
PDE Teaching for Spring, 2022

Revised on 2022-4-14

Remark 0.1 This notes is based on "Lecture-notes-on-PDE-�rst-part-2022.tex".

1 Second order linear PDE with constant coe¢ cients; clas-
si�cation and canonical form.

We now consider the linear second order equation with constant coe¢ cients, given by

auxx + 2buxy + cuyy + 2dux + 2euy + ku = f (x; y) ; u = u (x; y) (1)

where a; :::; k are all constants with a2 + b2 + c2 > 0 and f (x; y) is a given function de�ned on
some open set 
 � R2:We want to �nd a C2 function u (x; y) satisfying (1) on some open set (may
be just a subset of 
). Note that for a C2 function u (x; y) ; we have uxy (x; y) = uyx (x; y) on its
domain.

Remark 1.1 Note that if u = u (x1; ::: ; xn) depends on n variables, the discussions below are
similar. For convenience, we assume that u = u (x; y) depends only on 2 variables.

We can write (1) in the matrix form as

Trace

��
a b
b c

��
uxx uxy
uxy uyy

��
+ 2

�
d
e

�
�
�
ux
uy

�
+ ku = f (x; y) ; (2)

which is helpful for us to understand the e¤ect of the change of variables. As we shall see soon, the
"type" of the equation (1) is determined by the sign of the determinant of the coe¢ cient matrix.

Remark 1.2 We shall use the notation TrA to denote the trace of a square n�n matrix A 2M (n).
The basic properties of the trace operator are(

Tr (c1A+ c2B) = c1Tr (A) + c2Tr (B)

Tr (A) = Tr
�
AT
�
; T r (P�1AP ) = Tr (A) ; T r (AB) = Tr (BA) ;

where A; B; P 2M (n) ; P is invertible, and c1; c2 2 R: However, unlike det (AB) = det (A) det (B) ; we
do not have Tr (AB) = Tr (A)Tr (B) :

Lemma 1.3 Assume u (x; y) is a C2 function de�ned on some domain 
 � R2: If we introduce the
linear change of variables given by

� = � (x; y) = Ax+By; � = � (x; y) = Cx+Dy; A; B; C; D are all const., (3)

i.e., �
�
�

�
= J

�
x
y

�
; where J =

�
A B
C D

�
; det J 6= 0; (4)

then the equation (2) for the function U (�; �) (where U (Ax+By;Cx+Dy) = u (x; y)) becomes

Tr

24J � a b
b c

�
JT| {z } �

�
U�� U��
U�� U��

�35+ (lower order terms) = F (�; �) ; (5)

where Tr (�) is the trace of a matrix.
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Remark 1.4 Denote

M =

�
a b
b c

�
; N = J

�
a b
b c

�
JT ; det J 6= 0: (6)

We see that the matrix N is also symmetric. By a theorem from linear algebra, all eigenvalues
of both M and N are real. Moreover, the sign of detM and detN are the same due to detN =
(det J)2 detM; where det J 6= 0: In particular, the sign of the eigenvalues �1; �2 are unchanged
under the change of variables. Finally, if J is an orthogonal matrix (i.e. JT = J�1), then both
M and N are similar and have the same eigenvalues. Our goal is to diagonalize M (i.e. make
N to be diagonal), which will reduce equation (1) into canonical form.

Proof. We have
U (Ax+By;Cx+Dy) = u (x; y) ;

and by the chain rule we have

ux = AU� + CU�; uy = BU� +DU�;

�
ux
uy

�
= JT

�
U�
U�

�
; (7)

which is equivalent to the operator identities:

@

@x
= A

@

@�
+ C

@

@�
;

@

@y
= B

@

@�
+D

@

@�
;

which can be written as�
�
�

�
= J

�
x
y

�
;

�
@
@x
@
@y

�
= JT

� @
@�
@
@�

�
; J =

�
A B
C D

�
: (8)

One step furthermore, we get8>>>><>>>>:
@2

@x2
= @

@x

�
@
@x

�
=
�
A @
@�
+ C @

@�

�
(� � �) = A2 @

2

@�2
+ 2AC @2

@�@�
+ C2 @

2

@�2

@2

@x@y
= @

@x

�
@
@y

�
=
�
A @
@�
+ C @

@�

�
(� � �) = AB @2

@�2
+ (AD +BC) @2

@�@�
+ CD @2

@�2

@2

@y2
= @

@y

�
@
@y

�
=
�
B @
@�
+D @

@�

�
(� � �) = B2 @2

@�2
+ 2BD @2

@�@�
+D2 @2

@�2
;

i.e. we have �
@
@x
@
@y

�
= JT

� @
@�
@
@�

�
;

 
@2

@x2
@2

@x@y
@2

@x@y
@2

@y2

!
= JT

 
@2

@�2
@2

@�@�
@2

@�@�
@2

@�2

!
J; (9)

which means �
ux
uy

�
= JT

�
U�
U�

�
;

�
uxx uxy
uxy uyy

�
= JT

�
U�� U��
U�� U��

�
J : (10)

Thus the equation

Trace

��
a b
b c

��
uxx uxy
uxy uyy

��
+ (lower order terms) = f (x; y)

becomes (note that for any two matrices A; B; we have the identity Trace (AB) = Trace (BA) in
linear algebra)

Trace

"�
a b
b c

�
� JT

�
U�� U��
U�� U��

�
J

#
+ (lower order terms)

= Trace

"
J

�
a b
b c

�
JT �

�
U�� U��
U�� U��

�#
+ (lower order terms) = F (�; �) (11)

The proof is done. �
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De�nition 1.5 Since the matrix

M =

�
a b
b c

�
is symmetric, it has two real eigenvalues �1 and �2: If both of them are positive (or both are
negative), then we say the equation (1) is elliptic (this is equivalent to detM = ac�b2 > 0). If one
eigenvalue is positive and the other is negative, we say the equation is hyperbolic (this is equivalent
to detM = ac� b2 < 0). If one eigenvalue is zero and the other is nonzero, we say the equation is
parabolic (this is equivalent to detM = ac� b2 = 0). Note that by

det

�
J

�
a b
b c

�
JT
�

| {z } = (det J)2 det
�
a b
b c

�
; where det J 6= 0;

we see that the type of the linear equation (2) is invariant under a linear change of
variables.

Since the matrix M in (6) is symmetric, by linear algebra theory, we can �nd orthonormal
basis fv1; v2g (they are eigenvectors corresponding to �1; �2) such that

P TMP =

�
�1 0
0 �2

�
; P T = P�1; (12)

where P is the orthogonal matrix P = (v1; v2) (v1; v2 are column vectors of P ). Assume that
v1 = (�; �) and v2 = (p; q) and let�

�
�

�
= J

�
x
y

�
=

�
� �
p q

��
x
y

�
; J =

�
� �
p q

�
= P T ; (13)

i.e. J = P T : We have

Trace

24J � a b
b c

�
JT| {z } �

�
U�� U��
U�� U��

�35 = Trace

24P T � a b
b c

�
P| {z } �
�
U�� U��
U�� U��

�35
= Trace

24� �1 0
0 �2

�
| {z } �

�
U�� U��
U�� U��

�35 = �1U�� + �2U��| {z }; (14)

which will reduce the leading terms auxx+2buxy + cuyy + � � � of the PDE (1) into canonical form
!!

Remark 1.6 (Omit this in class.) (Important.) In case the original equation (1) is already a
Laplace equation uxx+ uyy = 0; then the matrix M = I is the identity matrix and any orthogonal
matrix P will make

P TMP = P T IP = P TP =

�
1 0
0 1

�
; P = (v1; v2) :

With this, (5) becomes

Trace

24J � 1 0
0 1

�
JT| {z } �

�
U�� U��
U�� U��

�35 ; J = P T ; JJT = P TP = I

= Trace

�
JJT �

�
U�� U��
U�� U��

��
= U�� + U�� = 0; (15)
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which means that under any orthogonal linear change of variables (x; y) ! (�; �) ; the new
equation for U (�; �) still has the same form

U�� + U�� = 0: (16)

That means if u (x; y) is a solution of the Laplace equation uxx+uyy = 0 and (x; y) ! (�; �) is an
orthogonal linear change of variable, then the corresponding new function U (�; �) will also satisfy
the same equation U�� + U�� = 0:

Remark 1.7 (Omit this in class.) (Important.) The space of all 2� 2 orthogonal matrices
forms a group, which we denote it as O (2) : It is known that the group O (2) is the set of all
rotations about the origin O in R2 (they have det = 1) together with all re�ections with
respect to straight lines through the origin O in R2 (they have det = �1). In terms of the
polar coordinates (r; �) ; the �rst case corresponds to � ! � + �0 (�0 may be positive or negative)
and the second case, if we do re�ection with respect to the x-axis, corresponds to � ! ��. Note
that the Laplace equation under polar coordinates (r; �) has the form�

@2

@r2
+
1

r

@

@r
+
1

r2
@2

@�2

�
U (r; �) = 0

and one can see that if U (r; �) is a solution, so is U (r; � + �0) (rotation about the origin); the same
for U (r;��) (re�ection with respect to the x-axis).

By (14), we can conclude the following classi�cation result for equation (1):

Lemma 1.8 (Canonical form.) If the linear equation (2) is elliptic, then one can �nd a suitable
linear change of variables (using eigenvalues and eigenvectors)

� = Ax+By; � = Cx+Dy; A; B; C; D are constants,

so that the equation for U (�; �) has the form

U�� + U�� + (lower order terms) = F (�; �) : (17)

For hyperbolic case, the equation has the form

U�� � U�� + (lower order terms) = F (�; �) ; (18)

and for parabolic case, the equation has the form

U�� + (lower order terms) = F (�; �) : (19)

Remark 1.9 The forms in (17), (18) and (19) are said to be in canonical forms. Another canon-
ical form of the hyperbolic case is

U�� + (lower order terms) = F (�; �) : (20)

One can show that an equation of the form uxx � uyy = 0 can be converted into an equation of the
form 4U�� = 0 (by the change of variables � = x + y; � = x � y). Therefore, canonical form (18)
and (20) are equivalent.

Proof. For the elliptic case, by multiplying the equation by a minus sign if necessary, we may
assume �1 > 0; �2 > 0 (both are eigenvalues of the coe¢ cient matrix). By the change of variables
(13), we can convert in into the form

�1U�� + �2U�� + (lower order terms) = F (�; �) ; �1 > 0; �2 > 0:
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If we let
~� =

�p
�1
; ~� =

�p
�2
; ~U

�
~�; ~�
�
= U

�p
�1~�;

p
�2~�
�
; (21)

then we have

�1U�� + �2U�� + (lower order terms); where �1 > 0; �2 < 0

= ~U~�~�

�
~�; ~�
�
+ ~U~�~�

�
~�; ~�
�
+ (lower order terms) = ~F

�
~�; ~�
�
:

Thus we have arrived at the form (17). For the hyperbolic case, we have �1 > 0; �2 < 0: Then
we replace (21) by

~� =
�p
�1
; ~� =

�p
��2

; ~U
�
~�; ~�
�
= U

�p
�1~�;

p
��2~�

�
(22)

and get

�1U�� + �2U�� + (lower order terms); where �1 > 0; �2 < 0

= ~U~�~�

�
~�; ~�
�
� ~U~�~�

�
~�; ~�
�
+ (lower order terms) = ~F

�
~�; ~�
�
:

For the parabolic case, by multiplying the equation by a minus sign if necessary, we may assume
�1 > 0; �2 = 0. Then we replace (21) by

~� =
�p
�1
; ~� = �; ~U

�
~�; ~�
�
= U

�p
�1~�; ~�

�
(23)

and get

�1U�� + �2U�� + (lower order terms); where �1 > 0; �2 = 0

= ~U~�~�

�
~�; ~�
�
+ (lower order terms) = ~F

�
~�; ~�
�

The proof is done. �

De�nition 1.10 In case equation (1) is parabolic with canonical form

U�� + (lower order terms) = F (�; �) ; (24)

and there is no U� term in (lower order terms) of (24), we say the equation is degenerate. Oth-
erwise, we say it is nondegenerate. A degenerate parabolic equation is just a second order ODE
in � of the form (view � as a parameter):

U�� + aU� + bU = F (�; �) ; a; b are constants. (25)

We will not study a degenerate parabolic equation. From now on, if we study a parabolic equation,
we always assume that it is nondegenerate.

