)M for some function H (y) ; then

� (y) can be found and equation (128) will become exact.
We now can state the following result:

Lemma 2.69 Consider the equation

M (x; y) +N (x; y)
dy

dx
= 0: (134)

Assume that it is not exact. Then if

My �Nx = Q (x)N (135)

for some Q (x) ; which is a function of x only, then (134) has an integrating factor � (x) of the form

� (x) = exp

Z
Q (x) dx: (136)

Moreover, the solution to the equation (134) is the same as the solution to the new exact equation

� (x)M (x; y) + � (x)N (x; y)
dy

dx
= 0: (137)
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Similarly, if
Nx �My = H (y)M (138)

for some H (y) ; which is a function of y only, then (134) has an integrating factor � (y) of the form

� (y) = exp

Z
H (y) dy: (139)

Moreover, the solution to the equation (134) is the same as the solution to the new exact equation

� (y)M (x; y) + � (y)N (x; y)
dy

dx
= 0: (140)

Proof. Assume (135) and multiply equation (134) by � (x) of the form (136). We get

� (x)M (x; y) + � (x)N (x; y)
dy

dx
= 0; where � (x) = exp

Z
Q (x) dx: (141)

For this equation we have
@ [� (x)M (x; y)]

@y
=
@ [� (x)N (x; y)]

@x
:

Hence equation (141) is exact and we can solve it to get general solution y (x). Note that this general
solution y (x) is also a solution of the original equation (134) since � (x) 6= 0 everywhere in its
domain. The proof for the second case is similar. �

Example 2.70 (This is Example 4 in p. 100.) Solve the equation�
3xy + y2

�
+
�
x2 + xy

�
y0 = 0: (142)

Solution:

For this problem, we have M (x; y) = 3xy + y2; N (x; y) = x2 + xy; both are de�ned on R2
(rectangle) with

My = 3x+ 2y; Nx = 2x+ y; My 6= Nx:

Hence, equation (142) is not exact. However, by

My �Nx = x+ y; M = y (3x+ y) ; N = x (x+ y) ;

we see that My � Nx = Q (x)N; where Q (x) = 1=x; which suggests that there is an integrating
factor for the equation of the form (we focus on x > 0; the discussion for x < 0 is similar)

� (x) = exp

Z
Q (x) dx = exp

Z
1

x
dx = exp log jxj = jxj = x for x > 0

Now if we multiply equation by � (x) = x; we get�
3x2y + xy2

�
+
�
x3 + x2y

�
y0 = 0; x > 0

which becomes an exact equation. The function  (x; y) has the form

 (x; y) = x3y +
1

2
x2y2

and the general solution of the equation (142) is given implicitly by

x3y +
1

2
x2y2 = C; x > 0

for arbitrary constant C: One can solve y (x) explicitly to get

y (x) =
�x2 �

p
x4 + 2C

x
; x > 0:

The domain of y (x) is those x > 0 such that x4 + 2C > 0: �
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Remark 2.71 We can also rewrite (142) as

y0 = �3xy + y2

x2 + xy
; (143)

which is a homogeneous equation. Therefore, we can use the method of homogeneous equation to
solve it.

2.6 An example of non-exact equation satisfying My = Nx:

There is a theory saying that on a simply-connected domain D � R2 (see topology book for
its de�nition; rectangles and discs are both simply-connected; the domain R2n f(0; 0)g is not
simply-connected), the ODE

M (x; y) +N (x; y)
dy

dx
= 0; (x; y) 2 D (144)

is exact on D if and only if we have My = Nx on D: On the other hand, if D � R2 is not
simply-connected but we haveMy = Nx on D; then the ODE (144)may or may not be exact on
D: That is: the identity My = Nx on D is not equivalent to the ODE being exact on D if D � R2
is not simply-connected. However, if we restrict the ODE (144) to a smaller simply-connected
domain ~D � D; then it is exact on ~D and we can use Theorem 2.61 to solve it on ~D (but not on
D).
We recall the following three elementary functions:

1. The radial function r (x; y) =
p
x2 + y2; (x; y) 2 R2: This function is de�ned on R2;

continuous on R2; di¤erentiable on R2n f(0; 0)g : It is not di¤erentiable at (0; 0) :We have
r (x; y) 2 C1 (R2n f(0; 0)g) ; with

@r

@x
(x; y) =

xp
x2 + y2

;
@r

@y
(x; y) =

xp
x2 + y2

; (x; y) 2 R2n f(0; 0)g : (145)

The gradient vector �eld rr (x; y) : R2n f(0; 0)g ! R2 is also pointing in the radial direction
(draw a picture).

2. The angle function � (x; y) ; which is the polar angle of the segment from (0; 0) to the
point (x; y) 2 R2 f(0; 0)g with respect to the positive x-axis. � (0; 0) is unde�ned. This function
is de�ned onR2n f(0; 0)g (here we choose � (x; y) 2 [0; 2�)); continuous onR2n f(x; 0) : x � 0g ;
di¤erentiable on R2n f(x; 0) : x � 0g ; with � (x; y) 2 C1 (R2n f(x; 0) : x � 0g) and

@�

@x
(x; y) =

�y
x2 + y2

;
@�

@y
(x; y) =

x

x2 + y2
; (x; y) 2 R2n f(x; 0) : x � 0g : (146)

The gradient vector �eld r� (x; y) : R2n f(x; 0) : x � 0g ! R2 is also pointing in the angle
direction (draw a picture) withr� (x; y) ? rr (x; y) : To express � (x; y) in terms of elementary
function, we need to decompose R2n f(0; 0)g into several regions. We have (here tan�1 (y=x)
is taken to lie between ��=2 and �=2)

� (x; y) =

8>>>>>>>>><>>>>>>>>>:

tan�1 y
x
; x > 0; y � 0

� + tan�1 y
x
; x < 0

2� + tan�1 y
x
; x > 0; y < 0

�
2
; x = 0; y > 0

3�
2
; x = 0; y < 0:

(147)
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3. The function f (x; y) = 1
2
log (x2 + y2) is de�ned onR2n f(0; 0)g ; di¤erentiable onR2n f(0; 0)g :We

have log (x2 + y2) 2 C1 (R2n f(0; 0)g) with

@f

@x
(x; y) =

x

x2 + y2
;

@f

@y
(x; y) =

y

x2 + y2
; (x; y) 2 R2n f(0; 0)g : (148)

Example 2.72 (My = Nx on non-simply-connected domain R2n f(0; 0)g and the equation
is exact on R2n f(0; 0)g :) Show that the equation

x

x2 + y2
+

y

x2 + y2
y0 = 0 (149)

is exact on R2n f(0; 0)g and �nd its general solution.

Solution:

The equation is de�ned on R2n f(0; 0)g and we have

My = Nx =
�2xy

(x2 + y2)2
; 8 (x; y) 2 R2n f(0; 0)g :

But since the domain R2n f(0; 0)g is not a "rectangle" domain (nor a "simply-connected"
domain), it is not clear if the equation is exact on R2n f(0; 0)g or not. However, by8<:

@
@x

�
1
2
log (x2 + y2)

�
= x

x2+y2
;

@
@y

�
1
2
log (x2 + y2)

�
= y

x2+y2
;

8 (x; y) 2 R2n f(0; 0)g ;

we know that the equation is exact on R2n f(0; 0)g : Its general solution is given by

1

2
log
�
x2 + y2

�
= C

for arbitrary constant C 2 (�1;1) ; which is same as

x2 + y2 = K; K = e2C > 0: (150)

Therefore
y (x) = �

p
K � x2; x 2 (�K;K) ; K > 0

is the general solution of the equation (149). Note that equation (150) describes a family of circles
�lling the domain R2n f(0; 0)g : �

Remark 2.73 (Simple observation.) In fact, on R2n f(0; 0)g the equation x
x2+y2

+ y
x2+y2

y0 = 0 is
equivalent to

x+ yy0 = 0 (same as
d

dx

�
x2

2
+
y2

2

�
= 0).

Therefore, we get the identity (150).

Example 2.74 (My = Nx on non-simply-connected domain R2n f(0; 0)g ; but the equation
is not exact on R2n f(0; 0)g :) Show that the equation

� y

x2 + y2
+

x

x2 + y2
y0 = 0 (151)

is not exact on R2n f(0; 0)g : Show that it is exact on R2n f(x; 0) : x � 0g or on R2+ = f(x; y) 2 R2 : x > 0g :
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Remark 2.75 In topology, the two domains R2n f(x; 0) : x � 0g and R2+ = f(x; y) 2 R2 : x > 0g
are simply connected, and the equation is exact on such domains if and only if we have My = Nx
on them. In this example, one can �nd explicit  (x; y) (angle function) on such domains.

Remark 2.76 (Important.) In vector analysis, the above says that the vector �eld

V (x; y) =

�
� y

x2 + y2
;

x

x2 + y2

�
; (x; y) 2 R2n f(0; 0)g

is not a gradient vector �eld (not a conservative vector �eld) on R2n f(0; 0)g even if it
is divergence-free (i.e. My = Nx on R2n f(0; 0)g). However, it is a gradient vector �eld on
R2n f(x; 0) : x � 0g and on R2+ = f(x; y) 2 R2 : x > 0g :

Solution:

The equation is de�ned on R2n f(0; 0)g and it does satisfy the necessary condition:

My = Nx =
y2 � x2

(x2 + y2)2
; 8 (x; y) 2 R2n f(0; 0)g :

Same as the previous example, since the domain R2n f(0; 0)g is not a "rectangle" domain (nor
a "simply-connected" domain), it is not clear if the equation is exact on R2n f(0; 0)g or not.
Now we claim that the equation is not exact on R2n f(0; 0)g (however, it is exact on some
smaller domains). To see this, assume it is exact on R2n f(0; 0)g and we have a C2 function
 (x; y) de�ned on R2n f(0; 0)g satisfying the requirement. We restrict  (x; y) to the unit circle
(cos �; sin �) ; � 2 [0; 2�] ; and compute

d

d�
 (cos �; sin �)

=  x (cos �; sin �) (� sin �) +  y (cos �; sin �) (cos �)

=M (cos �; sin �) (� sin �) +N (cos �; sin �) (cos �)

=
� sin �

cos2 � + sin2 �
(� sin �) + cos �

cos2 � + sin2 �
(cos �) = 1; 8 � 2 [0; 2�] ;

which implies that

0 =  (cos 2�; sin 2�)�  (cos 0; sin 0) = 2� � 0 = 2�:

We get a contradiction. Therefore, equation (151) is not exact on R2n f(0; 0)g :
On the domain R2n f(x; 0) : x � 0g ; the function � (x; y) is di¤erentiable with

�x (x; y) =M (x; y) ; �x (x; y) = N (x; y) :

Hence equation (151) is exact onR2n f(x; 0) : x � 0g : The general solution on the domainR2n f(x; 0) : x � 0g
is given by

� = �0; �0 2 (0; 2�) ;
which gives the family of lines:

y = Cx; C 2 (�1;1) ; (x; y) 2 R2n f(x; 0) : x � 0g :

Similarly, on the domain R2+ = f(x; y) 2 R2 : x > 0g ; the function tan�1 (y=x) 2 (��=2; �=2) is
di¤erentiable with

@

@x
tan�1

y

x
=

�y
x2 + y2

;
@

@y
tan�1

y

x
=

x

x2 + y2
; 8 (x; y) 2 R2+:

Hence equation (151) is exact on R2+: �
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Remark 2.77 (Important.) Although the equation �y
x2+y2

+ x
x2+y2

y0 = 0 is not exact on R2n f(0; 0)g ;
it is exact on many smaller domains D � R2n f(0; 0)g. Therefore, if we restrict the equation to
such D and if y (x) ; x 2 (a; b) ; is a solution of the ODE with (x; y (x)) 2 D for all x 2 (a; b) ;
then we can still use Theorem 2.61 to solve it. In view of this, if y (x) ; x 2 (a; b) ; is a solution
of the ODE lying on R2n f(x; 0) : x � 0g or on f(x; y) 2 R2 : x > 0g ; then it lies on the ray � =
�0; �0 2 (0; 2�) ; or � = �0; �0 2 (��=2; �=2) :

Remark 2.78 (Important.) In fact, on R2n f(0; 0)g the equation �y
x2+y2

+ x
x2+y2

y0 = 0 is equivalent
to

�y + xy0 = 0: (152)

The general solution of (152) is given by y (x) = Cx for any constant C 2 (�1;1) ; de�ned on
x 2 (�1;1) : The original equation has general solution given by y (x) = Cx for any constant
C 2 (�1;1) ; de�ned on x 2 (�1;1) n f0g : Along each solution, the angle function � (x; y) is a
constant.

3 Chapter 3: Second order linear equations.

3.1 General second order equations.

A general second order ODE for y (t) is an equation of the form

y00 =
d2y

dt2
= f (t; y (t) ; y0 (t)) (153)

for some function f (t; y; z) of three variables de�ned on some domain D � R3.
If there are no initial conditions in (153), there will be two integration constants in its general

solution formula. To determine a unique solution of (153) we need initial conditions of the form:

y (t0) = y0; y0 (t0) = z0; (154)

where the point (t0; y0; z0) 2 D: If f (t; y; z) 2 C1 (D) ; then (153) together with (154) have
existence and uniqueness property (keep this in mind). We will not prove this in class.
This is because f (t; y; z) is continuous on D and satis�es certain Lipschitz continuous condition on
D:
There are some interesting special cases so that (153) can be converted into a �rst order

ODE.

3.2 Second order equations in special forms.

Case 1: y00 (t) = f (t; y0 (t)) (missing y (t)).

In this case, let w (t) = y0 (t) : Then it becomes a �rst order equation

dw

dt
= f (t; w) :

If w (t) can be solved (say separable, homogeneous, linear, Bernoulli, exact, etc.), then y (t) is given
by

y (t) =

Z
w (t) dt:

If there is an initial condition y (t0) = y0; y
0 (t0) = z0; then y (t) is given by

y (t) = y0 +

Z t

t0

w (s) ds; where w (t0) = z0; w0 (t) = f (t; w) :
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Example 3.1 Solve the equation
y00 (t) = ty0 (t) :

Solution:

Let w (t) = y0 (t) : Then w0 (t) = tw (t) ; which gives w (t) = Ket
2=2; K 2 (�1;1) : Hence we

need to solve y0 (t) = Ket
2=2 and get the general solution

y (t) = K

Z
e
t2

2 dt+ C

for arbitrary constants K and C: �

Case 2: y00 (t) = f (y (t) ; y0 (t)) (missing t).

Again let w (t) = y0 (t) : Then it becomes

dw

dt
= f (y; w) ;

which is not self-contained because its right hand side is not of the form f (t; w). However, a trick
is to express w (t) as a function of y (assume this is possible, i.e., during the period when time
t and the position y are convertible; in fact, as long as w (t) = y0 (t) is not zero, then the
conversion is possible). Then by the chain rule we have

dw

dt
(view w as a func. of t) =

dw

dy

dy

dt
= w

dw

dy
(view w as a func. of y)

and so the equation becomes

w
dw

dy
= f (y; w) ; w = w (y) (155)

which is a �rst order equation for w (y) : If w (y) can be solved, then we can solve the separable
equation

dy

dt
= w (y) (156)

to get y (t) :

Remark 3.2 For example, let y (t) = t3; t > 0: Since y (t) is a strictly increasing function of
t 2 (0;1) ; y and t are convertible with t = y1=3; y > 0: Now if w = y0 (t) = 3t2 (it is not zero as
long as t > 0), then

dw

dt
= 6t = 6y1=3:

On the other hand, one can express w as a function of y; given by w = 3t2 = 3y2=3: Now

w
dw

dy
= 3y2=3 � 32

3
y�1=3 = 6y1=3 =

dw

dt
:

Thus we do have the identity dw=dt = w � dw=dy: Now the ODE for w (y) is w dw
dy
= 6y1=3 and we

can solve it to get
1

2
w2 =

9

2
y4=3 + C

and if we choose C = 0 and take the plus sign in square root, we get w = 3y2=3 = 3t2:

Example 3.3 Solve the equation
y00 (t) = y (t) y0 (t) : (157)

41



Solution:

Let w = y0 to get w0 (t) = y (t)w (t) and use the identity w0 (t) = w (y)w0 (y) to convert it into
an ODE of y; given by

w (y)w0 (y) = yw (y) :

Hencew (y) � 0 is an equilibrium solution, which gives y (t) � C for any constantC 2 (�1;1) : Forw 6=
0; we have w0 (y) = y and so w (y) = y2=2 +K: Then solve

y0 (t) = w (y) =
y2

2
+K (same as 2y0 (t) = y2 +K; K 2 (�1;1) is a const.) (158)

to get Z
dy

y2 +K
=
1

2

Z
dt: (159)

Remark 3.4 We can also write equation (157) as

d

dt
y0 (t) =

d

dt

�
y2

2

�
and get (158).

Case (1): K > 0:

For K > 0; we can write it as K = �2; � =
p
K > 0; and obtain 2y0 (t) = y2 + �2: ByZ

dy

y2 + �2
=
1

�
tan�1

�y
�

�
; � =

p
K > 0;

we conclude
1p
K
tan�1

�
yp
K

�
=
1

2
(t+ C) ; C 2 R;

which gives the solution

y (t) =
p
K tan

"p
K

2
(t+ C)

#
; K > 0; t 2

�
�C � �p

K
;�C + �p

K

�
: (160)

Case (2): K = 0:

For K = 0; we have y0 = y2=2; and so

y (t) =
�2
t+ C

; C 2 R; t 2 (�1;1) n f�Cg : (161)

Note that we also have an equilibrium solution y � 0; which has been included before.
Case (3): K < 0:

For K < 0; we can write it as K = ��2; � =
p
�K > 0; and obtain 2y0 (t) = y2 � �2: It has

two equilibrium solutions y � � and y � �� (they are included already). ByZ
dy

y2 � �2
=
1

2�

Z �
1

y � �
� 1

y + �

�
=
1

2�
log

����y � �

y + �

���� ;
we get

1

2�
log

����y � �

y + �

���� = 1

2

Z
dt =

1

2
(t+ C) ; y 6= �; y 6= ��: (162)
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To go on, recall that in calculus there are the identities:8>>><>>>:
tanh�1 x =

1

2
log

�
1 + x

1� x

�
; x 2 (�1; 1) ;

d

dx

�
tanh�1 x

�
=

1

1� x2
; x 2 (�1; 1) :

(163)

Therefore, if y lies in the integral (��; �) ; (162) gives

1

2�
log

����y � �

y + �

���� = � 1

2�
log

�
1 + y

�

1� y
�

�
= �1

�
tanh�1

�y
�

�
=
1

2
(t+ C) ; y 2 (��; �)

and we get the solution

y (t) = � tanh

�
��
2
(t+ C)

�
; t 2 (�1;1) ; y (t) 2 (��; �) : (164)

If y 2 (�1;��)
S
(�;1) ; � > 0; we must have (y � �) = (y + �) > 0 and (162) gives

1

�
log

�
y � �

y + �

�
= t+ C; C 2 R; y 2 (�1;��)

[
(�;1)

and then
y � �

y + �
= ~Ce�t; ~C = e�C > 0

and we conclude

y (t) = �

 
1 + ~Ce�t

1� ~Ce�t

!
; t 2 (�1;1) n

n
��1 log

�
1= ~C

�o
; y (t) 2 (�1;��)

[
(�;1) : (165)

The proof is done. �

Remark 3.5 (Useful observation ...) In the above four solutions (160), (161), (164), (165),
we have w (t) = y0 (t) either positive everywhere or negative everywhere on its domain interval I.
Therefore, y (t) is a one-one function of t 2 I and so one can express t in terms of y: This is
consistent with our method which assumes that time t and y are convertible. However, the
equilibrium solution w (y) � 0 (same as y (t) � C 2 (�1;1)) is an exception (the only exception).

Case 3: y00 (t) = f (y (t)) (missing t and y0 (t)).

Strictly speaking, this case is a special case of Case 2. However, it deserves more attention and
now we can solve (155). We have

w
dw

dy
= f (y) ; w = w (y) ;

which gives
w2

2
=

Z
f (y) dy = g (y) + C1; C1 2 R (166)

and then we can get (on the interval of y where g (y) + C1 > 0)

w (y) = �
p
2g (y) + 2C1:

Finally we solve

w =
dy

dt
= �

p
2g (y) + 2C1;
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which is a separable equation for y (t), and then

�
Z

dyp
2g (y) + 2C1

= t+ C2:

The constants C1; C2 are determined by the initial conditions.

Remark 3.6 (Important.) (Another equivalent method for Case 3.) If we multiply the
equation y00 (t) = f (y (t)) by y0 (t) ; then we can solve it. We will obtain

y0 (t) y00 (t) = f (y (t)) y0 (t)

and then
d

dt

 
(y0 (t))2

2

!
=

d

dt
g (y (t)) ; where g (y) =

Z
f (y) dy:

This gives
(y0 (t))2

2
= g (y (t)) + C1; (167)

which is same as (166). This method is same as the method above. One can rewrite (167) as

(y0 (t))2

2
� g (y (t)) = C1: (168)

In particle physics (classical mechanics), if y (t) describes the position of a particle (which satis�es
an equation of motion of the form y00 (t) = f (y (t))), the quantity (y0 (t))2 =2 is called kinetic energy
and the quantity �g (y (t)) is called potential energy. (168) says that there is a conservation
law of the total energy. The constant C1 can be determined from the initial position and the
initial velocity.

We conclude the following:

Lemma 3.7 For the general second order equation

y00 (t) = f (t; y (t) ; y0 (t)) ;

if we are in one of the following special cases

y00 = f (t; y0) ; y00 = f (y; y0) ; y00 = f (y) ;

then we can convert it into �rst order equations.

Remark 3.8 (Important.) If equation is of the form y00 (t) = f (t; y (t)) (missing y0 (t)), then in
general we cannot reduce it to a �rst order ODE. For example, the equation

y00 (t) = t+ y (t)

cannot be reduced to a �rst order ODE (convince yourself of this !!).

Example 3.9 Solve the equation
y00 (t) = y2 (t) :
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Solution:

Multiply it by y0 (t) and integrate to get

(y0 (t))2

2
=
y3

3
+ C1

and then
(y0 (t))

2
=
2

3
y3 + 2C1 > 0

and so

�
Z

dyq
2
3
y3 + 2C1

= t+ C2:

The solution y (t) is de�ned implicitly by the above identity. �

Example 3.10 Solve the equation
y00 (t) + y (t) = 0: (169)

Remark 3.11 We will see in Section 3.3 that the general solution of the above ODE is

y (t) = A sin t+B cos t; t 2 (�1;1) ; (170)

for arbitrary constants A; B:

Solution:

Multiply it by y0 (t) to get

y0 (t) y00 (t) + y (t) y0 (t) =
1

2

d

dt

�
(y0 (t))

2
+ y2 (t)

�
= 0;

which gives
(y0 (t))

2
+ y2 (t) = C; C � 0 is a constant.

If C = 0; we get the equilibrium solution y (t) � 0: For C > 0; we can write C = �2 (� > 0) and
the value of y (t) must lie in the interval (��; �) and we conclude

dy

dt
= �

p
�2 � y2; y 2 (��; �) ; � > 0: (171)

If we choose the plus sign, we get the identityZ
dyp
�2 � y2

= sin�1
�y
�

�
= t+K; y 2 (��; �) ; (172)

where K 2 (�1;1) is an arbitrary constant. Since the value of the function sin�1 x; x 2 (�1; 1) ;
lies in the interval (��=2; �=2) ; in the above identity, we need to require t + K 2 (��=2; �=2) :
Hence, at this moment, we conclude

y (t) = � sin (t+K) ; t 2
�
��
2
�K;

�

2
�K

�
: (173)

We note that on the interval (��=2�K; �=2�K) ; the function y (t) has positive derivative
(increasing), which matches with the equation dy=dt =

p
�2 � y2 (we choose plus sign here).

If we choose the minus sign, we get the identity

�
Z

dyp
�2 � y2

= � sin�1
�y
�

�
= t+K; y 2 (��; �) ; � > 0; (174)
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where K 2 (�1;1) is an arbitrary constant and again we require t +K 2 (��=2; �=2) (we still
have � sin�1 x; x 2 (�1; 1) ; lies in the interval (��=2; �=2)). Now we conclude

y (t) = � sin (� (t+K)) = �� sin (t+K) ; t 2
�
��
2
�K;

�

2
�K

�
: (175)

We note that on the interval (��=2�K;�=2�K) ; the function y (t) has negative derivative
(decreasing), which matches with the equation dy=dt = �

p
�2 � y2 (we chooseminus sign here).