1.1 Re�ned canonical form; getting rid of the �rst derivative terms.

One can go further to get rid of the �rst derivative terms in (17), (18) and (19) of Lemma 1.8.
For simplicity, we can just look at two examples.
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Example 1.11 (For elliptic and hyperbolic equations.) Assume we have an elliptic equation
in canonical form:

U�� + U�� + 3U� + 4U� + 5U = F (�; �) ; (26)

where we can write is as �
U�� + 3U�| {z }

�
+

�
U�� + 4U�| {z }

�
+ 5U = F (�; �)

We let v (�; �) be the new function given by

v (�; �) = ea�+b�U (�; �)

for some constants a; b and we choose a = 3=2; b = 4=2 to get

v (�; �) = e
3
2
�+ 4

2
�U (�; �) (27)

and compute

v� = e
3
2
�+ 4

2
�

�
3

2
U + U�

�
; v� = e

3
2
�+ 4

2
�

�
4

2
U + U�

�
(28)

and

v�� = e
3
2
�+ 4

2
�

�
9

4
U + 3U� + U��| {z }

�
; v�� = e

3
2
�+ 4

2
�

�
4U + 4U� + U��| {z }

�
: (29)

Hence we obtain

v�� + v�� = e
3
2
�+ 4

2
�

��
U�� + 3U�| {z }

�
+

�
U�� + 4U�| {z }

�
+

�
9

4
+ 4

�
U

�
and conclude

v�� + v�� = e
3
2
�+ 4

2
�

0@U�� + 3U� + U�� + 4U� + 5U| {z }+
z }| {�
9

4
+ 4

�
U � 5U

1A
=
5

4
v + e

3
2
�+ 4

2
�F (�; �) ;

i.e.
v�� + v�� �

5

4
v = � (�; �) ; where � (�; �) = e

3
2
�+ 4

2
�F (�; �) : (30)

The new equation for v has no �rst derivatives terms. Note that, in general, one cannot choose
two constants a and b to get rid of the three terms 3U�+4U�+5U: Therefore, the term � (5=4) v in
(30) cannot be removed in general. The same result holds for the hyperbolic equation.

Example 1.12 (For nondegenerate parabolic equations.) Assume we have the nondegener-
ate parabolic equation in canonical form:

U�� + 3U� + 4U� + 5U = F (�; �) : (31)

where we can write is as �
U�� + 3U�| {z }

�
+

�
4U� + 5U| {z }

�
= F (�; �) : (32)

Now we let v (�; �) be the new function given by

v (�; �) = e
3
2
�+��U (�; �) ; � is a constant to be determined (33)
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and compute 8>>><>>>:
v� = e

3
2
�+�� �

�
3
2
U + U�

�
; v� = e

3
2
�+�� �

�
�U + U�| {z }

�
;

v�� = e
3
2
�+��

�
9
4
U + 3U� + U��| {z }

�
;

(34)

where, since there is no U�� term in the original equation, we do not have to compute v�� (otherwise,
we will get U�� and this does not make sense). Now, unlike the elliptic case in which we can compute
v�� to produce the term U� (see (29)), here to produce the term 4U� in (32), the only method is
to look at 4v� and get

4v� = e
3
2
�+�� �

�
4�U + 4U�| {z }

�
: (35)

Now we conclude

v�� + 4v� = e
3
2
�+��

�
9

4
U + 3U� + U��| {z }+4�U + 4U�| {z }

�

= e
3
2
�+��

0@U�� + 3U� + 4U� + �9
4
+ 4�

�
U| {z }
1A : (36)

By (??), if we choose � = 11=16; we will have (9=4 + 4�)U = 5U and (36) becomes

v�� + 4v� = � (�; �) ; where � (�; �) = e
3
2
�+ 11

16
�F (�; �) : (37)

As a comparison, we see that we have got rid of the terms 3U� and 5U in (37). From the above
computation, we also see that it is impossible to reduce the nondegenerate parabolic equation
(31) into the form

v�� + cv = 0 (38)

for some constant c:

By the above two examples, we can improve Lemma 1.8 as:

Theorem 1.13 (Re�ned canonical form.) If the linear equation (2) is elliptic, then one can
�nd a suitable linear change of variables (using eigenvalues, eigenvectors and scalings) and
multiply the solution by some suitable exponential function so that, eventually, the equation
has the form

v�� + v�� = cv + � (�; �) ; v = v (�; �) ; (39)

for some constant c 2 (�1;1) and some function � (�; �) : If the equation (2) is hyperbolic, the
equation has the form

v�� � v�� = cv + � (�; �) ; v = v (�; �) ; (40)

for some constant c 2 (�1;1) and some function � (�; �) : If the equation (2) is parabolic and
nondegenerate, the equation has the form

v�� = cv� + � (�; �) ; v = v (�; �) ; (41)

for some constant c 2 (�1;1) ; c 6= 0; and some function � (�; �) :

Proof. The proof is now obvious. We omit it. �
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Remark 1.14 (Important.) The constant c in the elliptic case can be c > 0 or c = 0 or c <
0: For c > 0; we can make it equal to 1 by doing the change of variables

~� =
p
c�; ~� =

p
c�; ~v

�
~�; ~�
�
= v

 
~�p
c
;
~�p
c

!

and for c < 0; we can make it equal to �1 by doing the change of variables

~� =
p
�c�; ~� =

p
�c�; ~v

�
~�; ~�
�
= v

 
~�p
�c

;
~�p
�c

!
:

Thus in the elliptic case, we may simply assume c = 1 or 0 or �1: The constant c in the hyperbolic
case can be c > 0 or c = 0 or c < 0: For c < 0; by switching the role of � and �; we may assume c >
0 or c = 0: Hence for the hyperbolic case, eventually, we can simply assume c = 1 or 0: Finally,
for the parabolic case, the constant c 6= 0 can be c > 0 or c < 0: So eventually we can simply
assume c = 1 or �1: However, since most parabolic equations come from physical phenomenon
involving the behavior of some quantity v (�; �) depending on space and time. So � will represent
space variable (we rewrite it as x) and � will represent time variable (we rewrite it as t). In that
case a nondegenerate parabolic equation in its re�ned canonical form looks like (assume
� (�; �) = 0 for simplicity)

(1) : vt = vxx or (2) : vt = �vxx; (42)

where, physically, the quantity vxx describes the process due to di¤usion (say, from high temperature
to low temperature, or from high concentration to low concentration, ... etc). We call (1) the
"forward heat equation" (or just heat equation) and (2) the "backward heat equation".
Since in reality, time cannot go backwards, so in a parabolic equation, we always fucus on the
behavior of a solution v (x; t) as time goes forwards, i.e., as t is increasing. One can use
simple examples to see that, as time goes forwards, the heat equation (1) will make solution
better, while the backward heat equation (2) will make solution worse (look at e�t sin x and et sin x
respectively). Thus, as time goes forwards, equation (1) is well-posed, while (2) is ill-posed.
Hence, we will focus only on (1).

Finally, by the above remark, we conclude the following �nal canonical form:

Theorem 1.15 (Final canonical form.) If the linear equation (2) is elliptic, then one can
�nd a suitable linear change of variables (using eigenvalues, eigenvectors and scalings) and
multiply the solution by some suitable exponential function so that, eventually, the equation has
the form

v�� + v�� =

8>><>>:
v + � (�; �) ;

� (�; �) ;

�v + � (�; �) ;

(43)

where v = v (�; �). If the equation (2) is hyperbolic, the equation has the form

v�� � v�� =
(
v + � (�; �) ;

� (�; �) ;
(44)

where v = v (�; �). If the equation (2) is parabolic, nondegenerate and forward, the equation
has the form

v�� = v� + � (�; �) ; v = v (�; �) : (45)

Proof. The proof is now obvious. We omit it. �
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Corollary 1.16 If the equation (1) has the form

auxx + 2buxy + cuyy + 2dux + 2euy = 0; (46)

where a; :::; e are all constants with a2 + b2 + c2 > 0; then one can reduce it into one of the
canonical forms

v�� + v�� = 0; v�� � v�� = 0; v�� � v� = 0; v = v (�; �) : (47)

De�nition 1.17 Let v = v (�; �) : The equations v��+v�� = 0; v���v�� = 0 (view � as time), v� =
v�� (view � as time), are called Laplace equation (elliptic equation), wave equation (hyper-
bolic equation), and heat equation (nondegenerate forward parabolic equation), respec-
tively.

Remark 1.18 In this elementary course we will focus only on Laplace equation, wave equation
and heat equation, or focus only on equation (48) below.

2 General solutions of hyperbolic equations without lower
order terms.

In this section, we look at equations of the following form with no lower order terms and f (x; y) � 0,
i.e.

auxx + 2buxy + cuyy = 0; u = u (x; y) ; a; b; c are const., (48)

where a; b; c are constants with a2 + b2 + c2 > 0: (48) can be written as

Trace

��
a b
b c

��
uxx uxy
uxy uyy

��
= 0; det

�
a b
b c

�
= ac� b2:

We want to �nd general C2 solution u = u (x; y) of (48) de�ned on R2: The canonical form of
(48) is given by 8>><>>:

U�� + U�� = 0 (detM > 0; elliptic)

U�� � U�� = 0 or U�� = 0 (detM < 0; hyperbolic)

U�� = 0 (detM = 0; parabolic but degenerate),

(49)

whereM is the coe¢ cient matrix of (48). The result is that, for hyperbolic and parabolic cases
in (49), we can solve them easily (but not for elliptic equation). The method is either by a
change of variables (diagonalization method) or by a factorization method.

Lemma 2.1 Let A; B; C; D be constants with AD �BC 6= 0: Consider the �rst order equation

Aux +Buy = g (Dx� Cy) ; u = u (x; y) (50)

where g (�) is a given continuous function de�ned on R. Then the general solution of (50) is given
by

u (x; y) = F (Bx� Ay) +G (Dx� Cy) ; (51)

where F (�) is an arbitrary C1 function de�ned on R and the C1 function G (�) satis�es

G0 (�) =
g (�)

AD �BC ; 8 � 2 (�1;1) : (52)

In particular, if the function g (�) on R is arbitrary, then the function G (�) on R is also arbitrary.
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Remark 2.2 The condition AD �BC 6= 0 is necessary. The case AD �BC = 0 will be discussed
later on. See (81).

Remark 2.3 Also note that AD�BC 6= 0 implies that the two families of lines Bx�Ay = �; Dx�
Cy = � are not parallel. As a consequence of this, the two terms F (Bx� Ay) ; G (Dx� Cy) in
(58) are essentially di¤erent.

Proof. We do the linear change of variables

w = Bx� Ay; z = Dx� Cy; Jacobian is

���� B �A
D �C

���� = AD �BC 6= 0;

which is a global linear change of variables from xy-space to wz-space. Now the function u (x; y)
becomes U (w; z) and we have

Aux +Buy = A [UwB + UzD] +B [Uw (�A) + Uz (�C)] = (AD �BC)Uz = g (z) ;

which gives

Uz =
g (z)

AD �BC ; AD �BC 6= 0

and so
U (w; z) = F (w) +G (z) = F (Bx� Ay) +G (Dx� Cy) ;

where G0 (z) = g(z)
AD�BC : The proof is done. �

2.1 Solving hyperbolic equations; factorization method.

Lemma 2.4 Let a; b; c be three given constants with ac < b2 (same as b2� ac > 0): Then one can
�nd constants A; B; C; D satisfying

AC = a; AD +BC = 2b; BD = c: (53)

In particular, we have

(AD �BC)2 = 4
�
b2 � ac

�
> 0; AD �BC 6= 0: (54)

This means that, if we have b2�ac > 0; we can factor the second order homogeneous polynomial ax2+
2bxy + cy2 as

ax2 + 2bxy + cy2 = (Ax+By) (Cx+Dy) ; AD �BC 6= 0; (55)

where the two lines Ax + By = 0; Cx + Dy = 0 on R2 are not parallel (same as Bx � Ay =
0; Dx� Cy = 0 are not parallel).

Remark 2.5 If ac > b2; then (53) and (55) cannot be satis�ed (check it yourself). Therefore, the
method in this section cannot be used to elliptic equations.

Remark 2.6 If a = 1; we can choose A = C = 1; and then solve

B +D = 2b; BD = c

to get
B = b�

p
b2 � c; D =

c

b�
p
b2 � c

; for c 6= 0

and
B = 2b; D = 0; for c = 0:

10



Remark 2.7 If a > 0; b = 0; c < 0; we can choose A = C =
p
a and B =

p
�c; D = �

p
�c:

Proof. (Read it yourself. We omit it.) If a = 0; then by ac = 0 < b2; we must have b 6= 0: The
numbers

A = 1; B =
c

2b
; C = 0; D = 2b;

satisfy (53). If c = 0; then we still have b 6= 0: The numbers

A =
a

2b
; B = 1; C = 2b; D = 0;

satisfy (53). If ac 6= 0; then b+
p
b2 � ac 6= 0 and b�

p
b2 � ac 6= 0: The numbers

A = 1; B =
b+
p
b2 � ac
a

; C = a; D =
ac

b+
p
b2 � ac

satisfy (53). Finally, in each case we can see that AD �BC 6= 0: �

We now focus on the hyperbolic (ac� b2 < 0) case in (48). That is, the eigenvalues �1; �2 of
the coe¢ cient matrix have di¤erent sign and we may assume �1 > 0; �2 < 0:

Lemma 2.8 (Factorization method for hyperbolic equation.) Assume (48) is hyperbolic, i.e.,
ac < b2. Then one can decompose it as

auxx + 2buxy + cuyy =

�
A
@

@x
+B

@

@y

���
C
@

@x
+D

@

@y

�
u

�
= 0 (56)

for some constants A; B; C; D satisfying

AC = a; AD +BC = 2b; BD = c; AD �BC 6= 0: (57)

In particular, the general solution of (48) is given by

u (x; y) = F (Bx� Ay) +G (Dx� Cy) ; (x; y) 2 R2 (58)

for arbitrary C2 functions F (�) ; G (�) de�ned on R:

Proof. For a C2 function u; we have�
A
@

@x
+B

@

@y

���
C
@

@x
+D

@

@y

�
u

�
= A (Cux +Duy)x +B (Cux +Duy)y = ACuxx + (AD +BC)uxy +BDuyy:

Now by Lemma 2.4, there are numbers A; B; C; D satisfying

AC = a; AD +BC = 2b; BD = c; AD �BC 6= 0: (59a)

Hence, for a C2 function u; it satis�es auxx + 2buxy + cuyy = 0 if and only if it satis�es�
A
@

@x
+B

@

@y

���
C
@

@x
+D

@

@y

�
u

�
= 0; (60)

where A; B; C; D satisfy (59a). We can �nd solutions of (60) by solving two �rst order PDE. Let

v =

�
C
@

@x
+D

@

@y

�
u:

11



It satis�es
�
A @
@x
+B @

@y

�
v = 0: Hence v (x; y) = f (Bx� Ay) for arbitrary C1 function f and the

equation for u becomes
Cux +Duy = f (Bx� Ay) ; f 2 C1:

By Lemma 2.1, the general solution for u (x; y) is

u (x; y) = G (Dx� Cy) + F (Bx� Ay) ; (x; y) 2 R2;

where F; G are two arbitrary C2 functions de�ned on (�1;1) (since we want u (x; y) to be a C2
solution, we must require F; G to be C2 functions). The proof is done. �

Remark 2.9 (Important.) Lemma 2.8 says that to solve the second order hyperbolic equation, it
su¢ ces to solve two �rst order equations.