Since the two constants � and K in the above can be arbitrary, one can use them to generate
all solutions of the form (note that, although the value y = � is not allowed in the integral (172),
it is actually allowed in the original equation (171)):

y (t) = A sin t+B cos t; t 2 (�1;1) ; (176)

where A; B are arbitrary constants. We leave the details to you (not di¢ cult at all). �

Example 3.12 Solve the equation
y00 (t) = y (t) : (177)

Remark 3.13 We will see in Section 3.3 that the general solution of the above ODE is

y (t) = Aet +Be�t; t 2 (�1;1) ; (178)

for arbitrary constants A; B:

Solution:

Multiply it by y0 (t) to get

y0 (t) y00 (t)� y (t) y0 (t) =
1

2

d

dt

�
(y0 (t))

2 � y2 (t)
�
= 0;

which gives
(y0 (t))

2
= y2 (t) + C; C 2 (�1;1) is a constant

for all time in the domain of y (t) : If C = 0; we get

either y0 (t) = y (t) or y0 (t) = �y (t)

for all time in the domain of y (t) :We get either y (t) = C1e
t or y (t) = C1e

�t for arbitrary constant
C1:
If C > 0; we write C = �2; � > 0; and get

y0 (t) = �
p
y2 (t) + �2;

Z
dyp
y2 + �2

= log
�
y +

p
y2 + �2

�
= �

Z
dt

(we always have y +
p
y2 + �2 > 0; so no need to add absolute value sign) and conclude

log
�
y +

p
y2 + �2

�
= �t+ ~C; y +

p
y2 + �2 = Ke�t; K = e

~C > 0

and then
y2 + �2 =

�
Ke�t � y

�2
= y2 � 2Ke�ty +

�
Ke�t

�2
;

which gives

y =
(Ke�t)

2 � �2

2Ke�t
=
Ke�t

2
� �2

2Ke�t
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We arrive at

y =
K

2
et � �2

2K
e�t or y = � �2

2K
et +

K

2
e�t; K > 0; � > 0 (179)

for arbitrary K > 0 and � > 0:
Finally, for C < 0; we write C = ��2; � > 0; and get

y0 (t) = �
p
y2 (t)� �2;

Z
dyp
y2 � �2

= log
���y +py2 � �2

��� = �Z dt (180)

(note that it is possible to have y +
p
y2 � �2 < 0; so here we need to add absolute value sign in

(180)) and conclude

log
���y +py2 � �2

��� = �t+ ~C;
���y +py2 � �2

��� = Ke�t; K = e
~C > 0

and then
y +

p
y2 � �2 = ~Ke�t; ~K = �K 6= 0

and
y2 � �2 =

�
~Ke�t � y

�2
= y2 � 2 ~Ke�ty +

�
~Ke�t

�2
; ~K 6= 0

which gives

y =

�
~Ke�t

�2
+ �2

2 ~Ke�t
=
~Ke�t

2
+

�2

2 ~Ke�t
:

We arrive at

y =
~K

2
et +

�2

2 ~K
e�t or y =

~K

2
e�t +

�2

2 ~K
et; ~K 6= 0; � > 0 (181)

for arbitrary ~K 6= 0 and � > 0:
By (179) and (181), we obtain the general solution

y (t) = Aet +Be�t; t 2 (�1;1) ; (182)

for arbitrary constants A; B: �

3.3 Second order homogeneous linear equations with constant coe¢ -
cients (this is Section 3.1 of the book; see p. 137).

We say equation y00 = f (t; y (t) ; y0 (t)) is a linear second order ODE if f (t; y; y0) is linear in
y and y0 (but not linear in t), i.e., if

f (t; y; y0) = a (t) + b (t) y + c (t) y0

for some functions a (t) ; b (t) ; c (t) : In conclusion, a linear second order ODE can be written in
the standard form as

y00 (t) + p (t) y0 (t) + q (t) y (t) = g (t) ; t 2 I (183)

where p (t) ; q (t) and g (t) are given continuous functions (this is minimal requirement) de�ned
on some common interval I:
We say equation (183) is homogeneous if g (t) � 0 everywhere, i.e., we have

y00 (t) + p (t) y0 (t) + q (t) y (t) = 0; t 2 I: (184)

Otherwise we say equation (183) is nonhomogeneous.
Sometimes we consider a linear second order ODE of the more general form

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = G (t) ; t 2 I (185)

where P (t) ; Q (t) ; R (t) ; G (t) are continuous on I; with P (t) 6= 0 on I:
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Theorem 3.14 Consider equation (185), where P (t) ; Q (t) ; R (t) ; G (t) are continuous on I; with
P (t) 6= 0 on I: We have the following properties:

1. Any solution y (t) to equation (185) is de�ned on I:

2. We have existence and uniqueness result for equation (185) with the initial condition

y (t0) = y0; y0 (t0) = z0;

where t0 2 I and y0; z0 are two given arbitrary numbers.

Proof. We will prove the theorem later on. �

Remark 3.15 (Important.) In the above theorem, the condition P (t) 6= 0 on I is essential. If
P (t0) = 0 for some t0 2 I; then a solution y (t) to equation (185) may or may not be de�ned on
the whole interval I: For example, the general solution of the Euler equation

t2y00 (t) + ty0 (t) + y (t) = 0; t 2 (�1;1)

is
y (t) = C1 cos (log jtj) + C2 sin (log jtj) ; t 2 (�1; 0)

[
(0;1) ;

which cannot be de�ned across t = 0: On the other hand, the general solution of the equation

(t� 1) y00 (t)� ty0 (t) + y (t) = 0; t 2 (�1;1) ;

is
y (t) = C1t+ C2e

t; t 2 (�1;1) ;
which can be de�ned across t = 1:

Another two important properties are:

Lemma 3.16 Consider the homogeneous linear equation (it means that the right hand side of
the equation is zero)

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = 0; t 2 I; (186)

where P (t) 6= 0 on I: If y1 (t) and y2 (t) are both solutions to (186) on I; so is the linear combi-
nation c1y1 (t) + c2y2 (t) for any constants c1 and c2:

Remark 3.17 Hence the solution space has a vector space structure.

Proof. This is a simple exercise. �

Lemma 3.18 Consider the nonhomogeneous linear equation (it means that the right hand side
of the equation is nonzero)

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = G (t) ; t 2 I; (187)

where P (t) 6= 0 on I. If y1 (t) and y2 (t) are both solutions to (187) on I; then y2 (t) can be expressed
as

y2 (t) = y (t) + y1 (t) ; t 2 I;
for some function y (t) ; which is a solution of the homogeneous equation (186) on I: Therefore,
the general solution yg (t) of (186) on I is given by

yg (t) = yh (t) + yp (t) ; t 2 I; (188)

where yp (t) is some particular solution of (187) on I (yp (t) has no integration constant) and
yh (t) is the general solution of the homogeneous equation (186) on I (yh (t) has two integration
constants).
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Proof. Just let y (t) = y2 (t)� y1 (t) and see that y (t) is a solution of the homogeneous equation.
�

We shall discuss the existence and uniqueness of a solution to a general second order ODE (185)
later on. For now, we want to look at some special cases �rst.
Solving a linear equation of the form (185) can be very di¢ cult. Hence we �rst focus on the

homogeneous case with constant coe¢ cients. That is, equation of the form

ay00 (t) + by0 (t) + cy (t) = 0 (189)

where a; b; c are real constants, a 6= 0. By Theorem 3.14, we know that any solution y (t) of (189)
is de�ned on (�1;1) :
The following observation is useful: if we try y (t) = ert in (189), we will get

ay00 (t) + by0 (t) + cy (t) =
�
ar2 + br + c

�
ert:

In particular, if the number r satis�es ar2 + br + c = 0; then y (t) = ert will be a solution of (189).
In most cases, the equation ar2+ br+ c = 0 has two distinct roots r1; r2: By this, we can obtain

the following result:

Theorem 3.19 Assume that the equation (call it characteristic equation of the di¤erential equa-
tion)

ar2 + br + c = 0; a 6= 0; a; b; c 2 R (190)

has two distinct real roots r1; r2: Then the general solution y (t) to equation (189) is given by

y (t) = c1e
r1t + c2e

r2t; t 2 (�1;1) ; r1 6= r2 (191)

for arbitrary constants c1; c2:

Proof. It is easy to check that (191) is a solution to (189) de�ned on t 2 (�1;1) : On the other
hand, we need to show that any solution y (t) of (189) is de�ned on (�1;1) and has the form
(191) for some constants c1; c2: The idea is to that we can decompose the second order equation
(189) into two �rst order equations if the characteristic equation has two distinct real roots
r1; r2:
For convenience of notation, we let D denote the di¤erential operator d=dt:We can write y0 (t) as

Dy (t) and write y00 (t) as D (Dy (t)) or D2y (t) : By analogy, we can write

3y0 (t)� 5y (t) = 3Dy (t)� 5y (t) = (3D � 5) y (t)
3y0 (t)� 6y (t) = 3Dy (t)� 6y (t) = (3D � 6) y (t) = 3 (Dy (t)� 2y (t)) = 3 (D � 2) y (t)

3y00 (t) + 4y0 (t) + 5y (t) =
�
3D2 + 4D + 5

�
y (t) ; ::: etc.

Now we can write (189) as

ay00 (t) + by0 (t) + cy (t) =
�
aD2 + bD + c

�
y (t) = 0:

We �rst claim the following:

Lemma 3.20 (Decomposing second order ODE into two �rst order ODE.) Let a; b; c be
real constants with a 6= 0. If r1; r2 are two roots (real (repeated or not) or complex) of the
polynomial aD2 + bD + c = 0; then we have�

aD2 + bD + c
�
y (t) = a (D � r1)w (t) ; (192)

where
w (t) = (D � r2) y (t) : (193)
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Proof. We have

a (D � r1)w (t) = a (D � r1) [(D � r2) y (t)] = a (D � r1) (y
0 (t)� r2y (t))| {z }

= a

�
D (y0 (t)� r2y (t))| {z }�r1 (y0 (t)� r2y (t))| {z }

�
= a [y00 (t)� r2y

0 (t)� r1y
0 (t) + r1r2y (t)]

= a [y00 (t)� (r1 + r2) y
0 (t) + r1r2y (t)] = ay00 (t) + by0 (t) + cy (t) ;

where we have used the identity r1 + r2 = �b=a; r1r2 = c=a: �

Come back to the proof of Theorem 3.19:

If r1 6= r2 are two real roots of ar2 + br + c = 0; then we have

0 = ay00 (t) + by0 (t) + cy (t) = a (D � r1)w (t) ; where w (t) = (D � r2) y (t) :

Hence w (t) satis�es the �rst order equation a (D � r1)w (t) = 0 and its general solution is given
by w (t) = �er1t; � 2 R: But since w (t) = (D � r2) y (t) ; we need to solve y (t) satisfying

(D � r2) y (t) = �er1t (same as y0 (t)� r2y (t) = �er1t).

The general solution for y (t) is

y (t) = e
R
r2dt

�Z �
e
R
�r2dt�er1t

�
dt+ C

�
= er2t

�
�

Z
e(r1�r2)tdt+ C

�
= er2t

�
�

r1 � r2
e(r1�r2)t + C

�
= c1e

r1t + c2e
r2t; t 2 (�1;1)

for some constants c1; c2: Hence we see that any solution y (t) to equation (189) is given by (191).
The proof is done. �

Remark 3.21 In case there are initial conditions for ODE (189), given by

y (t0) = y0; y0 (t0) = z0;

then one can always solve for c1 and c2 to ful�ll them. We need to solve the system(
c1e

r1t0 + c2e
r2t0 = y0

c1r1e
r1t0 + c2r2e

r2t0 = z0:

Since the coe¢ cients determinant is nonzero, given by����� e
r1t0 er2t0

r1e
r1t0 r2e

r2t0

����� = (r2 � r1) e
(r1+r2)t0 6= 0; r1 6= r2;

we can solve for c1 and c2 uniquely.

Similarly, we have:

Theorem 3.22 Assume that the characteristic equation

ar2 + br + c = 0; a 6= 0; a; b; c 2 R (194)

has two repeated real roots r1 = r2 (call it r). Then any solution y (t) to equation (189) is given by

y (t) = c1e
rt + c2te

rt; t 2 (�1;1) (195)

for some constants c1; c2:
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Proof. It is easy to check that any function of the form (195) is a solution of equation (189) (you
need to use the fact that 2ar + b = 0; i.e. r = �b=2a). On the other hand, if y (t) satis�es (189),
then by

0 = ay00 (t) + by0 (t) + cy (t) = a (D � r)w (t) ; where w (t) = (D � r) y (t) ;

we see that w (t) must have the form w (t) = �ert; � 2 R: Hence y (t) must satisfy

(D � r) y (t) = �ert:

This implies

y (t) = e
R
rdt

�Z �
e
R
�rdt�ert

�
dt+ C

�
= ert (�t+ C) = c1e

rt + c2te
rt; t 2 (�1;1)

for some constants c1; c2: The proof is done. �

Remark 3.23 In case there are initial conditions given by

y (t0) = y0; y0 (t0) = z0;

then one can always solve for c1 and c2 to ful�ll them. We need to solve the system(
c1e

rt0 + c2t0e
rt0 = y0

c1re
rt0 + c2 (1 + rt0) e

rt0 = z0:

Since the coe¢ cients determinant is nonzero, given by����� e
rt0 t0e

rt0

rert0 (1 + rt0) e
rt0

����� = e2rt0 6= 0 for any t0;

we can solve for c1 and c2 uniquely.

The last case is the following:

Theorem 3.24 Assume that the characteristic equation

ar2 + br + c = 0; a 6= 0; a; b; c 2 R (196)

has two complex roots r = � + i�; �r = � � i�; �; � 2 R; � > 0: Then any (real) solution y (t) to
equation (189) is given by

y (t) = c1e
�t cos �t+ c2e

�t sin �t; t 2 (�1;1) (197)

for some (real) constants c1; c2:

Exercise 3.25 By direct computation, verify that y (t) given by (197) is a real solution of the
equation ay00 (t) + by0 (t) + cy (t) = 0 de�ned on (�1;1).