De�nition 2.10 We call the 2-parameter family of lines

Bx� Ay = �; Dx� Cy = �; AD �BC 6= 0

where �; � are arbitrary constants, the characteristic lines of the hyperbolic equation (56).

Example 2.11 Consider the second order linear equation in two variables:

uxx � 4uxy � 2uyy = 0; (x; y) 2 R2; u = u (x; y) : R2 ! R:

What is the type (elliptic, hyperbolic, or parabolic) of this equation ? Use factorization method
to �nd the general solution of the equation.

Solution:

The equation has the form auxx + 2buxy + cuyy = 0; where a = 1; b = �2; c = �2 and
ac� b2 = �6 < 0: Therefore the equation is hyperbolic. We know that one can decompose it into
two �rst order equations of the form (by Remark 2.6, we can choose A = C = 1)

uxx � 4uxy � 2uyy = (@x +B@y) (@x +D@y)u = uxx + (B +D)uxy +BDuyy:

Thus we solve B; D to satisfy the equation (note that now we have A = C = 1)

B +D = �4; BD = �2:

We obtain (B;D) =
�
�2 +

p
6;�2�

p
6
�
or (B;D) =

�
�2�

p
6;�2 +

p
6
�
: Thus we choose (B;D) =�

�2 +
p
6;�2�

p
6
�
and get

uxx � 4uxy � 2uyy =
h
@x +

�
�2 +

p
6
�
@y

i h
@x +

�
�2�

p
6
�
@y

i
u (61)

and the general solution is

u (x; y) = F (Bx� Ay) +G (Dx� Cy) = F
��
�2 +

p
6
�
x� y

�
+G

��
�2�

p
6
�
x� y

�
= F

��p
6� 2

�
x� y

�
+G

��p
6 + 2

�
x+ y

�
; (62)

where F (z) : R! R and G (z) : R! R are two arbitrary C2 functions. �

Remark 2.12 In terms of polynomial, the decomposition (61) is the same as

x2 � 4xy � 2y2 =
�
x+

�
�2 +

p
6
�
y
��

x+
�
�2�

p
6
�
y
�
: (63)
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2.2 Solving hyperbolic equations; change of variables method.

Remark 2.13 By (66) below, we see that this method is essentially the same as the factorization
method. Computationally, you can just use the factorization method. Note that solving the equation
U�� = 0 is the same as solving two �rst order equations. See equation (60) also.

We can also use a change of variables method to solve the equation

auxx + 2buxy + cuyy = 0; where ac < b2: (64)

Introduce the change of variables

� = Bx� Ay; � = Dx� Cy; Jacobian =

���� B �A
D �C

���� = AD �BC; (65)

where A; B; C; D are constants satisfying

AC = a; AD +BC = 2b; BD = c; AD �BC 6= 0; (66)

where we note that the existence of A; B; C; D satisfying (66) is guaranteed by Lemma 2.4. Since
AD � BC 6= 0; this change of variables is good on all R2: Let U (�; �) be the function u (x; y) in
(�; �) variables. We have:

Lemma 2.14 (Change of variables method for hyperbolic equation.) Under the change of
variables (65), (66), the equation for U (�; �) is given by

� (AD �BC)2 U�� = 0 (same as U�� = 0 since AD �BC 6= 0), (67)

which has general solution given by U (�; �) = F (�) + G (�) for arbitrary C2 functions (we want
U (�; �) to be a C2 function) F (�) and G (�) de�ned on R: As a consequence, the general solution
u (x; y) of (64) is

u (x; y) = F (Bx� Ay) +G (Dx� Cy) ; (x; y) 2 R2;
for arbitrary C2 functions F (�) and G (�) de�ned on R:

Proof. We have 8>>>>><>>>>>:

ux = BU� +DU�; uy = �AU� � CU�;

uxx = B2U�� + 2BDU�� +D2U��;

uxy = �ABU�� � (BC + AD)U�� � CDU��;

uyy = A2U�� + 2ACU�� + C2U��

and so

auxx + 2buxy + cuyy

=

(
a [B2U�� + 2BDU�� +D2U��]

+2b [�ABU�� � (BC + AD)U�� � CDU��] + c [A2U�� + 2ACU�� + C2U��]

=

8><>:
(aB2 � 2bAB + cA2)U��

+
�
a2BD � 2bBC � 2bAD + c2AC| {z }�U�� + �z }| {

aD2 � 2bCD + cC2
�
U��:

By
AC = a; AD +BC = 2b; BD = c; AD �BC 6= 0;

13



we have 8<:
aB2 � 2bAB + cA2 = ACB2 � (AD +BC)AB +BDA2 = 0z }| {
aD2 � 2bCD + cC2 = ACD2 � (AD +BC)CD +BDC2 = 0

and

a2BD � 2bBC � 2bAD + c2AC| {z }
= 2ACBD � (AD +BC)BC � (AD +BC)AD +BD2AC

= 2ABCD �B2C2 � A2D2 = � (AD �BC)2 6= 0:

Hence the equation for U (�; �) is

� (AD �BC)2 U�� = 0 (same as U�� = 0).

Its general solution is U (�; �) = F (�)+G (�) for arbitrary C2 functions F (�) and G (�) de�ned on
R: �

Example 2.15 Consider the second order linear equation in two variables:

uxx � 4uxy � 2uyy = 0; (x; y) 2 R2; u = u (x; y) : R2 ! R:

Use change of variables method to reduce it to canonical form (U�� � U�� = 0 or U�� = 0) and
then solve it.

Solution:

Recall that the numbers A; B; C; D satisfying

AC = a = 1; AD +BC = 2b = �4; BD = c = �2; (68)

are given by A = C = 1; B = �2 +
p
6; D = �2 �

p
6: By Lemma 2.14, if we do the change of

variables (
� = Bx� Ay =

�
�2 +

p
6
�
x� y

� = Dx� Cy =
�
�2�

p
6
�
x� y;

(69)

the new for U (�; �) is given by U�� (�; �) = 0: The general solution for U (�; �) is U (�; �) = F (�) +
G (�) : Hence the general solution for u (x; y) is

u (x; y) = F (Bx� Ay) +G (Dx� Cy) = F
��
�2 +

p
6
�
x� y

�
+G

��
�2�

p
6
�
x� y

�
= F

��p
6� 2

�
x� y

�
+G

��p
6 + 2

�
x+ y

�
; (70)

where F (z) : R! R and G (z) : R! R are two arbitrary C2 functions. �

2.3 Solving hyperbolic equations; diagonalization method (eigenvalue-
eigenvector method).

Remark 2.16 Interesting question: Can you �nd the relation between this method and the
factorization method ?

Example 2.17 Consider the second order linear equation in two variables:

uxx � 4uxy � 2uyy = 0; (x; y) 2 R2; u = u (x; y) : R2 ! R:

Use diagonalization method to reduce it to canonical form (U�� � U�� = 0) and then solve it.

14



Solution:

One can write the equation as

Trace

��
1 �2
�2 �2

��
uxx uxy
uxy uyy

��
= 0:

The eigenvalues of the coe¢ cient matrix are �1 = 2; �2 = �3 with corresponding orthonormal
eigenvectors

v1 =
1p
5

�
�2
1

�
; v2 =

1p
5

�
1
2

�
: (71)

By (13) and (14), we introduce the change of variables

� = � 2p
5
x+

1p
5
y; � =

1p
5
x+

2p
5
y:

Then, in terms of the variables (�; �) ; we have

2U�� � 3U�� = 0:

Finally, we let ~� = 1p
2
�; ~� = 1p

3
�; we have the �nal canonical form:

~U~�~� � ~U~�~� = 0 (which can be decomposed as
�
@

@ ~�
+

@

@~�

���
@

@ ~�
� @

@~�

�
~U

�
= 0 )

and its general solution is

~U
�
~�; ~�
�
= F

�
~� � ~�

�
+G

�
�~� � ~�

�
(same as G

�
~� + ~�

�
),

where F (z) and G (z) are two arbitrary C2 functions. Hence the general solution for u (x; y) is

u (x; y) =

8><>:
F
�
1p
2

�
� 2p

5
x+ 1p

5
y
�
� 1p

3

�
1p
5
x+ 2p

5
y
��

+G
�
1p
2

�
� 2p

5
x+ 1p

5
y
�
+ 1p

3

�
1p
5
x+ 2p

5
y
�� (72)

=

8>>><>>>:
F

��
� 2p

10
� 1p

15

�
x+

�
1p
10
� 2p

15

�
y

�
| {z }
+G

��
� 2p

10
+ 1p

15

�
x+

�
1p
10
+ 2p

15

�
y
�
:

By the identity
� 2p

10
� 1p

15
1p
10
� 2p

15

=
2
p
15 +

p
10

�
p
15 + 2

p
10
=
p
6 + 2

we can write F
��
� 2p

10
� 1p

15

�
x+

�
1p
10
� 2p

15

�
y

�
| {z } as F

��p
6 + 2

�
x+ y

�
| {z } and by the iden-

tity
� 2p

10
+ 1p

15
1p
10
+ 2p

15

=
�2
p
15 +

p
10p

15 + 2
p
10

= �
p
6 + 2

we can write G
��
� 2p

10
+ 1p

15

�
x+

�
1p
10
+ 2p

15

�
y
�
as G

��
�
p
6 + 2

�
x+ y

�
| {z }. Thus the general

solution can also be expressed as

u (x; y) = F
��p

6 + 2
�
x+ y

�
+G

��
�
p
6 + 2

�
x+ y

�
; (73)

which is the same as (62) and (70). �
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Remark 2.18 (Omit this in class.) (Interesting.) One can use eigenvalues and eigenvectors
to express the general solution (72) as

u (x; y) =

8>>><>>>:
F

�
1p
�1

��
x
y

�
; v1

�
� 1p

��2

��
x
y

�
; v2

��
+G

�
1p
�1

��
x
y

�
; v1

�
+ 1p

��2

��
x
y

�
; v2

��
;

(74)

where �1 = 2; �2 = �3 and v1; v2 are corresponding orthonormal eigenvectors given by (71).

3 General solutions of parabolic equations without lower
order terms.

3.1 Solving parabolic equations; factorization method.

We now come to the parabolic case for the equation

auxx + 2buxy + cuyy = 0; where ac = b2: (75)

Here we may assume a; b; c are all nonzero (otherwise we will get into a trivial case). By the
identity ac = b2 > 0; we know that a; c have the same sign. By multiplying the equation by a minus
sign if necessary, we may assume that a > 0; c > 0. However, b can be either b > 0 or b < 0:
As there is no lower order terms in (75), the parabolic equation is degenerate. Hence it is

essentially an ODE. We have the following:

Lemma 3.1 (Factorization method for parabolic equation.) Assume the equation (75) is
parabolic, i.e. ac = b2; with a > 0; b 6= 0; c > 0. Then one can decompose it as

auxx + 2buxy + cuyy =

�
A
@

@x
+B

@

@y

���
A
@

@x
+B

@

@y

�
u

�
= 0 (76)

for some constants A > 0; B 6= 0: More precisely, we have(
A =

p
a; B =

p
c; if b > 0

A =
p
a; B = �

p
c; if b < 0:

(77)

The general solution of (75) can be expressed as either one of the following two forms

(1) : u (x; y) = F (Bx� Ay) + x

A
G (Bx� Ay) (78)

or
(2) : u (x; y) = F (Bx� Ay) + y

B
G (Bx� Ay) (79)

for arbitrary C2 functions F (z) ; G (z) de�ned on R:

Remark 3.2 If a = 0 (then b = 0; c 6= 0) or c = 0 (then b = 0; a 6= 0), then we are in a trivial
case. The equation now has the form cuyy = 0 or auxx = 0: We have not much to discuss.