To prove the above theorem we need to introduce complex exponential functions, de�ned
by

e(�+i�)t = e�t (cos �t+ i sin �t) ; �; � 2 R; t 2 (�1;1) : (198)

In particular, when � = 0; it coincides with our usual real exponential function.
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Remark 3.26 Another motivation for the de�nition (198) is that we �rst de�ne (use Taylor series
expansion to see this)

ei� = 1 +
(i�)

1!
+
(i�)2

2!
+
(i�)3

3!
+ � � � = cos � + i sin �; i2 = �1

and then use exponential law to de�ne e(�+i�)t as e(�+i�)t = e�tei�t: This gives the formula (198).

For complex exponential functions they satisfy the following exponential law and di¤erentiation
formula (same as the real exponential function):

� e(�+i�)t � e(
+i�)t = e[(�+i�)+(
+i�)]t; 8 �; �; 
; � 2 R:

� We have
d

dt
e(�+i�)t (this means we di¤erentiate real part and imaginary part respectively)

= (�+ i�) e(�+i�)t; 8 �; � 2 R:

Hence if r 2 C is a complex number and y (t) = ert; we still have

ay00 (t) + by0 (t) + cy (t) =
�
ar2 + br + c

�
ert; a; b; c 2 R: (199)

If r = � + i� is a complex root to the equation ar2 + br + c = 0; then the complex function
y (t) = ert = e(�+i�)t is a complex solution to (189). Conversely if y (t) = e(�+i�)t is a complex
solution to (189), then r = �+ i� is a complex root to the equation ar2 + br + c = 0:
We note the following useful facts. They are all easy to verify by yourself.

1. If y (t) = R (t) + iI (t) is a complex function, then y0 (t) means di¤erentiation with respect to
its real part and imaginary part respectively. If y (t) = R (t) + iI (t) is a complex solution to
(189), then its real part R (t) and imaginary part I (t) are both real solutions to (189).

2. Since a; b; c are real numbers, if a complex function y (t) = e(�+i�)t; �; � 2 R; � > 0; is a
solution to (189), so is its conjugate function �y (t) = e(��i�)t (this is because �� i� is also a
root if �+ i� is).

3. If y1 (t) and y2 (t) are two complex solutions to (189), so is their complex linear combination

y (t) = c1y1 (t) + c2y2 (t) ; c1; c2 2 C:

4. The general complex solution to the ODE

y0 (t)� (�+ i�) y (y) = 0

is given by y (y) = �e(�+i�)t; � 2 C (one can multiply the equation by integration factor to
see this). Also the general complex solution to the ODE

y0 (t)� (�� i�) y (y) = �e(�+i�)t

is given by y (y) = C1e
(�+i�)t + C2e

(��i�)t; C1; C2 2 C:

5. If ar2 + br + c = 0 has roots r = �+ i� and �r = �� i�; �; � 2 R; � > 0; we have

0 = ay00 (t) + by0 (t) + cy (t) = a (D � r)w (t) ; where w (t) = (D � �r) y (t) ; r = �+ i�;

for any complex function y (t) :
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6. By the above, we see that the general complex solution to (189) is given by

y (t) = C1e
(�+i�)t + C2e

(��i�)t; C1; C2 2 C:

If we let C1 = a+ ib; C2 = c+ id; we would have

(a+ ib) e(�+i�)t + (c+ id) e(��i�)t

= (a+ ib) e�t (cos �t+ i sin �t) + (c+ id) e�t (cos �t� i sin �t)

=
�
Ae�t cos �t+Be�t sin �t

�
+ i
�
Ce�t cos �t+De�t sin �t

�
for some real numbers A; B; C; D depending on a; b; c; d: Hence the general complex
solution to the ODE (189) is given by

y (t) =
�
Ae�t cos �t+Be�t sin �t

�
+ i
�
Ce�t cos �t+De�t sin �t

�
(200)

where A; B; C; D are arbitrary real constants. In particular, the general real solution to
the ODE is given by (choose C = D = 0)

y (t) = Ae�t cos �t+Be�t sin �t (201)

for some real constants A; B:

By the above facts, Theorem 3.24 is proved. �

Remark 3.27 Again in case there is initial conditions for ODE (189), given by

y (t0) = y0; y0 (t0) = z0

then one can always solve for c1 and c2 to ful�ll them. We need to solve(
c1e

�t0 cos �t0 + c2e
�t0 sin �t0 = y0

c1 (�e
�t0 cos �t0 � �e�t0 sin �t0) + c2 (�e

�t0 sin �t0 + �e�t0 cos �t0) = y00

and the coe¢ cients determinant is nonzero, given by����� e
�t0 cos �t0 e�t0 sin �t0

�e�t0 cos �t0 � �e�t0 sin �t0 �e�t0 sin �t0 + �e�t0 cos �t0

����� = �e2�t0 6= 0 for any t0;

due to � > 0:

At this moment, we can summarize the following:

Theorem 3.28 The ODE (
ay00 (t) + by0 (t) + cy (t) = 0

y (t0) = y0; y0 (t0) = z0
(202)

where a; b; c are real constants, a 6= 0, has a unique real solution y (t) de�ned on (�1;1) :Moreover,
we know how to �nd the solution explicitly.
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3.4 Theory of second order linear homogeneous equation with variable
coe¢ cients; the Wronskian (this is Section 3.2 of the book).

In this section we look at a second order linear homogeneous equation with variable coe¢ cients
of the form

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = 0; t 2 I (203)

where P (t) ; Q (t) ; R (t) are real-valued continuous functions on I; with P (t) 6= 0 on I: For
convenience, we can divide the equation by P (t) and it becomes

y00 (t) + p (t) y0 (t) + q (t) y (t) = 0; t 2 I; (204)

where p (t) ; q (t) are continuous on I: By Theorem 3.14, we know that if we have initial conditions
y (t0) = y0; y

0 (t0) = z0; for equation (204), where t0 2 I and y0; z0 are two given numbers, then
the solution y (t) exists, unique, and is de�ned on the whole interval I:
Unlike the case of constant coe¢ cients, it is, in general, very di¢ cult to solve equation (204).

However, we can ask the following interesting question: if y1 (t) and y2 (t) are two known solutions
of (204) on I; is it true that any other solution y (t) of (204) can be expressed as

y (t) = c1y1 (t) + c2y2 (t) ; 8 t 2 I; (205)

for some constants c1 and c2? If yes, then the general solution of (204) on I is given by (205).
To answer the above question, we need the concept of Wronskian, de�ned by the following:

De�nition 3.29 Consider the ODE (homogeneous)

y00 + p (t) y0 + q (t) y = 0 (206)

where p (t) ; q (t) are continuous functions de�ned on open interval I: If y1 (t) and y2 (t) are two
solutions on I; then the function

W (y1; y2) (t) :=

���� y1 (t) y2 (t)
y01 (t) y02 (t)

���� = y1 (t) y
0
2 (t)� y2 (t) y

0
1 (t) ; t 2 I;

is called the Wronskian of y1 (t) and y2 (t) on I:

Remark 3.30 In the above de�nition, the coe¢ cient of y00 (t) is 1: From now on, when we talk
about the Wronskian W (y1; y2) (t) of two functions y1 (t) and y2 (t) on I; we always assume that
y1 (t) and y2 (t) are two solutions of the ODE (206) on I.

The following theorem implies that the Wronskian W (y1; y2) (t) of two solutions on I is either
everywhere zero or everywhere nonzero on I: More precisely, we have:

Theorem 3.31 (Abel.) (This is Theorem 3.2.7 in p. 154.) Consider the ODE (homogeneous)

y00 + p (t) y0 + q (t) y = 0; t 2 I (207)

where p (t) ; q (t) are continuous functions de�ned on open interval I: If y1 (t) and y2 (t) are two
solutions on I; then we have

W (y1; y2) (t) = ce�
R
p(t)dt; t 2 I (208)

for some constant c:

Remark 3.32 Note that the ODE in the above theorem has coe¢ cient 1:
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Proof. For convenience, denote W (y1; y2) (t) as W (t) : Compute

W 0 (t) = y1 (t) y
00
2 (t)� y2 (t) y

00
1 (t)

= y1 (t) [�p (t) y02 (t)� q (t) y2 (t)]� y2 (t) [�p (t) y01 (t)� q (t) y1 (t)]

= �p (t) [y1 (t) y02 (t)� y2 (t) y
0
1 (t)] = �p (t)W (t) ; t 2 I:

Thus W (t) satis�es the �rst order linear ODE

W 0 (t) + p (t)W (t) = 0; t 2 I:

Hence it is given by
W (t) = ce�

R
p(t)dt; t 2 I;

for some constant c: �

Remark 3.33 If there is an initial condition W (y1; y2) (t0) = c0; then one can express (208) as

W (y1; y2) (t) = c0e
�
R t
t0
p(s)ds

: (209)

It satis�es
W 0 (t) + p (t)W (t) = 0; W (t0) = c0; t0; t 2 I:

Corollary 3.34 By (208), we see that W (t) is either W (t) � 0 on I (if c = 0) or W (t) is never
zero on I (if c 6= 0). In particular, if W (t0) > 0 at some t0 2 I; then W (t) > 0 everywhere on I:
Similarly, if W (t0) < 0 at some t0 2 I; then W (t) < 0 everywhere on I:

Proof. This is a direct consequence of Theorem 3.31. �

The most important theorem in this section is the following:

Theorem 3.35 (This is Theorem 3.2.4 in p. 149.) Consider the ODE (homogeneous)

y00 + p (t) y0 + q (t) y = 0 (210)

where p (t) ; q (t) are continuous functions de�ned on open interval I: If y1 (t) and y2 (t) are two
solutions on I; then the family of solutions

y (t) = c1y1 (t) + c2y2 (t) ; t 2 I (211)

with arbitrary coe¢ cients c1; c2 includes every solution of (210) on I if and only ifW (y1; y2) (t0) 6=
0 for some t0 2 I (hence W (y1; y2) (t) 6= 0 for all t 2 I).

Proof. Assume W (y1; y2) (t0) 6= 0 for some t0 2 I: Let ' (t) be a solution of (210) on I with

' (t0) = a; '0 (t0) = b:

One can �nd unique constants c1 and c2 such that(
c1y1 (t0) + c2y2 (t0) = a

c1y
0
1 (t0) + c2y

0
2 (t0) = b

due to W (y1; y2) (t0) 6= 0: Now the linear combination y (t) = c1y1 (t) + c2y2 (t) is a solution of the
ODE on I with

y (t0) = a; y0 (t0) = b:

Uniqueness implies that y (t) � ' (t) for all t 2 I:
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Conversely, assume that every solution ' (t) of (210) on I can be expressed in the form

' (t) = c1y1 (t) + c2y2 (t) ; t 2 I;

for some coe¢ cients c1; c2: IfW (y1; y2) (t) � 0 on I; we will get a contradiction. Fix some t0 2 I and
look at the equations (

c1y1 (t0) + c2y2 (t0) = a

c1y
0
1 (t0) + c2y

0
2 (t0) = b:

(212)

There are some a; b 2 R such that (212) has no solutions for c1 and c2 (sinceW (y1; y2) (t0) = 0): For
' (t) satisfying the ODE with ' (t0) = a; '0 (t0) = b; by the assumption, it can be expressed
as ' (t) = �1y1 (t) + �2y2 (t) for some �1; �2; for all t 2 I: This implies that �1; �2 is a solution of
(212), a contradiction. �

By the above theorem, we de�ne the following:

De�nition 3.36 Consider the ODE

y00 + p (t) y0 + q (t) y = 0; p (t) ; q (t) continuous on I: (213)

If y1 (t) and y2 (t) are two solutions on I such that W (y1; y2) (t0) 6= 0 for some t0 2 I (hence
W (y1; y2) (t) 6= 0 for all t 2 I); then the general solution of (213) on I is given by

y (t) = c1y1 (t) + c2y2 (t) ; t 2 I;

where c1; c2 are arbitrary constants. In this case, we call y1 (t) and y2 (t) a fundamental set of
solutions of ODE (213) on I: Note that a given ODE on I has in�nitely many fundamental set
of solutions on I:

Example 3.37 Given the linear equation

y00 (t) + p (t) y0 (t) + q (t) y (t) = 0; t 2 (�1;1) (214)

where p (t) and q (t) are continuous on the interval (�1;1) : Is it possible that both t and t2 are
solutions (for some continuous p (t) and q (t) on (�1;1)) to the equation on (�1;1)? Give your
reasons.