Remark 3.3 The two forms in (78) and (79) are the same due to the identity
x

A
G (Bx� Ay)

=
(Bx� Ay) + Ay

AB
G (Bx� Ay)

=
(Bx� Ay)

AB
G (Bx� Ay) (absorb this term into F (Bx� Ay) )+ y

B
G (Bx� Ay) : (80)
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Proof. For a C2 function u; (76) is the same as

A (Aux +Buy)x +B (Aux +Buy)y = A2uxx + 2ABuxy +B2uyy = 0:

Hence we need to solve
A2 = a; AB = b; B2 = c;

which is solvable due to ac�b2 = 0: If a > 0; b > 0; c > 0; then we can choose A =
p
a; B =

p
c: If

a > 0; b < 0; c > 0; then we can choose A =
p
a; B = �

p
c:

Let w =
�
A @
@x
+B @

@y

�
u: Then by

�
A @
@x
+B @

@y

�
w = 0; we see that w = G (Bx� Ay) for some

arbitrary C1 function G (z) de�ned on R: Next we solve�
A
@

@x
+B

@

@y

�
u (x; y) = G (Bx� Ay) : (81)

Since A > 0 and B 6= 0; we can do the change of variables w = Bx� Ay; z = x; to get

Aux +Buy = A [UwB + Uz] +BUw (�A) = AUz = G (w)| {z }
and obtain the general solution for U (w; z) :

U (w; z) = F (w) +
z

A
G (w) ;

which gives
u (x; y) = F (Bx� Ay) + x

A
G (Bx� Ay) ; if A 6= 0;

where now F (z) ; G (z) are two arbitrary C2 functions de�ned on R: This is the form (78).
Similarly, we can also do the change of variables w = Bx� Ay; z = y; to get

Aux +Buy = A (UwB) +B [Uw (�A) + Uz] = BUz = G (w)| {z }
which gives the general solution of the form (79). �

Remark 3.4 Note that, in solving (81), Lemma 2.1 is not applicable here.

Remark 3.5 We can also do the change of variables w = Bx�Ay; z = Ax+By in (81) and get

Aux +Buy = A [UwB + UzA] +B [Uw (�A) + UzB] =
�
A2 +B2

�
Uz = G (w)| {z } :

We now have
U (w; z) = F (w) +

z

A2 +B2
G (w) ; (82)

which gives the symmetric form

u (x; y) = F (Bx� Ay) + Ax+By

A2 +B2
G (Bx� Ay) : (83)

The three forms (78), (79) and (83) are all equivalent due to the following identities:

Ax+By

A2 +B2
=

1

A2 +B2

�
�B (Bx� Ay)

A
+
(A2 +B2)x

A

�
(84)

and
Ax+By

A2 +B2
=

1

A2 +B2

�
A (Bx� Ay)

B
+
(A2 +B2) y

B

�
: (85)

De�nition 3.6 Unlike the hyperbolic case, we have only 1-parameter family of characteristic
lines

Bx� Ay = � (86)

for the parabolic equation (75), where � is an arbitrary constant.
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3.2 Solving parabolic equations; diagonalization method.

What happens if we use diagonalization method to solve a parabolic equation (ac = b2) ? One
can check that the coe¢ cient matrix of equation (75) has two eigenvalues �1 = a+ c; �2 = 0: The
corresponding orthonormal eigenvectors are

v1 =
1p

a2 + b2

�
a
b

�
; v2 =

1p
a2 + b2

�
b
�a

�
:

By (14), under the change of variables

� =
1p

a2 + b2
(ax+ by) ; � =

1p
a2 + b2

(bx� ay) ; (87)

equation (75) can be reduced to

Trace

��
a+ c 0
0 0

�
�
�
U�� U��
U�� U��

��
= 0:

Since a+ c 6= 0; the above is same as
U�� = 0; (88)

which implies
U (�; �) = �g (�) + f (�) (89)

for arbitrary C2 functions f (�) and g (�) : The corresponding u (x; y) is given by

u (x; y) =
1p

a2 + b2
(ax+ by) g

�
1p

a2 + b2
(bx� ay)

�
+ f

�
1p

a2 + b2
(bx� ay)

�
= H (bx� ay) + ax+ byp

a2 + b2
K (bx� ay) (90)

for arbitrary C2 functions H (�) and K (�) : We can compare (90) with (83). Assume we are in the
case a > 0; b > 0; c > 0; then we have A =

p
a; B =

p
c and so b =

p
ac = AB: Hence

H (bx� ay) + ax+ byp
a2 + b2

K (bx� ay)

= H
�
ABx� A2y

�
+

A2x+ AByp
A4 + A2B2

K
�
ABx� A2y

�
= F (Bx� Ay) + Ax+By

A2 +B2
G (Bx� Ay)

(91)

for another two arbitrary C2 functions F (�) and G (�) : Therefore, (90) is the same as (83).
The check for the case a > 0; b < 0; c > 0 is similar. Therefore, both methods are actually
equivalent.

4 Hyperbolic and parabolic equations of the form auxx +

2buxy + cuyy = 0 with initial conditions.

If we write the equation auxx + 2buxy + cuyy = 0 as auxx + 2buxt + cutt = 0 and view x as space
variable, t as time variable, then a pair of initial conditions (at time t = 0) of the form

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) (92)

can determine the solution uniquely, i.e. the solution exists and is unique. Here � (x) and  (x) are
two given functions de�ned on (�1;1) : We will demonstrate this by direct computations.

18



Remark 4.1 (Useful motivation.) Roughly speaking, a hyperbolic equation (imagine it is a wave
equation) comes from Newtonian mechanics, hence as long as the initial position and initial
velocity are known, the whole process of motion is uniquely determined.

Lemma 4.2 (Hyperbolic equation with initial conditions.) Let � 2 C2 (R) and  2 C1 (R) be
two given functions. Assume ac < b2 in equation auxx + 2buxt + cutt = 0. Consider the hyperbolic
equation with initial conditions:( �

A @
@x
+B @

@t

� ��
C @
@x
+D @

@t

�
u
�
= 0; u = u (x; t)

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) ;
(93)

where A; B; C; D are constants satisfying AD � BC 6= 0 and here we also assume that
B 6= 0 and D 6= 0 (they are the coe¢ cients of the operator @

@t
). Then the initial value problem (93)

has a unique solution u (x; t) 2 C2 (R2). Moreover, the solution is given by

u (x; t) =
AD

AD �BC�
�
x� C

D
t

�
� BC

AD �BC�
�
x� A

B
t

�
+

BD

AD �BC

Z x�C
D
t

x�A
B
t

 (s) ds; (94)

where (x; t) 2 R2: Note: since we assume B 6= 0 and D 6= 0; the line t = 0 is not a characteristic
line, which is good.

Remark 4.3 (Important.) (2-parameter families of characteristic lines for hyperbolic
equations.) The assumption B 6= 0 and D 6= 0 is essential in the formula (94). There are 2-
parameter families of characteristic lines for the hyperbolic equation�

A
@

@x
+B

@

@t

���
C
@

@x
+D

@

@t

�
u

�
= 0; (95)

namely the lines
Bx� At = const:; and Dx� Ct = const:: (96)

If we have B = 0; then by AD � BC 6= 0; we must have A 6= 0 and D 6= 0: Hence the line
t = const: is a characteristic line. Similarly, if we have D = 0; then B 6= 0 and C 6= 0, and again
the line t = const: is a characteristic line. By this, the initial conditions

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1)

happen to occur on the characteristic line t = const: (i.e. t = 0). In general, for B = 0; we have
either no solution to the initial value problem or in�nitely many solutions to the initial value
problem. The same conclusion holds for the case D = 0. We will leave this as a homework
problem for you to verify. Also see Remark 4.9.

Proof. The general solution of the equation is

u (x; t) = F (Bx� At) +G (Dx� Ct) (97)

for arbitrary C2 functions F (�) ; G (�) de�ned on R and we need to solve(
F (Bx) +G (Dx) = � (x)

�AF 0 (Bx)� CG0 (Dx) =  (x) :
(98)

Di¤erentiate the �rst equation with respect to x to get the system of equations:(
BF 0 (Bx) +DG0 (Dx) = �0 (x)

�AF 0 (Bx)� CG0 (Dx) =  (x) ;
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i.e. �
B D
�A �C

��
F 0 (Bx)
G0 (Dx)

�
=

�
�0 (x)
 (x)

�
:

Hence we get �
F 0 (Bx)
G0 (Dx)

�
=

1

AD �BC

�
�C �D
A B

��
�0 (x)
 (x)

�
and so

F 0 (Bx) =
�1

AD �BC (C�
0 (x) +D (x)) ; G0 (Dx) =

1

AD �BC (A�
0 (x) +B (x)) ;

which are the same as (note that we assume B 6= 0 and D 6= 0)( d
dx
F (Bx) = BF 0 (Bx) = �B

AD�BC (C�
0 (x) +D (x)) ;

d
dx
G (Dx) = DG0 (Dx) = D

AD�BC (A�
0 (x) +B (x)) :

(99)

If we let ~ (x) be an antiderivative of  (x) (it is not unique), we get8><>:
F (Bx) = �B

AD�BC

�
C� (x) +D ~ (x)

�
+ C1

G (Dx) = D
AD�BC

�
A� (x) +B ~ (x)

�
+ C2

(100)

for some integration constants C1; C2: Now by the �rst equation of (98), we must have C1 + C2 =
0: Therefore, we conclude (note that we assume B 6= 0 and D 6= 0)

u (x; t)

= F (Bx� At) +G (Dx� Ct) = F

�
B

�
x� A

B
t

��
+G

�
D

�
x� C

D
t

��

=

8><>:
�B

AD�BC

h
C�
�
x� A

B
t
�
+D ~ 

�
x� A

B
t
�i

+ D
AD�BC

h
A�
�
x� C

D
t
�
+B ~ 

�
x� C

D
t
�i

=
AD

AD �BC�
�
x� C

D
t

�
� BC

AD �BC�
�
x� A

B
t

�
+

BD

AD �BC

24 ~ �x� C

D
t

�
� ~ 

�
x� A

B
t

�
| {z }

35 :
Note that the antiderivative ~ (x) is not unique. However, the quantity

~ 

�
x� C

D
t

�
� ~ 

�
x� A

B
t

�
(101)

is unique and is independent of the choice of the antiderivative ~ (x) : For convenience, we can
choose ~ (x) =

R x
0
 (s) ds and obtain

~ 

�
x� C

D
t

�
� ~ 

�
x� A

B
t

�
=

Z x�C
D
t

x�A
B
t

 (s) ds: (102)

Thus the solution formula for u (x; t) is given by

u (x; t) =
AD

AD �BC�
�
x� C

D
t

�
� BC

AD �BC�
�
x� A

B
t

�
+

BD

AD �BC

Z x�C
D
t

x�A
B
t

 (s) ds: (103)
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The solution is de�ned on all (x; t) 2 R2: Since � 2 C2 (R) and  2 C1 (R) ; we have u (x; t) 2
C2 (R� R) : The solution (103) satis�es the initial value problem (93).
To see uniqueness of the solution (103), we may look at the case � (x) =  (x) � 0 for all

x 2 (�1;1) and from the above derivation, we must have u (x; t) � 0 for all (x; t) 2 R2: Hence
the uniqueness follows. �

Remark 4.4 By direct check, one can see that (103) is indeed a solution of (93). First, the solution
u (x; t) has the form F (Bx� At) + G (Dx� Ct) : Hence it must be a solution. Second, for any
x 2 R; we have

u (x; 0) =
AD

AD �BC� (x)�
BC

AD �BC� (x) +
BD

AD �BC

Z x

x

 (s) ds = � (x)

and

ut (x; 0) =

( AD
AD�BC

�
�C
D

�
�0 (x)� BC

AD�BC
�
�A
B

�
�0 (x)

+ BD
AD�BC

�
�C
D

�
 (x)� BD

AD�BC
�
�A
B

�
 (x)

=
BD

AD �BC

�
�C
D

�
 (x)� BD

AD �BC

�
�A
B

�
 (x) =  (x) :

Thus u (x; t) given by (103) is indeed a solution of the equation satisfying the initial conditions.

Remark 4.5 (Domain of dependence for hyperbolic equations.) By (103), the domain
of dependence interval of the point (x0; t0) is the interval

�
x0 � A

B
t0; x0 � C

D
t0
�
(or the inter-

val
�
x0 � C

D
t0; x0 � A

B
t0
�
if x0 � C

D
t0 is smaller) lying on the x-axis. Only the values of � (x) and

 (x) on the interval will determine the value of u at the point (x0; t0) :

In case equation (93) is parabolic (i.e. A = C; B = D) and has the same initial conditions, we
can still solve it (note that now the equation is degenerate parabolic).