Solution:

It is impossible. The Wronskian of t and t2 is

W (t) =

���� t t2

1 2t

���� = t2; t 2 (�1;1) :

On the interval I = (�1;1) we have W (t) = 0 at t = 0; but W (t) 6= 0 for t 6= 0. It violates
Theorem 3.31 �

Example 3.38 Find an ODE of the form

y00 (t) + p (t) y0 (t) + q (t) y (t) = 0; t 2 (0;1) ; (215)

where p (t) and q (t) are continuous functions on the interval (0;1) so that both t and t2 are solutions
to the equation on (0;1) :
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Solution:

It is possible for both t and t2 to be solutions to the equation on (0;1) since itsWronskianW (t) =
t2 6= 0 on (0;1) : If we want t and t2 to be solutions of the ODE (215) on t 2 (0;1) ; we must
require (

p (t) + q (t) t = 0

2 + 2tp (t) + q (t) t2 = 0; t 2 (0;1) ;

which gives q (t) = 2=t2 and p (t) = �2=t. Both p (t) and q (t) are continuous on the interval
(0;1) : Therefore, the equation

y00 (t)� 2
t
y0 (t) +

2

t2
y (t) = 0; t 2 (0;1) (216)

has both t and t2 as solutions on the interval (0;1). By Theorem 3.35, they form a fundamental
set of solutions on (0;1) : The general solution of the ODE (216) is given by

y (t) = c1t+ c2t
2; t 2 (0;1)

for arbitrary real constants c1 and c2: �

Example 3.39 Consider the equation

y00 � 3y0 + 2y = 0:

We know that y1 (t) = et and y2 (t) = e2t are two solutions of it de�ned on t 2 (�1;1). By

W (y1; y2) (t) = e3t > 0 for all t 2 (�1;1) ;

we know that they form a fundamental set of solutions and every solution y (t) of the equation
has the form

y (t) = c1e
t + c2e

2t; t 2 (�1;1) :
We also knew this fact before by decomposing the second order ODE into two �rst order
ODEs.

Example 3.40 Consider the equation

y00 + p (t) y0 + q (t) y = 0; p (t) ; q (t) continuous on I

and �x some t0 2 I: Let y1 (t) be the solution satisfying

y1 (t0) = 1; y01 (t0) = 0

and let y2 (t) be the solution satisfying

y2 (t0) = 0; y02 (t0) = 1:

Then y1 (t) and y2 (t) form a fundamental set of solutions (since W (y1; y2) (t0) = 1 6= 0).

Example 3.41 Do Example 6 in p. 152.

In general, it is very di¢ cult to solve an equation of the form y00 + p (t) y0 + q (t) y = 0 (or the
form P (t) y00 (t) + Q (t) y0 (t) + R (t) y (t) = 0). However, there is a special case we can solve it,
which is known as Euler equation.
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3.5 Euler equations (this is Exercise 34 in p. 166).

We consider a second order linear equation of the form (call it Euler equation)

t2y00 (t) + �ty0 (t) + �y (t) = 0; t 2 (0;1) ; �; � constants. (217)

One can use change of variables to convert it into a linear equation with constant coe¢ cients.
Let x = ln t; t 2 (0;1) ; (same as t = ex); where x 2 (�1;1) will be the new variable. The
function y (t) will become a function of x; which we denote it as ~y (x) : That is, ~y (x) = y (t) : We
have

dy

dt
=
d~y

dx

dx

dt
=
d~y

dx

1

t
= e�x

d~y

dx
(in short:

d

dt
= e�x

d

dx
),

which is same as
d~y

dx
= t

dy

dt
(in short:

d

dx
= t

d

dt
)

and
d2y

dt2
= e�x

d

dx

�
e�x

d~y

dx

�
= �e�2x d~y

dx
+ e�2x

d2~y

dx2
:

Hence

t2y00 (t) + �ty0 (t) + �y (t)

= e2x
�
�e�2x d~y

dx
+ e�2x

d2~y

dx2

�
+ �ex

�
e�x

d~y

dx

�
+ �~y (x)

=
d2~y

dx2
+ (�� 1) d~y

dx
+ �~y (x) ; x = ln t 2 (�1;1) ; t 2 (0;1)

and, in terms of the new variable x; the function ~y (x) will satisfy the linear equation with constant
coe¢ cients

d2~y

dx2
+ (�� 1) d~y

dx
+ �~y (x) = 0: (218)

One can solve ~y (x) for equation (218) on the interval x 2 (�1;1) and then obtain solution y (t) for
equation (217) on the interval t 2 (0;1) :

Remark 3.42 In case the Euler equation has the form

At2y00 (t) +Bty0 (t) + Cy (t) = 0; t 2 (0;1) ; A 6= 0; B; C are constants,

then equation (218) becomes

A
d2~y

dx2
+ (B � A)

d~y

dx
+ C~y (x) = 0: (219)

Remark 3.43 (Motivation for Euler equation.) Euler equation is very special in the sense that
if we have a general equation of the form

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = 0; t 2 I;

and we do change of variables:

x = h (t) ; t = g (x) ; y (t) = ~y (x) ; h (g (x)) = x; t = g (h (t)) ;

then by the chain rule we get

dy

dt
=
d~y

dx

dx

dt
= h0 (t)

d~y

dx
=

1

g0 (x)

d~y

dx

y00 (t) =
1

g0 (x)

d

dx

�
1

g0 (x)

d~y

dx

�
=

1

(g0 (x))2
d2~y

dx2
� g00 (x)

(g0 (x))3
d~y

dx
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and the new equation for ~y (x) becomes

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t)

= P (g (x))

�
1

(g0 (x))2
d2~y

dx2
� g00 (x)

(g0 (x))3
d~y

dx

�
+Q (g (x))

�
1

g0 (x)

d~y

dx

�
+R (g (x)) ~y (x)

=

�
P (g (x))

1

(g0 (x))2

�
d2~y

dx2
+

�
�P (g (x)) g00 (x)

(g0 (x))3
+Q (g (x))

1

g0 (x)

�
d~y

dx
+R (g (x)) ~y (x) :

For the case of Euler equation, we have

P (t) = t2; x = h (t) = log t; t = g (x) = ex

P (g (x)) = g2 (x) ; g0 (x) = g (x) ; g00 (x) = g (x)

Q (t) = �t; Q (g (x)) = �g (x)

R (t) = �; �; � are constants.

and so�
P (g (x))

1

(g0 (x))2

�
d2~y

dx2
+

�
�P (g (x)) g00 (x)

(g0 (x))3
+Q (g (x))

1

g0 (x)

�
d~y

dx
+R (g (x)) ~y (x)

=
d2~y

dx2
+ (�� 1) d~y

dx
+ �~y;

which is an ODE with constant coe¢ cients.

Example 3.44 (This is problem 35, p. 166.) Find the general solution of the Euler equation

t2y00 (t) + ty0 (t) + 4y (t) = 0; t 2 (0;1) : (220)

Solution:

By the change of variables x = ln t; t 2 (0;1) ; the new equation for ~y (x) is

~y00 (x) + 4~y (x) = 0;

which has general solution

~y (x) = c1 cos (2x) + c2 sin (2x) ; x 2 (�1;1) :

Back to y (t) ; we get

y (t) = c1 cos (2 log t) + c2 sin (2 log t) ; t 2 (0;1) ;

which is the general solution of the Euler equation. Here c1 and c2 are arbitrary constants. �

3.6 The method of "reduction of order" (this is part of Section 3.4).

Consider the second order linear homogeneous equation

y00 (t) + p (t) y0 (t) + q (t) y (t) = 0; t 2 I (221)

and assume that we already know one nonzero solution y1 (t) : We can use the following
"reduction method" to �nd another solution y2 (t) :

Remark 3.45 Note that here the coe¢ cient of y00 (t) is 1 in (221).
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Let
y2 (t) = y1 (t) v (t) ; t 2 I:

The idea is to �nd suitable v (t) so that the above y2 (t) will be a solution of (221) di¤erent from
y1 (t) : We substitute y2 (t) into the equation to get

y002 (t) + p (t) y02 (t) + q (t) y2 (t)

= y1 (t) v
00 (t) + [2y01 (t) + p (t) y1 (t)] v

0 (t) +

�
y001 (t) + p (t) y01 (t) + q (t) y1 (t)| {z }

�
v (t) (222)

= y1 (t) v
00 (t) + [2y01 (t) + p (t) y1 (t)] v

0 (t) :

Therefore, if v (t) satis�es the equation

y1 (t) v
00 (t) + [2y01 (t) + p (t) y1 (t)] v

0 (t) = 0 (223)

and is not a constant solution, then y2 (t) = y1 (t) v (t) will be a new solution of (221). Note that
(223) is a �rst order linear equation for w (t) := v0 (t) and one can solve v0 (t) (and then v (t)).
After that, one can �nd a di¤erent solution y2 (t) : Finally we check the WronskianW (y1; y2) (t) and
if there is one point t0 2 I such that W (y1; y2) (t0) 6= 0; then every solution y (t) to the linear
equation (221) is of the form

y (t) = c1y1 (t) + c2y2 (t) ; c1; c2 are arbitrary constants.

Remark 3.46 (Be careful.) In case equation (221) has the form

P (t) y00 (t) +Q (t) y0 (t) +R (t) y (t) = 0; t 2 I; P (t) 6= 0 on I; (224)

then you can either rewrite it as the form (221) and use the equation (223) for v (t) or you can
maintain the original equation (224) and now equation (223) becomes

P (t) y1 (t) v
00 (t) + [2P (t) y01 (t) +Q (t) y1 (t)] v

0 (t) = 0: (225)

You can use either way.

Example 3.47 Use method of reduction to �nd the general solution of

y00 (t) + 4y0 (t) + 4y (t) = 0:

Solution:

We �rst know that y1 (t) = e�2t is one solution. To �nd the second solution, let

y2 (t) = v (t) e�2t

and plug it into the equation to get y1 (t) v00 (t) + [2y01 (t) + p (t) y1 (t)] v
0 (t) = 0; i.e.

e�2tv00 (t) = 0: (226)

Thus
v (t) = at+ b; a; b are arbitrary const

and y2 (t) = (at+ b) e�2t; which gives a new solution te�2t: Therefore, the general solution is given
by (since e�2t and te�2t have nonzero Wronskian)

y (t) = c1e
�2t + c2te

�2t;

same as before. �
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3.6.1 Reduction method for nonhomogeneous equations.

The reduction method can also be used to solve the nonhomogeneous equation

y00 (t) + p (t) y0 (t) + q (t) y (t) = g (t) ; t 2 I: (227)

Assume that y1 (t) is a nonzero solution to the homogeneous equation y00 (t) + p (t) y0 (t) +
q (t) y (t) = 0 on I: Let y2 (t) = v (t) y1 (t) to get

y1 (t) v
00 (t) + [2y01 (t) + p (t) y1 (t)] v

0 (t) = g (t) (compare with (223)), (228)

which is a �rst order linear ODE for w (t) := v0 (t) : By solving (228), one can get y2 (t) and
Y (t) ; where y2 (t) is a solution of y00 (t)+py0+qy = 0 and Y (t) is a solution of y00+py0+qy = g: Now
the general solution of (227) is given by (assume that y1 (t) and y2 (t) have nonzero Wronskian)

y (t) = c1y1 (t) + c2y2 (t) + Y (t) ; t 2 I:

We use the above reduction method to solve the nonhomogeneous equation

y00 (t) + 4y0 (t) + 4y (t) = e3t: (229)

We know y1 (t) = e�2t is one solution of y00 (t) + 4y0 (t) + 4y (t) = 0: Let

y2 (t) = v (t) e�2t

and plug it into the nonhomogeneous equation (229) to get

e�2tv00 (t) = e3t (compare with (226)).