Lemma 4.6 (Parabolic equation with initial conditions.) Let � 2 C3 (R) and  2 C2 (R) be
two given functions. Assume ac = b2 in equation (48) (we view y as time and here we denote it as
t). Consider the parabolic equation with initial conditions (at time t = 0):( �

A @
@x
+B @

@t

� ��
A @
@x
+B @

@t

�
u
�
= 0; u = u (x; t)

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) ;
(104)

where A; B are constants with B 6= 0 (this is same as in Lemma 4.2; B is the coe¢ cient of
the operator @

@t
). Then the initial value problem (104) has a unique solution u (x; t) 2 C2 (R2).

Moreover, the solution is given by

u (x; t) = �

�
x� A

B
t

�
+

t

B

�
A�0

�
x� A

B
t

�
+B 

�
x� A

B
t

��
; (105)

where (x; t) 2 R2: Note: there is only 1-parameter family of characteristic lines Bx � At =
const: for the parabolic equation in (104). Since we assume B 6= 0; the line t = 0 is not a
characteristic line, which is good.

Proof. Since B 6= 0; we choose the general solution to have the form (see (79))

u (x; t) = F (Bx� At) + t

B
G (Bx� At) ; B 6= 0; (106)
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then we have (
F (Bx) = � (x)

�AF 0 (Bx) + 1
B
G (Bx) =  (x) ; x 2 R;

which gives (
BF 0 (Bx) = �0 (x)

�ABF 0 (Bx) +G (Bx) = B (x) ; x 2 R;
and we conclude (

F (Bx) = � (x)

G (Bx) = B (x) + A�0 (x) :
(107)

By the above we will get

u (x; t) = F (Bx� At) + t

B
G (Bx� At) = F

�
B

�
x� A

B
t

��
+

t

B
G

�
B

�
x� A

B
t

��
= �

�
x� A

B
t

�
+

t

B

�
B 

�
x� A

B
t

�
+ A�0

�
x� A

B
t

��
; (108)

Since we assume � 2 C3 (R) and  2 C2 (R) ; the solution u (x; t) given by (108) satis�es u (x; t) 2
C2 (R� R) : �

Remark 4.7 By direct check, one can see that (116) is indeed a solution of (104).

Remark 4.8 (Important.) Note that the value of the solution u at (x0; t0) depends only on the
initial data � and  at the point x0 � A

B
t0:

Remark 4.9 (1-parameter family of characteristic lines for parabolic equations.) (This
is a continuation of Remark 4.3.) In case B = 0 (of course, we must have A 6= 0), equation
becomes (

uxx (x; t) = 0;

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) ;
(109)

and the general solution for u (x; t) is u (x; t) = h (t)x + g (t) for arbitrary functions of h (t) and
g (t) ; t 2 (�1;1) : Now we need to require(

u (x; 0) = h (0) x+ g (0) = � (x) ; x 2 (�1;1) ;

ut (x; 0) = h0 (0) x+ g0 (0) =  (x) ; x 2 (�1;1) :
(110)

Clearly, in general, (110) has no solution. But if � (x) and  (x) are of the form ax+b; cx+d; then
(110) has in�nitely many solutions. Again, the reason for this is that the data is prescribed
on the line t = 0; which is a characteristic line.

Remark 4.10 (Omit this in class.) Here is another proof of Lemma 4.6 using formula (78).
We divide the discussion into two cases. In case A = 0; the equation becomes utt = 0 with general
solution given by u (x; t) = g (x) + th (x) for arbitrary C2 functions h (x) and g (x) : To satisfy the
initial conditions, the unique solution is given by u (x; t) = � (x) + t (x) ; x 2 (�1;1) : In case
A 6= 0; we choose the general solution to have the form

u (x; t) = F (Bx� At) + x

A
G (Bx� At) ; A 6= 0; (111)
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then by the initial conditions, we need to solve8><>:
F (Bx) +

x

A
G (Bx) = � (x)| {z }

�AF 0 (Bx)� xG0 (Bx) =  (x) ; x 2 R;
(112)

which gives (
BF 0 (Bx) + 1

A
G (Bx) + x

A
BG0 (Bx) = �0 (x)

�AF 0 (Bx)� xG0 (Bx) =  (x) ; x 2 R;
(113)

and therefore (
ABF 0 (Bx) +G (Bx) + xBG0 (Bx) = A�0 (x)

�ABF 0 (Bx)� xBG0 (Bx) = B (x) ; x 2 R:
(114)

From the above, we �rst obtain

G (Bx) = A�0 (x) +B (x)| {z }
and substitute it into the �rst identity of (112), we can get

F (Bx) = � (x)� x

A
[A�0 (x) +B (x)] ; G (Bx) = A�0 (x) +B (x) ; (115)

which gives(
F (Bx� At) = F

�
BBx�At

B

�
= �

�
Bx�At
B

�
� 1

A

�
Bx�At
B

� �
A�0

�
Bx�At
B

�
+B 

�
Bx�At
B

��
G (Bx� At) = G

�
BBx�At

B

�
= A�0

�
Bx�At
B

�
+B 

�
Bx�At
B

�
and so

u (x; t) = F (Bx� At) + x

A
G (Bx� At)

=

(
�
�
Bx�At
B

�
� 1

A

�
Bx�At
B

� �
A�0

�
Bx�At
B

�
+B 

�
Bx�At
B

��
+ x
A

�
A�0

�
Bx�At
B

�
+B 

�
Bx�At
B

��
= �

�
x� A

B
t

�
+

t

B

�
A�0

�
x� A

B
t

�
+B 

�
x� A

B
t

��
; (x; t) 2 R2; (116)

which is the same as (108). From this proof we see that, whether A = 0 or not is not important. In
either case we can get unique solution. The key point is that we must require B 6= 0:

Example 4.11 Find the solution u (x; t) satisfying:

uxx + 2uxt + utt = 0; u (x; 0) = x2; ut (x; 0) = ex; x 2 R:

Solution:

By (78) in Lemma 3.1 and the identity

uxx + 2uxt + utt = (@x + @t) [(@x + @t)u] = 0; A = B = 1;

we see that the general solution of this degenerate parabolic equation has the form

u (x; t) = F (x� t) + xG (x� t)
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for arbitrary C2 functions F (�) ; G (�) de�ned on R. Hence we need to solve(
F (x) + xG (x) = x2

�F 0 (x)� xG0 (x) = ex

and obtain (
F 0 (x) +G (x) + xG0 (x) = 2x

�F 0 (x)� xG0 (x) = ex

and then
G (x) = 2x+ ex:

Next, by the identity F (x) + xG (x) = x2 we have

F (x) = x2 � xG (x) = x2 � x (2x+ ex) = �x2 � xex:

The answer for u (x; t) is

u (x; t) = F (x� t) + xG (x� t)
= � (x� t)2 � (x� t) ex�t + x

�
2 (x� t) + ex�t

�
= (x� t) (x+ t) + tex�t

�

5 The wave equation with initial conditions.

Remark 5.1 One can see W. A. Strauss PDE book (second edition), p. 11-13, for a brief expla-
nation of how to derive wave equation from a �exible, elastic homogeneous string which undergoes
relatively small transverse vibrations. However, it is di¢ cult to understand his explanation.

In this section, we look at one-dimensional wave equation for the function u (x; t) ; given by

utt (x; t) = c2uxx (x; t) ; x 2 R; t 2 R: (117)

Under some assumptions (small amplitude, etc ...), the equation describes the motion of a vi-
brating string, where u (x; t) represents the position of the string (I will not derive this in class).
Here c > 0 is a constant given by

c =

s
T

�
; (118)

where T is the tension of the string and � is the density of the string (both are assumed to be
constants, not very realistic at all).

Remark 5.2 By a change of variable in time:

x = x; ~t = ct;

the function v
�
x; ~t
�
= u (x; t) = u

�
x;

~t
c

�
will satisfy (117) with c = 1: Hence, the two equations

utt = c2uxx and utt = uxx are equivalent. Some books discuss wave equation in the form utt = uxx
only.

As (117) is a physical equation, it has initial conditions. They are the initial position and
initial velocity of the string, given by

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 R: (119)
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Remark 5.3 (Useful motivation.) Roughly speaking, the wave equation comes from Newtonian
mechanics, hence as long as the initial position and initial velocity are known, the whole process
of motion is uniquely determined.

With the above conditions, the solution u (x; t) satisfying (117) and (119) exists and is unique
(which can be seen from (103)). Moreover, if we change � (x) and  (x) a little bit, then the
corresponding solution will also change a little bit (we shall see this soon). In this sense, we say
that the problem (117) and (119) is well-posed.
Since one can factorize the equation (117) as�

c
@

@x
+
@

@t

���
c
@

@x
� @

@t

�
u

�
= 0; u = u (x; t) ; (120)

by previous discussion we know the general solution of (117), de�ned on the whole space R2; is
given by

u (x; t) = F (x+ ct) +G (x� ct) ; (x; t) 2 (�1;1)� (�1;1) (121)

for arbitrary C2 functions F; G de�ned on R:

De�nition 5.4 Any line of the form x+ ct = const: or x� ct = const: is called a characteristic
line of the wave equation (117). A wave equation has 2-parameter family of characteristic lines.

Remark 5.5 (The geometric meaning of the wave equation.) The solution u (x; t) given
by (121) consists of two traveling waves moving in opposite directions (positive and negative x-
direction) with the same speed c (the graph of F (x+ ct) moves to the left and the graph of G (x� ct)
moves to the right; draw a picture on blackboard). Moreover, since c =

p
T=�; if the tension T is

large and the density � is small, then the traveling wave speed is large. This matches with physical
observation.

Without remembering the formula in Lemma 4.2, one can easily derive the solution formula
satisfying the conditions (119). We need to require(

u (x; 0) = F (x) +G (x) = � (x)

ut (x; 0) = cF 0 (x)� cG0 (x) =  (x) :
(122)

By this we obtain

F 0 (x) =
c�0 (x) +  (x)

2c
; G0 (x) =

c�0 (x)�  (x)
2c

; (123)

and so

F (x) =
� (x)

2
+
1

2c

Z x

0

 (s) ds+ �; G (x) =
� (x)

2
� 1

2c

Z x

0

 (s) ds+ " (124)

with suitable constants �; ": Here � + " = 0 by (122). Hence we get the unique solution given by

u (x; t) = F (x+ ct) +G (x� ct) = 1

2
[� (x+ ct) + � (x� ct)] + 1

2c

Z x+ct

x�ct
 (s) ds| {z } : (125)

We can conclude the following:

Lemma 5.6 Assume � and  in the initial conditions (119) satisfy � 2 C2 (R) and  2 C1 (R) : Then
the function u (x; t) given by (125) is the unique C2 solution of the initial value problem(

utt (x; t) = c2uxx (x; t)

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1)
(126)

de�ned on the domain (x; t) 2 R2.
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Proof. (Due to Lemma 4.2, we can omit the proof of this lemma.) Given � 2 C2 (R) and
 2 C1 (R) ; we de�ne u (x; t) as in (125) for (x; t) 2 R2: It clearly satis�es u (x; 0) = � (x) for all
x 2 (�1;1) : We also have

ut (x; t) =
c

2
[�0 (x+ ct)� �0 (x� ct)] + 1

2
[ (x+ ct) +  (x� ct)]

for all (x; t) 2 R2; and so u (x; t) satis�es ut (x; 0) =  (x) for all x 2 (�1;1) : Finally, note that

utt (x; t) =
c2

2
[�00 (x+ ct) + �00 (x� ct)] + c

2
[ 0 (x+ ct)�  0 (x� ct)]

and
uxx (x; t) =

1

2
[�00 (x+ ct) + �00 (x� ct)] + 1

2c
[ 0 (x+ ct)�  0 (x� ct)] ;

which implies utt (x; t) = c2uxx (x; t) for all (x; t) 2 R2: Therefore, u (x; t) given by (125) is indeed
a C2 solution of (126) on the domain (x; t) 2 R2:
To check uniqueness, assume we have two C2 solutions u1 (x; t) and u2 (x; t) of (126) on R2:

Then the function u (x; t) = u1 (x; t)� u2 (x; t) is a C2 solution of the problem(
utt (x; t) = c2uxx (x; t)

u (x; 0) = 0; ut (x; 0) = 0; x 2 (�1;1)

on R2: Since we know the general solution of utt (x; t) = c2uxx (x; t) on R2 has the form u (x; t) =
F (x+ ct) +G (x� ct) for some C2 functions F (�) ; G (�) de�ned on R; we have(

u (x; 0) = F (x) +G (x) = 0

ut (x; 0) = cF 0 (x)� cG0 (x) = 0; x 2 (�1;1)
(127)

which implies F 0 (x) = G0 (x) = 0 on R: Therefore, both F (�) ; G (�) are constant functions, and
we must have u (x; t) � 0 on R2: The uniqueness property is veri�ed. �

Remark 5.7 (Important.) We call (125) d�Alembert solution. It was due to him in 1746.
Note that the function

1

2
[� (x+ ct) + � (x� ct)] (128)

is an even function in t and the function

1

2c

Z x+ct

x�ct
 (s) ds (129)

is an odd function in t:

Remark 5.8 (Omit this in class) If � 2 Ck (R) and  2 Ck�1 (R) ; then u given by (125) repre-
sents a classical solution u 2 Ck (R� [0;1)) of the initial value problem, but its regularity is not
smoother (or worse) in general. Thus the wave equation does not produce instantaneous
smoothing of the initial data as the heat equation does.