We obtain
v (t) =

1

25
e5t + c1t+ c2;

which gives

y2 (t) =

�
1

25
e5t + c1t+ c2

�
e�2t =

1

25
e3t +

�
c1te

�2t + c2e
�2t� :

Note that Y (t) = 1
25
e3t is a particular solution of the nonhomogeneous equation (229) and y2 (t) =

te�2t is another solution of the corresponding homogeneous equation. Thus the general solution of
(229) is

y (t) = c1y1 (t) + c2y2 (t) + Y (t) = c1e
�2t + c2te

�2t +
1

25
e3t

for arbitrary constants c1; c2:

Remark 3.48 (Be careful ...) In case we know a particular solution Y (t) to the equation y00 (t)+
p (t) y0 (t) + q (t) y (t) = g (t) on I: Then if we try to use reduction method, it will not work in
general. To see this, let y2 (t) = v (t)Y (t) and plug it into the nonhomogeneous equation (227) to
get (see (222) �rst)

y002 (t) + p (t) y02 (t) + q (t) y2 (t)

= Y (t) v00 (t) + [2Y 0 (t) + p (t)Y (t)] v0 (t) +

�
Y 00 (t) + p (t)Y 0 (t) + q (t)Y (t)| {z }

�
v (t) (230)

= Y (t) v00 (t) + [2Y 0 (t) + p (t)Y (t)] v0 (t) + g (t) v (t)| {z } = g (t) :

Unfortunately for this situation, we are not able to solve v (t) in general, because it cannot be
reduced to a �rst order equation.
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Example 3.49 One can see that y1 (t) = t is a solution of the following ODE on t 2 (1;1) : Use
method of reduction to �nd the general solution of the equation

(t� 1) y00 (t)� ty0 (t) + y (t) = 0; t 2 (1;1) ;

is given by
y (t) = C1t+ C2e

t; t 2 (1;1) ; (231)

Remark 3.50 Note that the general solution in (231) is actually de�ned for all t 2 (�1;1) ; i.e.
they are de�ned across t = 1:

Solution:

We �rst rewrite the equation as the form (221):

y00 (t)� t

t� 1y
0 (t) +

1

t� 1y (t) = 0:

Let y2 (t) = y1 (t) v (t) = tv (t) : We will have

y1 (t) v
00 (t) + [2y01 (t) + p (t) y1 (t)] v

0 (t) = 0; y1 (t) = t;

which is

tv00 (t) +

�
2� t2

t� 1

�
v0 (t) = 0;

i.e.

w0 (t) +

�
2

t
� t

t� 1

�
w (t) = 0; w (t) = v0 (t) :

We get

w (t) = c1e
�
R
( 2t�

t
t�1)dt; c1 is arbitrary constant

�
Z �

2

t
� t

t� 1

�
dt = �2 log t+ t+ log (t� 1) = t+ log

�
t� 1
t2

�
and so

w (t) = c1e
t

�
t� 1
t2

�
= v0 (t) :

Finally, we get

v (t) = c1
et

t
+ c2; c1; c2 are arbitrary constants,

which gives

y2 (t) = tv = t

�
c1
et

t
+ c2

�
= c1e

t + c2t:

The proof is done. �

3.7 Use Wronskian to solve a second order linear equation (Wronskian
method) (see p. 174, Exercise 32).

Consider the second order linear homogeneous equation

y00 (t) + p (t) y0 (t) + q (t) y (t) = 0; t 2 I (232)

and assume that we already know one "nonzero" solution y1 (t) : Again, we note that the
coe¢ cient of y00 (t) is 1 in (232).
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Let y2 (t) be another solution of the above equation. The Wronskian W (t) of y1 (t) ; y2 (t)
satis�es

W (t) = Ce�
R
p(t)dt; C 6= 0: (233)

Therefore, we get
y1 (t) y

0
2 (t)� y01 (t) y2 (t) = Ce�

R
p(t)dt; C 6= 0 (234)

This gives a �rst order linear equation for y2 (t) and one can solve y2 (t) : From y2 (t) one can obtain
a new solution di¤erent from y1 (t) and then obtain a fundamental set of solutions (note that since
we require the constant C 6= 0 in (234), fy1 (t) ; y2 (t)g forms a fundamental set of solutions for
the ODE (232) on I and every solution y (t) on I is a linear combination of them).
This method is as good as the reduction method.

Remark 3.51 (Important.) Note that the Wronskian method is valid only for homogeneous
equations.

Remark 3.52 (Important.) Be careful that when you use the Wronskian method, make sure you
rewrite the equation into the form y00 + p (t) y0 + q (t) y = 0 �rst.

Example 3.53 (Example 3 in p. 172.) We shall use reduction method and Wronskian method
to solve the equation

2t2y00 + 3ty0 � y = 0; t > 0;

given that y (t) = 1=t is a solution of it.

Remark 3.54 This equation is, in fact, an Euler equation. So we know how to obtain its general
solution. However, here we want to use di¤erent methods and see how they work.

Solution:

1. Reduction method:

We �rst rewrite the equation as

y00 +
3

2t
y0 � 1

2t2
y = 0; t > 0

and let y (t) = t�1v (t) and by the formula

y1 (t) v
00 (t) + [2y01 (t) + p (t) y1 (t)] v

0 (t) = 0;

we get

w0 � 1

2t
w = 0; w = v0; t > 0;

which gives
w (t) = v0 (t) = Ce

R
1
2t
dt = Ct1=2:

Hence v (t) = 2
3
Ct3=2 + k and

y (t) = t�1v (t) =
2

3
Ct1=2 + kt�1:

Thus the general solution (easy to see that t1=2 and t�1 is a fundamental set of solutions on
(0;1)) is given by

y (t) = C1t
1=2 + C2t

�1:

2. Wronskian method:
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We �rst rewrite the equation as

y00 +
3

2t
y0 � 1

2t2
y = 0; t > 0:

Let y1 (t) = t�1 and we want to �nd y2 (t) : By Abel�s Theorem, the Wronskian W (t) of y1 (t) and
y2 (t) is given by

W (t) = y1 (t) y
0
2 (t)� y2 (t) y

0
1 (t) = Ce�

R
p(t)dt = Ce�

R
3
2t
dt = Ct�3=2; C is a const..

Hence we get
1

t
y02 (t) +

1

t2
y2 (t) = Ct�3=2;

i.e.,

y02 (t) +
1

t
y2 (t) = Ct�1=2:

We obtain

y2 (t) = e�
R
1
t
dt

�Z �
e
R
1
t
dtCt�1=2

�
dt+ ~C

�
; t > 0; ~C is another const.

=
1

t

�
C

Z
t1=2dt+ ~C

�
=
1

t

�
2

3
Ct3=2 + ~C

�
=
2

3
Ct1=2 + ~Ct�1; t > 0:

Thus the general solution is given by

y (t) = C1t
1=2 + C2t

�1; t > 0:

We get the same result as in the reduction method. �

3.8 Method of undetermined coe¢ cients (this is Section 3.5 of the
book).

In this section, we consider a nonhomogeneous second order linear equation with constant coe¢ -
cients, given by

ay00 (t) + by0 (t) + cy (t) = g (t) ; a 6= 0; t 2 (�1;1) ; (235)

where g (t) has the form Pn (t) e
�t or Pn (t) e�t cos �t or Pn (t) e�t sin �t: Here Pn (t) = a0t

n+a1t
n�1+

� � � + an�1t + an is a polynomial with degree n and �; �; � 2 R with � > 0: Note that the case
� = 0 and the case � = 0 are allowed (in case � = 0; Pn (t) e�t = Pn (t) is just a polynomial in t).
We know that the general solution y (t) of (235) is given by

y (t) = c1y1 (t) + c2y2 (t) + yp (t) ; t 2 (�1;1) ;

where yp (t) is a particular solution of the nonhomogeneous equation (235) and y1 (t) ; y2 (t) are
solutions of ay00 (t) + by0 (t) + cy (t) = 0; determined by the roots of the characteristic equation
ar2 + br + c = 0: Since we know how to �nd y1 (t) ; y2 (t), it su¢ ces to �nd a particular solution
yp (t) of (235).
The "method of undetermined coe¢ cients" says that we can try a particular solution of

the form given by Table 3.5.1 in p. 182 of the book and then plug in the form into the nonho-
mogeneous equation (235) to determine the coe¢ cients. After that, one can �nd a particular
solution yp (t) :

Remark 3.55 Explain Table 3.5.1 in p. 182 ....
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3.8.1 Motivation of the undetermined coe¢ cients method.

One can use simple �rst order equation to explain the method. Consider the simple equation

y0 (t)� �y (t) = a0e
�t; a0; �; � are constants, a0 6= 0: (236)

The characteristic equation of the homogeneous equation y0 (t)� �y (t) = 0 is r� � = 0; which has
root r = � and so the general solution of y0 (t) � �y (t) = 0 is given by y (t) = Ce�t for arbitrary
constant C: To �nd the general solution of (236), it su¢ ces to �nd a particular solution yp (t) : If
� 6= � (i.e. � is not a root of the characteristic equation r�� = 0), then the function (e�t)0�� (e�t)
is not zero and is still of the form Ke�t for constant K = �� � 6= 0: This form matches with the
function a0e�t on the right hand side of the equation. Therefore, if we try yp (t) to have the form

yp (t) = A0e
�t (237)

and choose the coe¢ cient A0 suitably, we can obtain a particular solution of the equation
(236). To �nd A0; we plug yp (t) = A0e

�t into (236) and get the identity

(�� �)A0e
�t = a0e

�t; a0 6= 0: (238)

Hence, if we choose A = a0
��� (denominator is not zero), we can obtain a particular solution yp (t) =

a0
���e

�t of (236). Thus the general solution of (236) is

y (t) = Ce�t +
a0

�� �
e�t; t 2 (�1;1) ; C is arbitrary const.. (239)

On the other hand, if � = � (i.e. � is a root of the characteristic equation r � � = 0), identity
(238) will becomes 0 = a0e

�t; which is impossible and it suggests that we cannot try yp (t) to have
the form yp (t) = A0e

�t: instead, if we try

yp (t) = A0te
�t; (240)

and plug it into (236), we get the identity

A0e
�t + �A0te

�t � �A0te
�t = a0e

�t (note that � = �).

Hence if we choose A0 = a0; the function yp (t) = a0te
�t will be a particular solution of (236) and

from this we can obtain general solution of (236).
One step further, now we look at the equation

y0 (t)� �y (t) = (a0 + b0t)e
�t; a0; b0; �; � are constants, a0 6= 0; b0 6= 0: (241)

For the case � 6= � (i.e. � is not a root of the characteristic equation r � � = 0), based on the
above observation, the only way you can try is

yp (t) = (A0 +B0t)e
�t for some constants A0; B0; (242)

and if you plug it into equation (241), you get

B0e
�t + �(A0 +B0t)e

�t � �(A0 +B0t)e
�t = (a0 + b0t)e

�t;

which is same as
B0 + �(A0 +B0t)� �(A0 +B0t) = a0 + b0t; (243)

and you need to choose A0; B0 satisfying(
B0 + (�� �)A0 = a0

(�� �)B0 = b0
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and conclude that if we choose

A0 =
a0

�� �
� b0

(�� �)2
; B0 =

b0
�� �

; � 6= �;

then yp (t) in (242) will be a particular solution of the ODE (241).
Finally, for the case � = �; the identity (243) becomes B0 = a0 + b0t; impossible to hold.

Therefore you need to modify your choice of yp (t) in (242): A natural next choice is

yp (t) = (A0 +B0t+ C0t
2)e�t for some constants A0; B0; C0:

However, note that A0e�t is already a solution of the homogeneous equation y0 (t)��y (t) = 0; there
is no need to include it. Hence we choose

yp (t) = (B0t+ C0t
2)e�t = t (B0 + C0t) e

�t

and for consistency of notations, we write it as

yp (t) = t (A0 +B0t) e
�t for some constants A0; B0: (244)

If you plug the above yp (t) into (241), you get

(A0 +B0t) e
�t + tB0e

�t = (a0 + b0t)e
�t

and conclude

A0 = a0; B0 =
b0
2
:

Thus when � = �; the function

yp (t) = t

�
a0 +

b0
2
t

�
e�t; t 2 (�1;1)

will be a particular solution of the equation (241).
From (237), (240), (242), and (244), you can understand the undetermined coe¢ cients method

in Table 3.5.1 in p. 182 of the book.

3.8.2 P. 183, Case 2.

This is to verify that the method of undetermined coe¢ cients can be used to solve a nonho-
mogeneous second order linear ODE (with constant coe¢ cients) of the form

ay00 (t) + by0 (t) + cy (t) = Pn (t) e
�t; a 6= 0; (245)

where
Pn (t) = a0t

n + a1t
n�1 + � � �+ an�1t+ an

is a polynomial with degree n:

Remark 3.56 Of course, one can also use reduction method to solve (245), but the method of
undetermined coe¢ cients will be easier for g (t) of the form Pn (t) e

�t:

We let yp (t) = u (t) e�t be the particular solution to be found (there is no other better try than
this), where u (t) is to be determined. Plug yp (t) = u (t) e�t into (245) to get

a
�
u00 (t) e�t + 2u0 (t)�e�t + u (t)�2e�t

�
+ b
�
u0 (t) e�t + u (t)�e�t

�
+ cu (t) e�t = Pn (t) e

�t:
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We can cancel e�t and the equation becomes

au00 (t) + (2a�+ b)u0 (t) +
�
a�2 + b�+ c

�
u (t)| {z }

= Pn (t) = a0t
n + a1t

n�1 + � � �+ an�1t+ an: (246)

Assume �rst that � is not a root of the characteristic equation ar2+br+c = 0: Hence a�2+
b�+ c 6= 0: One can try

u (t) = A0t
n + A1t

n�1 + � � �+ An�1t+ An: (247)

Note that (
u0 (t) = nA0t

n�1 + (n� 1)A1tn�2 + � � �+ 2An�2t+ An�1

u00 (t) = n (n� 1)A0tn�2 + (n� 1) (n� 2)A1tn�3 + � � �+ 2An�2:
If we plug (247) into (246) and compare coe¢ cients, we can get the following system of equations
(note that Pn (t) = a0t

n + a1t
n�1 + � � �+ an�1t+ an):8>>>>>>>>><>>>>>>>>>:

(a�2 + b�+ c)A0 = a0 (coe¢ cients of tn), where a�2 + b�+ c 6= 0

(2a�+ b)nA0 + (a�
2 + b�+ c)A1 = a1 (coe¢ cients of tn�1)

an (n� 1)A0 + (2a�+ b) (n� 1)A1 + (a�2 + b�+ c)A2 = a2 (coe¢ cients of tn�2)

� � �

a2An�2 + (2a�+ b)An�1 + (a�
2 + b�+ c)An = an (coe¢ cients of t0).