5.1 Domain of dependence and in�uence of the initial conditions for
wave equation.

For convenience of discussion, we con�ne to nonnegative time t � 0 (this is not really essential). Recall
that the solution of the initial value problem (126) is

u (x; t) =
1

2
[� (x+ ct) + � (x� ct)] + 1

2c

Z x+ct

x�ct
 (s) ds; (x; t) 2 (�1;1)� [0;1): (130)
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For each �xed time t = t0 2 [0;1) and �xed x0 2 (�1;1) ; we get an interval of the form
[x0 � ct0; x0 + ct0] : The value of u (x0; t0) depends only on � at x0 � ct0; x0 + ct0; and  on the
interval [x0 � ct0; x0 + ct0] : The values of � and  outside the interval [x0 � ct0; x0 + ct0] will not
a¤ect the value of u (x0; t0) :

De�nition 5.9 The interval [x0 � ct0; x0 + ct0] lying on the x-axis is called the domain of de-
pendence interval of the point (x0; t0) :

Remark 5.10 The above also says that for our wave equation "disturbances" or "sig-
nals" only travel with speed c. To understand this more clearly, see the de�nition of "domain
of in�uence".

In view of this, for each �xed x0 2 (�1;1) ; there is a region R � xt-plane (unbounded
closed set, lying on the upper half xt-plane) so that the values of u on this region can be a¤ected
by the values of � (x0) and  (x0) : This region R � xt-plane is called the domain of in�uence
of the point (x0; 0) (equivalently, a point p 2 R if and only if its domain of dependence interval
contains the point x0). The value of u at any point (x; t) lying out of of the region R is not
a¤ected by the values of � (x0) and  (x0) : The domain of in�uence region R can be described
as

R = f(x; t) 2 R� [0;1) : x� ct � x0 and x+ ct � x0g ; (131)

where the two half-lines x� ct = x0; t � 0; and x+ ct = x0; t � 0; intersect at the point (x0; 0) :

Remark 5.11 Draw a picture for the region R (or see Figure 1 in p. 39 of Strauss�s undergraduate
PDE book).

Outside the domain of in�uence of the point (x0; 0) ; the value of u (x; t) is not a¤ected by
the values of � (x0) and  (x0) : In view of this, we have the following obvious fact:

Lemma 5.12 For any given � (x) and  (x) ; the domain of in�uence of the interval (lying on the
x-axis) jxj � � is the region (lying on R� [0;1)) jxj � �+ct: In particular, if � (x) �  (x) � 0 for
jxj > � (i.e. both � (x) and  (x) have compact support ), then u (x; t) � 0 on the region
jxj � � + ct:

Remark 5.13 Draw a picture for the above lemma.

Corollary 5.14 Assume both � (x) and  (x) have compact support. Then u (x; t) given by (125)
has compact support in x for each �xed t (however, the support of u (x; t) will become larger if t gets
larger).

Remark 5.15 (Important.) If we write the solution as (see (125))

u (x; t) =
1

2
[� (x+ ct) + � (x� ct)] + 1

2c

Z x+ct

x�ct
 (s) ds = F (x+ ct) +G (x� ct)

for some suitable function F (�) and G (�) ; then, in general, F (�) and G (�) do not have compact
support. For example, take � (x) � 0 and

 (x) =

8>><>>:
0; x < 0

sin x; 0 � x � �

0; x > 0;
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then we have

u (x; t) =
1

2c

Z x+ct

x�ct
 (s) ds =

1

2c

�
~ (x+ ct)� ~ (x� ct)

�
;

where ~ (x) is an antiderivative of  (x) ; given by

~ (x) =

8>><>>:
�1; x < 0

� cosx; 0 � x � �

1; x > 0:

In such a case, the functions F (�) and G (�) do not have compact support.

Example 5.16 Consider the wave equation with initial conditions:(
utt (x; t) = c2uxx (x; t) ; c > 0

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) :

Assume that � =  � 0 on the interval [�1� c; 1 + c] : Determine the region R � R� [0;1) such
that u (x; t) � 0 on R:

Solution:

The region R is the trianglular-shaped region given by

R = f(x; t) : x� ct � �1� cg
\
f(x; t) : x+ ct � 1 + cg

\
f(x; t) : t � 0g :

�

Remark 5.17 Draw a picture for the above answer.

5.2 Space-time separable solutions of the wave equation.

We look for certain special solutions of the wave equation utt (x; t) = c2uxx (x; t) with the separable
form:

u (x; t) = f (x) g (t) ;

where f (x) and g (t) are C2 functions de�ned on (�1;1) : Plug it into the equation to get

f (x) g00 (t) = c2f 00 (x) g (t)

and then we get the identity (assume the denominators are nonzero)

g00 (t)

c2g (t)
=
f 00 (x)

f (x)
:

The above identity cannot hold unless there is some constant K such that

g00 (t)

c2g (t)
=
f 00 (x)

f (x)
= K; 8 x 2 domain of f; 8 t 2 domain of g:

There are three possibilities for the constant K : K = �2 > 0; K = 0; K = ��2 < 0: For the �rst
case, we have

g00 (t)

c2g (t)
=
f 00 (x)

f (x)
= �2; � > 0;
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which gives

g (t) = c1e
�ct + c2e

��ct; f (x) = d1e
�x + d2e

��x; x 2 (�1;1) ; t 2 (�1;1) ; (132)

where c1; c2; d1; d2 are integration constants. For the second case, we have

g00 (t)

c2g (t)
=
f 00 (x)

f (x)
= 0;

which gives

g (t) = c1t+ c2; f (x) = d1x+ d2; x 2 (�1;1) ; t 2 (�1;1) : (133)

For the third case, we have
g00 (t)

c2g (t)
=
f 00 (x)

f (x)
= ��2; � > 0;

which gives

g (t) = c1 sin (�ct)+c2 cos (�ct) ; f (x) = d1 sin (�x)+d2 cos (�x) ; x 2 (�1;1) ; t 2 (�1;1) :
(134)

Thus we have:

Lemma 5.18 (Classi�cation of space-time separable solutions of the wave equation.)
The following are the space-time separable solutions of the wave equation

u (x; t) =

8>><>>:
�
c1e

�ct + c2e
��ct� �d1e�x + d2e

��x�
(c1t+ c2) (d1x+ d2)

[c1 sin (�ct) + c2 cos (�ct)] [d1 sin (�x) + d2 cos (�x)] ; x 2 (�1;1) ; t 2 (�1;1)

and there are no others. Here � (� > 0), c1; c2; d1; d2 are all arbitrary constants.

Remark 5.19 (Important.) The space-time separable solutions are important if we want to use
Fourier series to express solutions of the wave equation.

Example 5.20 For each n 2 N and L > 0; there is a solution, de�ned on R2; of the wave equation
of the form (choose � = n�=L in the above lemma)

un (x; t) =
h
An sin

�n�c
L
t
�
+Bn cos

�n�c
L
t
�i
sin
�n�x
L

�
; An; Bn are const., (135)

which satis�es the initial-boundary conditions (�xed-end condition)(
un (x; 0) = Bn sin

�
n�x
L

�
; (un)t (x; 0) = An

n�c
L
sin
�
n�x
L

�
; 8 x 2 [0; L] (initial cond.)

un (0; t) = un (L; t) = 0; 8 t 2 [0;1) (boundary cond.).
(136)

We call it a harmonic of the wave equation utt = c2uxx with �xed ends at x = 0 and x = L (by
Fourier series expansion applying to solutions of the wave equation with �xed ends, any such solution
can be expressed as an in�nite sum of di¤erent harmonics). For each n 2 N; the initial data
un (x; 0) = Bn sin

�
n�x
L

�
in (135) has n zeros on the interval [0; L] : Note that a wave equation

with �xed-end boundary condition is not enough to ensure a unique solution. We still
need the initial physical conditions u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 [0; L] ; to guarantee a
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unique solution (see F. John, PDE, 4th edition, p. 42-44 for a geometrical explanation). One can
rewrite un (x; t) as

un (x; t) = Rn

h
cos �n sin

�n�c
L
t
�
+ sin �n cos

�n�c
L
t
�i
sin
�n�x
L

�
= Rn sin

�n�c
L
t+ �n

�
sin
�n�x
L

�
; (137)

where Rn =
p
A2n +B2

n and the angle �n satis�es cos �n =
An
Rn
; sin �n =

Bn
Rn
: Note that the value

of un (x; t) lies between �Rn and Rn: We call Rn the amplitude of un (x; t) and call �n the phase
of un (x; t) : The solution (137), de�ned on [0; L] ; is periodic in time with

un

�
x; t+

2L

nc

�
= un (x; t) ; 8 x 2 [0; L] ; t 2 R:

The time 2L
nc
is called the period of the solution.

5.3 Conservation of the total energy for wave equation.

Lemma 5.21 (Equipartition of energy for wave equations with compact support initial
data.) Assume both � (x) and  (x) have compact support (this assumption is essential) in (126)
and u 2 C2 (R� (�1;1)) solves the initial value problem (126). De�ne the kinetic energy and
the potential energy for the solution u (x; t) as

k (t) :=
1

2

Z 1

�1
u2t (x; t) dx and p (t) :=

1

2

Z 1

�1
u2x (x; t) dx; t 2 (�1;1) : (138)

Then we have (1) : k (t) + c2p (t) is a constant for all time t 2 (�1;1). (2) : Moreover, for
t 2 (�1;1) such that jtj is large enough, we have k (t) = c2p (t) : In particular, we have

k (t) = c2p (t) = const: (139)

when jtj is large enough.

Remark 5.22 By the conclusion (1) ; we see that the energy is equal to

k (t) + c2p (t) = k (0) + c2p (0)

=
1

2

Z 1

�1
u2t (x; 0) dx+

c2

2

Z 1

�1
u2x (x; 0) dx =

1

2

Z 1

�1
 2 (x) dx+

c2

2

Z 1

�1
('0 (x))

2
dx;

where we see that the improper integrals are actually proper integrals since � (x) and  (x) have
compact support ...

Proof. (1) : By Corollary 5.14, we know that u (x; t) given by (125) have compact support in x for
each �xed t 2 (�1;1) : Computing(

ut (x; t) =
c
2
[�0 (x+ ct)� �0 (x� ct)] + 1

2
[ (x+ ct) +  (x� ct)]

ux (x; t) =
1
2
[�0 (x+ ct) + �0 (x� ct)] + 1

2c
[ (x+ ct)�  (x� ct)] ;

(140)

we can see that both ut (x; t) and ux (x; t) also have compact support in x for each �xed t 2
(�1;1) : Hence the two improper integrals in (138) both converge (both are actually proper
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integrals).Hence, the di¤erentiation with respect to time can commute with the integral.
That is, we have

d

dt

�
k (t) + c2p (t)

�
=

d

dt

�
1

2

Z 1

�1
u2t (x; t) dx+

c2

2

Z 1

�1
u2x (x; t) dx

�
=

Z 1

�1
ut (x; t)utt (x; t) dx+ c2

Z 1

�1
ux (x; t)uxt (x; t) dx

= c2
Z 1

�1
[ut (x; t)uxx (x; t) + ux (x; t)uxt (x; t)] dx

= c2
Z 1

�1

@

@x
[ut (x; t)ux (x; t)] dx = c2 [ux (x; t)ut (x; t)]

��x=1
x=�1 = 0; 8 t 2 (�1;1) ;

where we have used the fact that both ut (x; t) and ux (x; t) also have compact support in x for each
�xed t 2 (�1;1) : The proof of (1) is done.