(248)

Then one can solve all A0; :::; An and obtain u (t) ; and conclude that y (t) = u (t) e�t is a solution
of the nonhomogeneous equation (245).
If � is a root with multiplicity s = 1; then a�2+ b�+ c = 0 and 2a�+ b 6= 0: The above trial

solution (247) does not work out. Instead we try

u (t) = t
�
A0t

n + A1t
n�1 + � � �+ An�1t+ An

�
= A0t

n+1 + A1t
n + � � �+ An�1t

2 + Ant

Then (246) becomes

au00 (t) + (2a�+ b)u0 (t)| {z } = Pn (t) = a0t
n + a1t

n�1 + � � �+ an�1t+ an (249)

and (248) becomes8>>>>><>>>>>:

(2a�+ b) (n+ 1)A0 = a0 (coe¢ cients of tn), where 2a�+ b 6= 0

an (n+ 1)A0 + (2a�+ b)nA1 = a1 (coe¢ cients of tn�1)

� � �

a2An�2 + (2a�+ b)An = an (coe¢ cients of t0).

(250)

In this case we can solve all A0; :::; An and conclude that y (t) = u (t) e�t is a solution of (245).
Finally if � is a root with multiplicity s = 2; then a�2 + b� + c = 0 and 2a� + b = 0; but

a 6= 0: Then we try

u (t) = t2
�
A0t

n + A1t
n�1 + � � �+ An�1t+ An

�
= A0t

n+2 + A1t
n+1 + � � �+ Ant

2:

Now (246) becomes
au00 (t)| {z } = Pn (t) = a0t

n + a1t
n�1 + � � �+ an�1t+ an (251)
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and (248) becomes8>>>>><>>>>>:

a (n+ 2) (n+ 1)A0 = a0 (coe¢ cients of tn), where a 6= 0

an (n+ 1)A1 = a1 (coe¢ cients of tn�1)

� � �

a2An = an (coe¢ cients of t0).

(252)

Again, we can solve all A0; :::; An and obtain a particular solution of (245).
In conclusion, the method works for the case g (t) = Pn (t) e

�t; � 2 R: The veri�cation is done.�

Example 3.57 y00 + 3y = 4e�5t; yp (t) =
1
7
e�5t:

Example 3.58 y00 � 3y0 � 4y = 2e�t; yp (t) = �2
5
te�t:

Example 3.59 y00 + 2y = sin 3t; yp (t) = �1
7
sin 3t:

Example 3.60 y00 + 9y = sin 3t; yp (t) = �1
6
t cos 3t:

Example 3.61 y00 � 3y = t2; yp (t) = �1
3
t2 � 2

9
:

Example 3.62 Do Example 3 in p. 179.

Example 3.63 Find general solution of the equation

y00 + 2y0 + y = te�t:

Solution:

By the rule for yp (t) ; it has the form

yp (t) = ts (At+B) e�t =
�
At3 +Bt2

�
e�t; where s = 2:

Plugging it into equation to get(
[(6At+ 2B) e�t � 2 (3At2 + 2Bt) e�t + (At3 +Bt2) e�t]

+2 [(3At2 + 2Bt) e�t � (At3 +Bt2) e�t] + (At3 +Bt2) e�t
= te�t:

Hence, after simpli�cation, we need to solve 6At+ 2B = t; which gives

A =
1

6
; B = 0:

Thus yp (t) = 1
6
t3e�t is a particular solution of the equation. The general solution is

y (t) = c1e
�t + c2te

�t +
1

6
t3e�t; t 2 (�1;1) :

�

Remark 3.64 If an equation has the form

ay00 + by0 + cy = f (t) + g (t) ; (253)
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where f (t) and g (t) both have the form in the above case 1 or case 2 (say f (t) = t2e5t and
g (t) = (t3 + 2t2 � 6t� 5) e�t cos 7t), then use the undetermined coe¢ cients to �nd yp (t) for the
equation

ay00 + by0 + cy = f (t)

and then use the same method to �nd ~yp (t) for the equation

ay00 + by0 + cy = g (t) :

Then the general solution of (253) is given by

x (t) = yp (t) + ~yp (t) + c1y1 (t) + c2y2 (t) ;

where c1x1 (t) + c2x2 (t) is the general solution of the corresponding homogeneous equation.

Example 3.65 (This is Exercise 30 in p. 185 with one extra term.) Find general solution
of the equation

y00 + �2y =

NX
m=1

(am sinm�t+ bm cosm�t) ; t 2 (�1;1) ; (254)

where � > 0 and � 6= m� for m = 1; 2; :::; N:

Solution:

The two roots of the characteristic polynomial r2 + �2 = 0 are r = ��i; where � 6= m� for any
m = 1; :::; N: Hence for each m = 1; :::; N; we try a particular solution ym (t) of the form

ym (t) = Am sinm�t+Bm cosm�t; (255)

which is for the equation
y00 + �2y = am sinm�t+ bm cosm�t: (256)

We plug the above ym (t) into equation (256) to get�
�2 �m2�2

�
Am sinm�t+

�
�2 �m2�2

�
Bm cosm�t = am sinm�t+ bm cosm�t

and obtain

Am =
am

�2 �m2�2
; Bm =

bm
�2 �m2�2

; m = 1; :::; N:

Hence, the general solution of the equation is given by (add all ym (t) together):

y (t) = c1 sin�t+ c2 cos�t+
NX
m=1

�
am

�2 �m2�2

�
sinm�t+

�
bm

�2 �m2�2

�
cosm�t:

The proof is done. �

3.9 Variation of parameters method (this is Section 3.6 of the book)
for constant coe¢ cients.

In this section we �rst focus on the nonhomogeneous linear equation with constant coe¢ -
cients, given by

ay00 + by0 + cy = f (t) ; a 6= 0; b; c are constants, (257)

where now f (t) can be an arbitrary continuous function de�ned on some interval I � R: The reason
of requiring constant coe¢ cients in (257) is that we can know general solution of the corresponding
homogeneous equation ay00 + by0 + cy = 0:
Choose a pair of fundamental solutions fy1 (t) ; y2 (t)g : To solve (257), we try a solution of

the form:
y (t) = u1 (t) y1 (t) + u2 (t) y2 (t) ; t 2 I (258)

and look for suitable u1 (t) and u2 (t) :
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Remark 3.66 (Useful observation.) One can view (258) as a generalization of the reduction
method because if we only try y (t) = u1 (t) y1 (t) ; it is exactly the reduction method. See Section
3.6.1.

We need to impose suitable conditions on u1 (t) and u2 (t) so that the above y (t) is a solution
of (257).
We �rst note that

y0 (t) = [u01 (t) y1 (t) + u02 (t) y2 (t)]| {z }+ [u1 (t) y01 (t) + u2 (t) y
0
2 (t)]

and impose the �rst condition

u01 (t) y1 (t) + u02 (t) y2 (t)| {z } = 0; t 2 I: (259)

Remark 3.67 If we impose the condition u1 (t) y01 (t)+u2 (t) y
0
2 (t) ; then in y

00 (t) we will encounter
u001 (t) and u

00
2 (t) : With this, the method will not help us too much ...

Then y0 (t) becomes
y0 (t) = u1 (t) y

0
1 (t) + u2 (t) y

0
2 (t) ; t 2 I

and so
y00 (t) = [u01 (t) y

0
1 (t) + u02 (t) y

0
2 (t)]| {z }+ [u1 (t) y001 (t) + u2 (t) y

00
2 (t)] ; t 2 I:

Then we impose the second condition as

u01 (t) y
0
1 (t) + u02 (t) y

0
2 (t)| {z } = f (t)

a
(make sure to divide a here): (260)

We now have

ay00 (t) + by0 (t) + cy (t)

= a

�
f (t)

a
+ u1 (t) y

00
1 (t) + u2 (t) y

00
2 (t)

�
+ b [u1 (t) y

0
1 (t) + u2 (t) y

0
2 (t)] + c [u1 (t) y1 (t) + u2 (t) y2 (t)]

= f (t) + u1 (t)

�
ay001 (t) + by01 (t) + cy1 (t)| {z }

�
+ u2 (t)

�
ay002 (t) + by02 (t) + cy2 (t)| {z }

�
= f (t) + u1 (t) � 0 + u2 (t) � 0 = f (t) ; t 2 I;

which is exactly what we want.
It remains to claim that (259) and (260) can be satis�ed. We need to solve(

u01 (t) y1 (t) + u02 (t) y2 (t) = 0

u01 (t) y
0
1 (t) + u02 (t) y

0
2 (t) =

f(t)
a

and get

u01 (t) =

���� 0 y2 (t)
f(t)
a

y02 (t)

�������� y1 (t) y2 (t)
y01 (t) y02 (t)

���� =
�y2 (t) f(t)a
W (y1; y2) (t)

; u02 (t) =

���� y1 (t) 0

y01 (t)
f(t)
a

�������� y1 (t) y2 (t)
y01 (t) y02 (t)

���� =
y1 (t)

f(t)
a

W (y1; y2) (t)
:

The above gives

u1 (t) = �
1

a

Z
y2 (t) f (t)

W (y1; y2) (t)
dt+ c1; u2 (t) =

1

a

Z
y1 (t) f (t)

W (y1; y2) (t)
dt+ c2; (261)
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and the general solution of (257) is given by

y (t) =

�
�1
a

Z
y2 (t) f (t)

W (y1; y2) (t)
dt+ c1

�
y1 (t) +

�
1

a

Z
y1 (t) f (t)

W (y1; y2) (t)
dt+ c2

�
y2 (t)

= c1y1 (t) + c2y2 (t) + yp (t) ;

where

yp (t) = �
1

a

�Z
y2 (t) f (t)

W (y1; y2) (t)
dt

�
y1 (t) +

1

a

�Z
y1 (t) f (t)

W (y1; y2) (t)
dt

�
y2 (t) (262)

is a particular solution of (257). The above method is called "variation of parameters" method.
It is a powerful method.

Remark 3.68 (Important.) If the equation (257) has initial conditions y (t0) = y0; y
0 (t0) =

z0; t0 2 I; then the unique solution y (t) can be expressed as

y (t) = c1y1 (t) + c2y2 (t) +

�
�1
a

�Z t

t0

y2 (s) f (s)

W (y1; y2) (s)
ds

�
y1 (t) +

1

a

�Z t

t0

y1 (s) f (s)

W (y1; y2) (s)
ds

�
y2 (t)

�
;

(263)
where c1; c2 satisfy the following (

c1y1 (t0) + c2y2 (t0) = y0

c1y
0
1 (t0) + c2y

0
2 (t0) = z0:

This is due to the fact that the particular solution

yp (t) = �
1

a

�Z t

t0

y2 (s) f (s)

W (y1; y2) (s)
ds

�
y1 (t) +

1

a

�Z t

t0

y1 (s) f (s)

W (y1; y2) (s)
ds

�
y2 (t) (264)

satis�es y (t0) = y0 (t0) = 0: To see this, we clearly have yp (t0) = 0: As for y0p (t0) = 0; we note that

y0p (t0) =

8><>:
� 1
a

�
y2(t0)f(t0)
W (y1;y2)(t0)

�
y1 (t0) + 0 � y01 (t0)

+ 1
a

�
y1(t0)f(t0)
W (y1;y2)(t0)

�
y2 (t0) + 0 � y02 (t0)

= 0: (265)

Example 3.69 (This is Exercise 5 in p. 190.) Solve the equation

y00 (t) + y (t) = 2 tan t; 0 < t <
�

2
:

Solution:

Since we know two independent solutions y1 (t) = cos t and y2 (t) = sin t of y00 (t) + y (t) = 0; we
can use variation of parameters method. We �rst compute

W (y1; y2) (t) =

���� cos t � sin t
sin t cos t

���� = 1
and by (262) we conclude

y (t) = c1 cos t+ c2 sin t+

�
�1
a

Z
y2 (t) f (t)

W (y1; y2) (t)
dt

�
y1 (t) +

�
1

a

Z
y1 (t) f (t)

W (y1; y2) (t)
dt

�
y2 (t) ;

where8><>:
� 1
a

R y2(t)f(t)
W (y1;y2)(t)

dt = �
R
(sin t) (2 tan t) dt = �2

R (1�cos2 t)
cos

dt = �2
R
(sec t� cos t) dt

1
a

R y1(t)f(t)
W (y1;y2)(t)

dt =
R
(cos t) (2 tan t) dt = 2

R
sin tdt:
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We conclude

y (t) = c1 cos t+ c2 sin t+

�
�2
Z
(sec t� cos t) dt

�
cos t+

�
2

Z
sin tdt

�
sin t

= c1 cos t+ c2 sin t+

�
�2
Z
sec tdt+ 2 sin t

�
cos t+ (�2 cos t) sin t

= c1 cos t+ c2 sin t+ (�2 log jsec t+ tan tj) cos t: (266)

�

Remark 3.70 (Compare with the reduction method.) If we use reduction method, we can let
y (t) = v (t) sin t (sin t is a solution of y00 (t) + y (t) = 0) and get

v00 (t) sin t+ 2v0 (t) cos t� v (t) sin t+ v (t) sin t = 2 tan t;

which gives (let w (t) = v0 (t))

w0 (t) + 2
cos t

sin t
� w (t) = 2

cos t
; 0 < t <

�

2

and then

w (t) = v0 (t) = e�
R
2 cos
sin t

dt

�Z
e
R
2 cos
sin t

dt 2

cos t
dt+ C

�
=

1

sin2 t

�
2

Z
sin t tan tdt+ C

�
=

1

sin2 t

�
2

Z
(sec t� cos t) dt+ C

�
=

C

sin2 t
+

1

sin2 t
(2 log jsec t+ tan tj � 2 sin t) :

Finally, we have

v (t) =

Z
C

sin2 t
dt+

Z
1

sin2 t
(2 log jsec t+ tan tj � 2 sin t) dt+K

= �C cot t+K +

Z
1

sin2 t
(2 log jsec t+ tan tj) dt| {z }�2

Z
1

sin t
dt;

where, by the integration by parts, we �ndZ
1

sin2 t
(2 log jsec t+ tan tj) dt| {z } = �

Z
(2 log jsec t+ tan tj) d (cot t)

= � (2 log jsec t+ tan tj) (cot t) + 2
Z

1

sin t
dt| {z }

and conclude

y (t) = v (t) sin t = y (t) = [�C cot t+K � (2 log jsec t+ tan tj) (cot t)] sin t
= c1 cos t+ c2 sin t� (2 log jsec t+ tan tj) cos t: (267)

We see that (267) is the same as (266). This method clearly involves more computations. This is
because we only make use of one solution sin t:

Example 3.71 (This is Exercise 10 in p. 190.) Solve the equation

y00 (t)� 2y0 (t) + y (t) =
et

1 + t2
; t 2 (�1;1) :
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Solution:

We have y1 (t) = et; y2 (t) = tet;

W (y1; y2) (t) =

���� et et

tet et + tet

���� = e2t

and so

y (t) =

 
�
Z
tet � et

1+t2

e2t
dt+ c1

!
et +

 Z
et � et

1+t2

e2t
dt+ c2

!
tet

=

�
�
Z

t

1 + t2
dt+ c1

�
et +

�Z
1

1 + t2
dt+ c2

�
tet

=

�
�1
2
log
�
1 + t2

�
+ c1

�
et +

�
tan�1 t+ c2

�
tet;

which is the general solution. �

3.9.1 Nonhomogeneous Euler equation.

One can combine the variation of parameters method and change of variables to solve a nonho-
mogeneous Euler equation, given by

t2y00 (t) + �ty0 (t) + �y (t) = f (t) ; t 2 (0;1) ; �; � constants, (268)

where f (t) can be any arbitrary continuous function de�ned on t 2 (0;1) : By the change of
variables x = log t; x 2 (�1;1) ; the above equation becomes

d2~y

dx2
+ (�� 1) d~y

dx
+ �~y (x) = F (x) ; x 2 (�1;1) ; (269)

where ~y (x) = y (ex) and F (x) = f (ex) :We can know a pair of fundamental solutions fy1 (t) ; y2 (t)g for
~y00 (x) + (�� 1) ~y0 (x) + �~y (x) = 0 and then use the variation of parameters method to �nd the
general solution ~y (x) of (269) and then change back to get y (t) : It will be the general solution of
(268).

Remark 3.72 In case the Euler equation has the form

At2y00 (t) +Bty0 (t) + Cy (t) = f (t) ; t 2 (0;1) ; A 6= 0; B; C are constants,

then equation (269) becomes

A
d2~y

dx2
+ (B � A)

d~y

dx
+ C~y (x) = F (x) : (270)

3.10 Variation of parameters method (this is Section 3.6 of the book)
for variable coe¢ cients.

The above variation of parameters method can also be applied to the equation (which has leading
coe¢ cient 1):

y00 + p (t) y0 + q (t) y = g (t) ; t 2 I; (271)

as long as we know two fundamental solutions y1 (t) and y2 (t) of the equation y00+p (t) y0+
q (t) y = 0 (here p (t) ; q (t) ; g (t) can be arbitrary continuous functions). The method is exactly
the same as the method for the case ay00 + by0 + cy = f (t) : Assume we are given two independent
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solutions y1 (t) and y2 (t) of the equation y00 + p (t) y0 + q (t) y = 0 on I and assume that u1 (t) and
u2 (t) satisfy the equation (

u01 (t) y1 (t) + u02 (t) y2 (t) = 0

u01 (t) y
0
1 (t) + u02 (t) y

0
2 (t) = g (t)

; t 2 I: (272)

Then we will have (here y (t) = u1 (t) y1 (t) + u2 (t) y2 (t))

y00 (t) + p (t) y0 (t) + q (t) y (t)

=

(
[g (t) + u1 (t) y

00
1 (t) + u2 (t) y

00
2 (t)] + p (t) [u1 (t) y

0
1 (t) + u2 (t) y

0
2 (t)]

+q (t) [u1 (t) y1 (t) + u2 (t) y2 (t)]

=

8>>><>>>:
g (t) + u1 (t)

�
y001 (t) + p (t) y01 (t) + q (t) y1 (t)| {z }

�
+u2 (t)

�
y002 (t) + p (t) y02 (t) + q (t) y2 (t)| {z }

� = g (t) ; t 2 I;

which means that y (t) = u1 (t) y1 (t) + u2 (t) y2 (t) ; t 2 I; does satisfy the equation (271). Similar
to (262), we get a particular solution for (271):

yp (t) =

�
�
Z

y2 (t) g (t)

W (y1; y2) (t)
dt

�
y1 (t) +

�Z
y1 (t) g (t)

W (y1; y2) (t)
dt

�
y2 (t) ; t 2 I (273)

and if we want to �nd the solution y (t) of (271) with y (t0) = y0; y
0 (t0) = z0; t0 2 I; then the

solution is given by

y (t) = c1y1 (t) + c2y2 (t) + yp (t) ; t 2 I; c1; c2 constants, (274)

where now we choose yp (t) as

yp (t) =

�
�
Z t

t0

y2 (s) g (s)

W (y1; y2) (s)
ds

�
y1 (t) +

�Z t

t0

y1 (s) g (s)

W (y1; y2) (s)
ds

�
y2 (t) ; t 2 I (275)

(the above yp (t) satis�es yp (t0) = y0p (t0) = 0) and choose c1; c2 satisfying(
c1y1 (t0) + c2y2 (t0) = y0

c1y
0
1 (t0) + c2y

0
2 (t0) = z0:

(276)

Example 3.73 Find the general solution of the equation

ty00 (t)� (1 + t) y0 (t) + y (t) = t2e2t; t 2 (0;1) ; (277)

given that y1 (t) = 1 + t and y2 (t) = et is a pair of fundamental solutions for the corresponding
homogeneous equation.

Solution:

To apply the variation of parameters method, we need to rewrite the equation to have leading
coe¢ cient of y00 (t) equal to 1: We have

y00 (t)�
�
1 + t

t

�
y0 (t) +

1

t
y (t) = te2t; t 2 (0;1) ;
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and obtain g (t) = te2t: By the variation of parameters method, we have

yp (t) =

�
�
Z

y2 (t) g (t)

W (y1; y2) (t)
dt

�
y1 (t) +

�Z
y1 (t) g (t)

W (y1; y2) (t)
dt

�
y2 (t) ; t 2 (0;1) ;

where

W (y1; y2) (t) =

���� 1 + t et

1 et

���� = tet:

Hence

yp (t) =

�
�
Z
et � te2t
tet

dt

�
(1 + t) +

�Z
(1 + t) � te2t

tet
dt

�
et

=

�
�
Z
e2tdt

�
(1 + t) +

�Z
(1 + t) etdt

�
et

=

�
�1
2
e2t
�
(1 + t) +

�
tet
�
et =

1

2
(t� 1) e2t:

and conclude the general solution for equation (277):

y (t) = C1 (1 + t) + C2e
t +

1

2
(t� 1) e2t; t 2 (0;1) :

�

To end this section, we look at one more interesting example arising from "mechanics of
vibrations".

Example 3.74 Consider the equation

y00 (t) + y (t) = g (t) ; g (t) is continuous on I

with initial condition
y (t0) = y0; y0 (t0) = z0; t0 2 I:

This equation appears frequently in mechanics of vibrations. If we choose y1 (t) = cos t; y2 (t) =
sin t; then by Remark 3.68 the particular solution yp (t) (with yp (t0) = y0p (t0) = 0) in (264) is given
by

yp (t) = �y1 (t)
Z t

t0

y2 (s) g (s)

W (y1; y2) (s)
ds+ y2 (t)

Z t

t0

y1 (s) g (s)

W (y1; y2) (s)
ds; W (y1; y2) (s) � 1

= � (cos t)
Z t

t0

g (s) sin sds+ (sin t)

Z t

t0

g (s) cos sds

=

Z t

t0

g (s) sin (t� s) ds; t 2 I (278)

Then the solution satisfying the initial condition is given by the nice formula:

y (t) = y0 cos (t� t0) + z0 sin (t� t0) +

Z t

t0

g (s) sin (t� s) ds; t 2 I: (279)

Now assume that I = (�1;1) and g (t) is a 2�-periodic function de�ned on (�1;1) (g (t)
usually comes from the external force acting on the mechanical system, say string vibration). The
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particular solution yp (t) in (278) may not be 2�-periodic in general (but the homogeneous
part y0 cos (t� t0) + z0 sin (t� t0) is clearly 2�-periodic). Note that we have

yp (t+ 2�)� yp (t)

=

8><>:
h
� (cos (t+ 2�))

R t+2�
t0

g (s) sin sds+ (sin (t+ 2�))
R t+2�
t0

g (s) cos sds
i

�
h
� (cos t)

R t
t0
g (s) sin sds+ (sin t)

R t
t0
g (s) cos sds

i
= � (cos t)

Z t+2�

t

g (s) sin sds| {z }+(sin t)
Z t+2�

t

g (s) cos sds| {z }
= � (cos t)

Z 2�

0

g (s) sin sds+ (sin t)

Z 2�

0

g (s) cos sds

and so if the 2�-periodic function g (s) satis�esZ 2�

0

g (s) sin sds =

Z 2�

0

g (s) cos sds = 0; (280)

we would have yp (t+ 2�) = yp (t) for all t 2 (�1;1) : If we take g (t) = cos t ((280) is not
satis�ed), then yp (t) =

1
2
t sin t is a particular solution (with yp (0) = y0p (0) = 0), but it is not

2�-periodic even that g (t) = cos t is 2�-periodic. In fact, one can see that yp (t) in (278) is 2�-
periodic if and only if g (t) is 2�-periodic and satis�es (280), for example, say g (t) = cos 2t:

3.11 Summary of solution methods.

Remark 3.75 (Useful.) This is a summary for solving the nonhomogeneous equation: ay00+ by0+
cy = g (t) ; t 2 I; where a; b; c are constants with a 6= 0 and g (t) is a continuous nonzero function
on I: Here you can easily �nd two independent solutions y1 (t) and y2 (t) of ay00 + by0 + cy = 0:

1. In case g (t) is of the form Pn (t) e
�t; Pn (t) e

�t cos �t; Pn (t) e
�t sin �t; where Pn (t) is a poly-

nomial with degree n and �; �; � 2 R with � > 0; use the method of undetermined
coe¢ cients (the easiest way).

2. In case g (t) is not of the form in (1) ; you can use decomposition method, or reduction
method, or variation of parameters method. Variation of parameters method seems
to be the best one.

Remark 3.76 (Useful.) This is a summary for solving the nonhomogeneous equation: y00+p (t) y0+
q (t) y = g (t) ; t 2 I; where p (t) ; q (t) ; g (t) are a continuous functions on I: Here we are given
one nonzero solution y1 (t) of the homogeneous equation y00 + p (t) y0 + q (t) y = 0 on I:

1. In case g (t) � 0 on I; use reduction method orWronskian method.

2. In case g (t) is nonzero on I; use reduction method.

3. In case we know two independent solutions y1 (t) ; y2 (t) (fundamental set of solutions) of
y00+p (t) y0+q (t) y = 0 on I; use variation of parameters method (to be explained below).

Remark 3.77 (Useful.) Finally, if an equation has the Euler form

At2y00 (t) +Bty0 (t) + Cy (t) = f (t) ; t 2 (0;1) ; A 6= 0; (281)

then use the change of variables x = log t to convert it into the form

A~y00 (x) + (B � A) ~y0 (x) + C~y (x) = F (x) ; x 2 (�1;1) ; (282)
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and solve ~yp (x) using either the method of undetermined coe¢ cients (if F (s) has the form in
Table 3.5.1 in p. 182) or variation of parameters (if F (s) is arbitrary) to �nd ~yp (x) and then go
back to yp (t) : On the other hand, once we know y1 (t) and y2 (t) for At2y00 (t) +Bty0 (t) +Cy (t) =
0; one can also use variation of parameters method directly to the original equation (281).

END OF PART I, 2020-11-19
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