Remark 5.23 (Omit this in class.) If you have di¢ culty assuring the identity

d

dt

Z 1

�1
u2t (x; t) dx = 2

Z 1

�1
ut (x; t)utt (x; t) dx;

you can use de�nition and mean value theorem to see that

d

dt

Z 1

�1
u2t (x; t) dx

= lim
h!0

Z 1

�1

u2t (x; t+ h)� u2t (x; t)
h

dx = lim
h!0

Z 1

�1
2ut (x; t+ � (h))utt (x; t+ � (h)) dx;

where t + � (h) lies between t and t + h and in the above two limits the time t is �xed. As we will
let h! 0; we may assume that h 2 [�1; 1] and so t + � (h) 2 [t� 1; t+ 1] for all h 2 [�1; 1] : One
can �nd a large number M > 0 so that

2ut (x; t+ � (h))utt (x; t+ � (h)) � 0 for all jxj �M and all h 2 [�1; 1] ;

which givesZ 1

�1
2ut (x; t+ � (h))utt (x; t+ � (h)) dx =

Z M

�M
2ut (x; t+ � (h))utt (x; t+ � (h)) dx; 8 h 2 [�1; 1] :

Since the integrand 2ut (x; s)utt (x; s) is a continuous function in (x; s) 2 [�M;M ]�[t� 1; t+ 1] ;
we have

lim
s!t

Z M

�M
2ut (x; s)utt (x; s) dx =

Z M

�M
2ut (x; t)utt (x; t) dx;

which is an elementary fact in Advanced Calculus. The above implies

lim
h!0

Z 1

�1
2ut (x; t+ � (h))utt (x; t+ � (h)) dx

= lim
s!t

Z M

�M
2ut (x; s)utt (x; s) dx =

Z M

�M
2ut (x; t)utt (x; t) dx =

Z 1

�1
2ut (x; t)utt (x; t) dx

and we have

d

dt

Z 1

�1
u2t (x; t) dx

= lim
h!0

Z 1

�1
2ut (x; t+ � (h))utt (x; t+ � (h)) dx =

Z 1

�1
2ut (x; t)utt (x; t) dx:

The proof is done.
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For (2) ; by (140), we have

u2t (x; t) =

8>>>>>>>>>>><>>>>>>>>>>>:

c2

4

�
(�0 (x+ ct))

2
+ (�0 (x� ct))2| {z }�2�0 (x+ ct)�0 (x� ct)

�
+1
4

�
 2 (x+ ct) +  2 (x� ct)| {z }+2 (x+ ct) (x� ct)

�

+ c
2

0B@ �0 (x+ ct) (x+ ct)| {z }+�0 (x+ ct) (x� ct)

��0 (x� ct) (x+ ct)� �0 (x� ct) (x� ct)| {z }
1CA

and

c2u2x (x; t) =

8>>>>>>>>>>><>>>>>>>>>>>:

c2

4

�
(�0 (x+ ct))

2
+ (�0 (x� ct))2| {z }+2�0 (x+ ct)�0 (x� ct)

�
+1
4

�
 2 (x+ ct) +  2 (x� ct)| {z }�2 (x+ ct) (x� ct)

�

+ c
2

0B@ �0 (x+ ct) (x+ ct)| {z }��0 (x+ ct) (x� ct)

+�0 (x� ct) (x+ ct)� �0 (x� ct) (x� ct)| {z }
1CA :

By above, it su¢ ces to show thatZ 1

�1

 
c2

4
[�2�0 (x+ ct)�0 (x� ct)] + 1

4
[2 (x+ ct) (x� ct)]

+ c
2
[�0 (x+ ct) (x� ct)� �0 (x� ct) (x+ ct)]

!
dx

=

Z 1

�1

 
c2

4
[2�0 (x+ ct)�0 (x� ct)] + 1

4
[�2 (x+ ct) (x� ct)]

+ c
2
[��0 (x+ ct) (x� ct) + �0 (x� ct) (x+ ct)]

!
dx:

which is equivalent to showing thatZ 1

�1

 
�c2�0 (x+ ct)�0 (x� ct) +  (x+ ct) (x� ct)

+c�0 (x+ ct) (x� ct)� c�0 (x� ct) (x+ ct)

!
dx = 0: (141)

Since, for any x 2 R; the two points p = x+ ct; q = x� ct have distance 2c jtj. They both can not
stay in the support of � and  for large jtj for any x 2 R: Hence if jtj � 0 is large enough, we must
have

�0 (x+ ct)�0 (x� ct) =  (x+ ct) (x� ct)
= �0 (x+ ct) (x� ct) = �0 (x� ct) (x+ ct) = 0 for all x 2 (�1;1) :

The proof is done. �

Another energy property for the wave equation is the following:

Lemma 5.24 (Conservation of energy for wave equations with �xed-end condition.)
Assume u 2 C2 (R2) is a solution of the wave equation utt (x; t) = c2uxx (x; t) and there is some
L > 0 such that

u (0; t) = u (L; t) = 0; 8 t 2 (�1;1) ; (142)

i.e. u (x; t) satis�es "�xed-end" condition, then the total energy over the interval [0; L] :

1

2

�Z L

0

u2t (x; t) dx+ c2
Z L

0

u2x (x; t) dx

�
; t 2 (�1;1) (143)

is independent of time.
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Proof. We �rst note that by (142) we have ut (0; t) = ut (L; t) = 0 for all t 2 (�1;1) : Compute

d

dt

�
1

2

�Z L

0

u2t (x; t) dx+ c2
Z L

0

u2x (x; t) dx

��
=

Z L

0

ututtdx+ c2
Z L

0

uxuxtdx = c2
Z L

0

(utuxx + uxuxt) dx

= c2
Z L

0

@

@x
(utux) dx = c2 ut (L; t)| {z }ux (L; t)� c2 ut (0; t)| {z }ux (0; t) = 0; 8t 2 (�1;1) :

Hence the total energy over the interval [0; L] is independent of time. �

6 Nonhomogeneous wave equation.

We now consider the nonhomogeneous wave equation

utt (x; t)� c2uxx (x; t) = f (x; t) ; (x; t) 2 R2 (144)

with initial conditions

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) : (145)

Here the functions f (x; t) 2 C1 (R2) ; � (x) 2 C2 (R) ;  (x) 2 C1 (R) are all given.

Remark 6.1 (Important.) Note that here we assume f (x; t) 2 C1 (R2) instead of f (x; t) 2
C0 (R2) : We will explain the reason later on.

By linearity, it su¢ ces to look at the case when � (x) =  (x) = 0 due to the following observa-
tion:

Lemma 6.2 If u (x; t) 2 C2 (R2) solves the problem(
utt (x; t)� c2uxx (x; t) = f (x; t) ; (x; t) 2 R2

u (x; 0) = 0; ut (x; 0) = 0; x 2 R
(146)

and v (x; t) 2 C2 (R2) solves the problem(
vtt (x; t)� c2vxx (x; t) = 0; (x; t) 2 R2

v (x; 0) = � (x) ; vt (x; 0) =  (x) ; x 2 R;
(147)

then w (x; t) = u (x; t) + v (x; t) 2 C2 (R2) solves the problem(
wtt (x; t)� c2wxx (x; t) = f (x; t) ; (x; t) 2 R2

w (x; 0) = � (x) ; wt (x; 0) =  (x) ; x 2 R:
(148)

Since we already know how to solve (147), it su¢ ces to focus on (146). We want to derive a
solution formula for u (x; t) 2 C2 (R2) satisfying (146).
We shall use the change of variables method (characteristic coordinates method) to

solve (146). This method is quite straightforward and natural. We �rst note the following simple
fact:
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Lemma 6.3 Let p (x; y) be a C1 function de�ned on R2 satisfying

p (�; �) = 0 and px (�; �) = py (�; �) ; 8 � 2 R: (149)

Then we must have
px (�; �) = py (�; �) = 0; 8 � 2 R: (150)

Conversely, if it satis�es

p (�; �) = 0 and px (�; �) = 0; 8 � 2 R; (151)

then we must also have py (�; �) = 0 also for all � 2 R: Hence condition (149) is equivalent
to condition (151).

Proof. Assume p (�; �) = 0 for all � 2 R: Then by the chain rule

0 =
d

d�
p (�; �) =

@p

@x
(�; �)

d�

d�
+
@p

@y
(�; �)

d�

d�
= px (�; �) + py (�; �) :

The rest is clear. �

Recall that (see Section 2.2) when we solve the homogeneous wave equation utt� c2uxx = 0; we
can use the change of variables (by use of the two characteristic lines)

� = x+ ct; � = x� ct (152)

to reduce the equation into the simple form (let ~u (�; �) = u (x; t)). By(
ut = c~u� � c~u�; ux = ~u� + ~u�

utt = c2~u�� � 2c2~u�� + c2~u��; uxx = ~u�� + 2~u�� + ~u��;
(153)

the new equation for ~u (�; �) is
�4c2~u�� (�; �) = 0; (154)

where, in (154), we have used the identity ~u�� = ~u�� for a C2 solution. Hence we obtain the general
solution for ~u (�; �) :

~u (�; �) = F (�) +G (�) (155)

and then the general C2 solution of utt � c2uxx = 0 is given by

u (x; t) = F (x+ ct) +G (x� ct) (156)

for arbitrary C2 functions F (z) and G (z) de�ned on (�1;1) :
For the nonhomogeneous equation utt (x; t) � c2uxx (x; t) = f (x; t) with initial conditions in

(146), we can do the same change of variables and the equation for ~u (�; �) becomes

�4c2~u�� (�; �) = f

�
� + �

2
;
� � �
2c

�
: (157)

To solve (157), we also need to convert the initial conditions for u (x; t) into the initial conditions for
~u (�; �) : Since we have u (x; t) = ~u (x+ ct; x� ct) ; the condition u (x; 0) = 0 for all x 2 (�1;1)
becomes

~u (�; �) = 0; 8 � 2 (�1;1) : (158)

Next, by
ut (x; t) = c~u� (x+ ct; x� ct)� c~u� (x+ ct; x� ct) ; (159)
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the condition ut (x; 0) = 0 for all x 2 (�1;1) becomes

~u� (�; �) = ~u� (�; �) ; 8 � 2 (�1;1) : (160)

Now by Lemma 6.3, the initial conditions in (158) and (160) are equivalent to:

(1) : ~u (�; �) = 0; (2) : ~u� (�; �) = 0; 8 � 2 (�1;1) : (161)

Thus the initial value problem (146) for the new function ~u (�; �) becomes the following:8><>:
~u�� (�; �) =

@

@�
(~u� (�; �)) = �

1

4c2
f

�
� + �

2
;
� � �
2c

�
; 8 (�; �) 2 R2

~u (�; �) = 0; ~u� (�; �) = 0; 8 � 2 R:
(162)

We �rst integrate the equation with respect to � to get ~u� (�; �) : We need to take the condition
~u� (�; �) = 0 into consideration. In calculus, if we want to �nd a one-variable functionH (�) satisfying
H 0 (�) = g (�) ; H (�) = 0; then the answer is unique and is given by

H (�) =

Z �

�

g (�) d�: (163)

Motivated by the above, we write the equation in (162) as

@

@�
(~u� (�; �)) = �

1

4c2
f

�
� + �

2
;
� � �
2c

�
and apply the integral

R �
�
d� onto it to get

~u� (�; �) =
@

@�
~u (�; �) = � 1

4c2

Z �

�

f

�
� + �

2
;
� � �
2c

�
d�; ~u� (�; �) = 0: (164)

Next, we integrate the above with respect to � to get ~u (�; �) and we need to take the condition
~u (�; �) = 0 into consideration. By the same trick as in (163), if we want to �nd G (�) satisfying
G0 (�) = p (�) ; G (�) = 0; then the answer is unique and is given by

G (�) =

Z �

�

p (r) dr: (165)

Therefore, by similar trick, we write the equation in (164) as

@

@r
~u (r; �) = � 1

4c2

Z �

r

f

�
r + �

2
;
r � �
2c

�
d�

and apply the integral
R �
�
dr onto it to get

~u (�; �) =

Z �

�

�
� 1

4c2

Z �

r

f

�
r + �

2
;
r � �
2c

�
d�

�
dr; (166)

which is the same as

~u (�; �) =
1

4c2

Z �

�

�Z r

�

f

�
r + �

2
;
r � �
2c

�
d�

�
dr; 8 (�; �) 2 R2: (167)

It satis�es
~u (�; �) = 0; ~u� (�; �) = 0; 8 � 2 R: (168)
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Therefore, we conclude that the unique solution of problem (162) is given by the formula (167). To
get a better picture for the domain of integration in (�; �)-plane, we write (167) as

~u (�0; �0) =
1

4c2

Z �0

�0

�Z �

�0

f

�
� + �

2
;
� � �
2c

�
d�

�
d�; 8 (�0; �0) 2 R2 (169)

or as the double integral

~u (�0; �0) =
1

4c2

ZZ
~4
f

�
� + �

2
;
� � �
2c

�
d�d�: (170)

The domain of integration ~4 in the (�; �)-plane for the above double integral is given by (for
convenience, in the picture below we assume �0 < �0)

~4 : DRAW A PICTURE HERE IN (�; �) -PLANE !!!.

We note that ~4 is the region inside a right triangle bounded by the three lines L1 : � = �0; L2 :
� = �0; and L3 : � = � (the point (�0; �0) is on L1

T
L2): Going back to (x; t)-plane, by the relation

� = x+ ct; � = x� ct () x =
� + �

2
; t =

� � �
2c

,

we have the following correspondence (denote the point corresponding to (�0; �0) as (x0; t0)):8>>>>>><>>>>>>:

(1) : (�0; �0) = (x0 + ct0; x0 � ct0) () (x0; t0) =
�
�0+�0
2
; �0��0

2c

�
(top point of the triangle),

(2) : L1 : � = �0 () line x+ ct = x0 + ct0 (characteristic line with negative slope),

(3) : L2 : � = �0 () line x� ct = x0 � ct0 (characteristic line with positive slope),

(4) : L3 : � = � () line t = 0 (the x-axis).
(171)

Denote the region of (171) as 4 � (x; t) plane, which is a triangle with top point at (x0; t0) : Its
picture is given by

4 : DRAW A PICTURE HERE IN (x; t) -PLANE !!!.

As a consequence of the above, from Advanced Calculus, we have the change of variables identity
for double integrals (the absolute value of the Jacobian J = @ (�; �) =@ (x; t) is 2c; c > 0) :

~u (�0; �0) =
1

4c2

ZZ
~4
f

�
� + �

2
;
� � �
2c

�
d�d� =

1

2c

ZZ
4
f (x; t) dxdt = u (x0; t0) : (172)

The last step is to express the double integral
RR
4 f (x; t) dxdt as an iterated integral. Based on

the shape of 4; it is easier to integrate with respect to x �rst and then with respect to t: We have

u (x0; t0) =
1

2c

ZZ
4
f (x; t) dxdt =

1

2c

Z t0

0

 Z x0+c(t0�t)

x0�c(t0�t)
f (x; t) dx

!
dt; (x0; t0) 2 R2: (173)

Back to general u (x; t) ; we can express the solution as

u (x; t) =
1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds; (x; t) 2 R2: (174)

At this moment, we are ready to state the main theorem in this section, which is:
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Theorem 6.4 (Solution for nonhomogeneous wave equation with zero initial data.) As-
sume f 2 C1 (R2) : Then the function u (x; t) given by

u (x; t) =
1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds; (x; t) 2 R2 (175)

lies in the space C2 (R2) and is a C2 solution of the initial value problem(
utt (x; t)� c2uxx (x; t) = f (x; t) ; (x; t) 2 R2

u (x; 0) = 0; ut (x; 0) = 0; x 2 R
(176)

on the domain (x; t) 2 R2: Moreover, the C2 (R2) solution of the problem (176) is uniquely given by
(175).

Proof. One �rst give a direct proof that, for f 2 C1; the function u (x; t) given by (175) is indeed
a C2 solution of problem (176) de�ned on R2. For this purpose, we recall the following derivative
formula from Calculus: Assume � (x) ; � (x) : [a; b] ! [c; d] are di¤erentiable with respect to
x 2 [a; b] and h (x; y) : [a; b] � [c; d] ! R is a C1 function. Then we have the identity (also see
Remark 6.5 below)

d

dx

Z �(x)

�(x)

h (x; y) dy = h (x; � (x)) �0 (x)� h (x; � (x))�0 (x) +
Z �(x)

�(x)

hx (x; y) dy: (177)

Now let u (x; t) be the function given by (175). We clearly have

u (x; 0) =
1

2c

Z 0

0

(� � �) ds = 0; 8 x 2 R (178)

and

ux (x; t) =
1

2c

d

dx

"Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds

#
=
1

2c

Z t

0

@

@x

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds

=
1

2c

Z t

0

[f (x+ c (t� s) ; s)� f (x� c (t� s) ; s)] ds (179)

and

uxx (x; t) =
1

2c

Z t

0

@

@x
[f (x+ c (t� s) ; s)� f (x� c (t� s) ; s)]| {z } ds: (180)

On the other hand, we have (let h (x; t; s) =
R x+c(t�s)
x�c(t�s) f (�; s) d� and apply the identity (177))

ut (x; t) =
1

2c

d

dt

Z t

0

(h (x; t; s)) ds

= h (x; t; t) (this is zero)+
1

2c

Z t

0

@

@t
(h (x; t; s)) ds

=
1

2c

Z t

0

@

@t

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds

=
1

2c

Z t

0

[f (x+ c (t� s) ; s) c� f (x� c (t� s) ; s) (�c)] ds

=
1

2

Z t

0

[f (x+ c (t� s) ; s) + f (x� c (t� s) ; s)] ds; (181)
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which gives

ut (x; 0) =
1

2c

Z 0

0

(� � �) ds = 0; 8 x 2 R (182)

and also

utt (x; t) = f (x; t) +
1

2

Z t

0

@

@t
[f (x+ c (t� s) ; s) + f (x� c (t� s) ; s)]| {z } ds: (183)

By the identity

@

@t
[f (x+ c (t� s) ; s) + f (x� c (t� s) ; s)]| {z } = c

@

@x
[f (x+ c (t� s) ; s)� f (x� c (t� s) ; s)]| {z };

we conclude
utt (x; t) = f (x; t) + c2uxx (x; t) ; (x; t) 2 R2: (184)

The check is done.
Now we check uniqueness. If there is another C2 solution w (x; t) of the problem (176) on R2,

we can look at the di¤erence

v (x; t) =
1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds� w (x; t) ; (x; t) 2 R2:

Then v 2 C2 (R2) and it satis�es(
vtt (x; t)� c2vxx (x; t) = 0; (x; t) 2 R2

v (x; 0) = 0; vt (x; 0) = 0; x 2 R:

By Lemma 5.6, we must have v (x; t) � 0 on R2: The proof is done. �
Remark 6.5 (Change the order of di¤erentiation and integration.) If h (x; y) and @h

@x
(x; y) are

both in C0 ([a; b]� [c; d]) ; then the function

H (x) :=

Z d

c

h (x; y) dy; x 2 [a; b]

is di¤erentiable with respect to x 2 [a; b] and satis�es

H 0 (x) =
d

dx

�Z d

c

h (x; y) dy

�
=

Z d

c

@h

@x
(x; y) dy; 8 x 2 [a; b] : (185)

In particular, we note that H 0 (x) is continuous on [a; b] due to @h
@x
2 C0 ([a; b]� [c; d]) :

Remark 6.6 (Important observation.) In calculus, if f (s) 2 C0 (R) is a continuous function
on R; and we integrate it twice over R; then the result will be a C2 function on R; i.e.

u (t) =

Z t

0

�Z �

0

f (s) ds

�
d� 2 C2 (R) : (186)

Note that here dimR = 1 and the times of integration over the domain space R is 2: However, if
f 2 C0 (R2) and we look at

u (x; t) =
1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds =

1

2c

ZZ
4
f (�; s) d�ds (top point of 4 is (x; t) ), (187)

then we have dimR2 = 2 and the times of integration over the domain space R2 is 1 (2 iterated
integrals over R is equal to 1 double integral over the domain space R2): Therefore, we expect
u (x; t) given by (187) to lie in the space C1 (R2) only (and this is so in general !!!).
Finally, if we assume f 2 C1 (R2) ; then u (x; t) given by (187) will lie in the space C2 (R2) : In
Evans PDE book, p. 81, Theorem 4, the author also assumes that f 2 C1 (R2) in order for u (x; t)
to be a C2 solution of the problem (176) on R2.
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Remark 6.7 (Omit this in class.) (Important.) By (181), it is easy to give an example of
f 2 C0 (R2) but with u =2 C2 (R2) : We can take c = 1 and

f (p; q) = jp+ q � 1j ; (p; q) 2 R2 (188)

and get

2ut (x; t) =

Z t

0

[f (x+ (t� s) ; s) + f (x� (t� s) ; s)] ds

=

Z t

0

jx+ t� 1j ds+
Z t

0

jx� t+ 2s� 1j ds

= jx+ t� 1j � t| {z }+
Z t

0

jx� t+ 2s� 1j ds; (x; t) 2 R2: (189)

We look at the behavior of u (x; t) near the point (x; t) = (�4; 5) : At t = 5; we have

jx+ t� 1j � t = 5 jx+ 4j ; (190)

which is not di¤erentiable at x = �4: For the second term in (189), at t = 5; we getZ t

0

jx� t+ 2s� 1j ds =
Z 5

0

jx+ 2s� 6j ds = 1

2

Z x+4

x�6
jzj dz; (191)

which is a di¤erentiable function of x 2 (�1;1) (since the integrand is a continuous function
on R). Therefore, we conclude that the function

2ut (x; 5) = 5 jx+ 4j+
1

2

Z x+4

x�6
jzj dz (192)

is not di¤erentiable at x = �4:

By Theorem 6.4, we can state the following:

Theorem 6.8 Consider the following initial value problem for nonhomogeneous wave equation:(
utt (x; t)� c2uxx (x; t) = f (x; t) ; (x; t) 2 R2

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 R;
(193)

where f 2 C1 (R2) ; � 2 C2 (R) ;  2 C1 (R) ; are given functions. Then the solution u (x; t) 2
C2 (R2) of (193) is unique, de�ned on R2; and is given by the formula

u (x; t) =

8>><>>:
1

2
[� (x+ ct) + � (x� ct)] + 1

2c

R x+ct
x�ct  (s) ds

+
1

2c

R t
0

�R x+c(t�s)
x�c(t�s) f (�; s) d�

�
ds; (x; t) 2 R2:

(194)

Remark 6.9 (Important.) By the representation formula (194), we can conclude the following:
The domain of dependence of the solution u at the point (x0; t0) ; t0 > 0; is given by a compact
triangular set 4 in the (x; t) plane, enclosed by the three lines:

line t = 0 (x-axis); line x+ ct = x0 + ct0; line x� ct = x0 � ct0: (195)

In the above lemma we assume f 2 C1 (R2) so that u 2 C2 (R2) : However, if f (x; t) depends
only on x (or only on t), then it su¢ ces to assume that f 2 C0 (R) : We have:
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Corollary 6.10 Assume f (x; t) in (176) is a continuous function depending only on x; i.e.,
f (x; t) = f (x) 2 C0 (R) : Let G (x) be a function satisfying G00 (x) = f (x) for all x 2 R; then the
function u (x; t) in (175) has the form

u (x; t) =
1

2c2
[G (x+ ct) +G (x� ct)� 2G (x)] ; (x; t) 2 R2; (196)

where u 2 C2 (R2) : Note that the solution u (x; t) depends on both space and time.

Remark 6.11 One can check that the solution (196) does not depend on the function G (x) as long
as it satis�es G00 (x) = f (x) for all x 2 R: That is, if we replace G (x) by ~G (x) = G (x)+ax+ b for
some constants a; b; then we still have ~G00 (x) = f (x) : Using this ~G (x) in (196) will give the same
answer u (x; t) :

Proof. The proof is straightforward. Let F (x) be such that F 0 (x) = f (x) for all x 2 R and G (x)
be such that G0 (x) = F (x) for all x 2 R (and so G00 (x) = f (x)). We have

u (x; t) =
1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�) d�

!
ds =

1

2c

Z t

0

[F (x+ c (t� s))� F (x� c (t� s))] ds:

By

d

ds

�
�1
c
G (x+ c (t� s))

�
= F (x+ c (t� s)) ; d

ds

�
1

c
G (x� c (t� s))

�
= F (x� c (t� s)) ;

we get

u (x; t) =
1

2c

�
�1
c
G (x+ c (t� s))

�����s=t
s=0

� 1

2c

�
1

c
G (x� c (t� s))

�����s=t
s=0

= � 1

2c2
G (x) +

1

2c2
G (x+ ct)� 1

2c2
G (x) +

1

2c2
G (x� ct)

=
1

2c2
[G (x+ ct) +G (x� ct)� 2G (x)] ; (x; t) 2 R2:

The proof is done. �

Corollary 6.12 Assume f (x; t) in (176) is a continuous function depending only on t; i.e.,
f (x; t) = f (t) 2 C0 (R) : Then the function u (x; t) in (175) has the form

u (x; t) =

Z t

0

f (s) (t� s) ds =
Z t

0

�Z �

0

f (s) ds

�
d� 2 C2

�
R2
�
; 8 (x; t) 2 R2: (197)

Note that u (x; t) depends only on time t and is a C2 function of t 2 R:

Remark 6.13 (Interesting observation !!) A remarkable thing is that for a continuous function f (t) 2
C0 (R) ; the function u (t) :=

R t
0
f (s) (t� s) ds is a C2 function of t 2 (�1;1) (not just a C1

function). Note that
R t
0
f (s) (t� s) ds is a convolution-type integral and we have

d

dt

Z t

0

f (s) (t� s) ds =
Z t

0

f (s) ds and
d2

dt2

Z t

0

f (s) (t� s) ds = f (t) ; 8 t 2 R: (198)

On the other hand, since u (t) satis�es u00 (t) = f (t) ; u (0) = 0; u0 (0) = 0; we can also express
u (t) as the double integral

u (t) =

Z t

0

�Z �

0

f (s) ds

�
d�; 8 t 2 R: (199)
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Therefore, we have Z t

0

f (s) (t� s) ds =
Z t

0

�Z �

0

f (s) ds

�
d�; (200)

which can be veri�ed using the change of order of integration in the �s-plane, i.e.Z t

0

�Z �

0

f (s) ds

�
d� =

Z t

0

�Z t

s

f (s) d�

�
ds =

Z t

0

f (s) (t� s) ds: (201)

From (200), we see that
R t
0
f (s) (t� s) ds is a C2 function of t 2 (�1;1) :

Proof. By (175), we have

u (x; t) =
1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (�; s) d�

!
ds =

1

2c

Z t

0

 Z x+c(t�s)

x�c(t�s)
f (s) d�

!
ds =

Z t

0

f (s) (t� s) ds| {z } :
We have8>><>>:

ut (x; t) = f (t) (t� t) +
R t
0
@
@t
(f (s) (t� s)) ds =

R t
0
f (s) ds; utt (x; t) = f (t) ;

u (x; 0) = 0; ut (x; 0) = 0;

ux (x; t) = uxx (x; t) = 0; utt (x; t)� c2uxx (x; t) = f (t) :

�

The above will be the coverage of the midterm exam on 2022-4-18.
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