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Remark 0.1 This part consists of parabolic equations only.

Remark 0.2 This note is based on "Lecture-notes-on-PDE-2019-third-part.tex".

1 The heat equation.

Recall that if we study the second order equation

auxx + 2buxy + cuyy + 2dux + 2euy + ku = f (x; y) ; u = u (x; y) (1)

where a; :::; k are all constants and f (x; y) is a given function de�ned on some open set 
 �
R2; then we have the following classi�cation result:

Theorem 1.1 (Re�ned canonical form.) If the linear equation (1) is elliptic, then one can
�nd a suitable linear change of variables (using eigenvalues, eigenvectors and scalings) and
multiply the solution by some exponential function so that, eventually, the equation has the form

v�� + v�� + cv = � (�; �) ; v = v (�; �) ; (2)

for some constant c 2 (�1;1) and some function � (�; �) : If the equation (1) is hyperbolic, the
equation has the form

v�� � v�� + cv = � (�; �) ; v = v (�; �) ; (3)

for some constant c 2 (�1;1) and some function � (�; �) : If the equation (1) is parabolic and
nondegenerate, the equation has the form

v�� + cv� = � (�; �) ; v = v (�; �) ; (4)

for some constant c 6= 0 and some function � (�; �) :

Remark 1.2 (Important.) The constant c in the elliptic case can be c > 0; or c = 0; or c <
0: For c > 0; we can make it equal to 1 by doing the change of variables

~� =
p
c�; ~� =

p
c�; ~v

�
~�; ~�
�
= v

�
�p
c
;
�p
c

�
;

and for c < 0; we can make it equal to �1 by doing the change of variables

~� =
p
�c�; ~� =

p
�c�; ~v

�
~�; ~�
�
= v

�
�p
�c

;
�p
�c

�
:

Thus in the elliptic case, we may simply assume c = 1; or 0; or �1: The constant c in the
hyperbolic case can be c > 0; or c = 0; or c < 0: For c < 0; by switching the role of � and �; we
may assume c > 0; or c = 0: Hence for the hyperbolic case, eventually, we can simply assume
c = 1; or 0: Finally, for the parabolic case, the constant c 6= 0 can be c > 0; or c < 0: So eventually
we can simply assume c = 1; or �1: However, since most parabolic equations come from physical
phenomenon involving the behavior of some quantity v (�; �) depending on space and time. So � will
represent space variable and � will represent time variable. In that case a model parabolic
equation looks like (assume � (�; �) = 0 for simplicity)

(1) : vt = vxx or (2) : vt = �vxx: (5)
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We call (1) the "forward heat equation" (or just heat equation) and (2) the "backward heat
equation". Since in reality, time cannot go backwards, so in a parabolic equation, we always fucus
on the behavior of a solution v (x; t) as time goes forwards, i.e., as t is increasing. One can
use simple examples to see that, as time goes forwards, the heat equation (1) will make solution
better, while the backward heat equation (2) will make solution worse (look at e�t sin x and et sin x
respectively). Thus, as time goes forwards, equation (1) is well-posed, while (2) is ill-posed. In this
course, we will focus only on (1) (on the other hand, as time goes backwards, (1) will make
solution worse and (2) will make solution better...).

De�nition 1.3 Let v = v (�; �) : The equations v�� + v�� = 0; v�� � v�� = 0; v�� � v� = 0; are
called Laplace equation (elliptic equation), wave equation (hyperbolic equation), and
heat equation (nondegenerate parabolic equation), respectively.

By Theorem 1.1 and Remark 1.2, we study the following one-dimensional heat equation
(nondegenerate parabolic equation) (we focus on equation (1) in (5)):

ut = uxx; u = u (x; t) ; x 2 R: (6)

For higher dimensional heat equation, it has the form

ut = 4u; u = u (x1; ::: ; xn; t) ; (x1; ::: ; xn) 2 Rn;

where

4 =
@2

@x21
+ � � �+ @2

@x2n
is the Laplace operator in Rn:

We will focus only on the one-dimensional case, i.e. n = 1; in this course.

2 Physical motivation for the heat equation.

We will give a brief explanation why the equation ut = 4u is called the heat equation. The reason
is that it describes the behavior of the temperature function in the heat �ow phenomenon. We
look at the case n = 3 and let 
 � R3 be a bounded "heated domain". At any time t 2 (0;1) ;
let u (x; y; z; t) be the temperature at the point x = (x; y; z) 2 
: The total heat inside the domain

 at time t 2 (0;1) is given by

H (t) =

Z



u (x; t) dx; t 2 (0;1) : (7)

The change of total heat inside 
 is given by (here we assume we can di¤erentiate under the integral
sign, which is actually so in most situations)

dH

dt
(t) =

Z



@u

@t
(x; t) dx; t 2 (0;1) : (8)

On the other hand, by physical experiment, the French mathematician J. Fourier discovered that
the heat will �ow from hot to cold regions in a way that is proportional to the gradient of the
temperature everywhere, i.e., proportional to the quantity

ru =
�
@u

@x
;
@u

@y
;
@u

@z

�
; (9)

with certain proportion constant � (heat conductivity).
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Moreover, due to the conservation law of energy, if there is a change in the total heat inside

; it must be due to the heat �owing out or �owing into 
 through the boundary @
 (which is
a surface in R3). By conservation law and Fourier�s law, we also have the identity

dH

dt
(t) =

Z
@


� (ru (x; t) �N (x)) dS (surface integral in R3), t 2 (0;1) ; (10)

whereN (x) is the unit outward normal of @
 at x 2 @
 andru (x; t)�N (x) is the inner product
in R3 between the two vectors ru (x; t) and N (x) : By (8) and (10) and the classical divergence
theorem, we have the identityZ




@u

@t
(x; t) dx =

Z
@


� (ru (x; t) �N (x)) dS =
Z



� div (ru (x; t)) dx =
Z



�4 u (x; t) dx

and so we conclude the integral identity on 
 :Z



�
@u

@t
(x; t)� �4 u (x; t)

�
dx = 0; 8 t 2 (0;1) : (11)

Finally, we note that the analysis leading to the identity (11) is independent of the domain 
; i.e.
on any subdomain ~
 � 
 � R3; as long as the heat �ow phenomenon obeys the conservation law
and Fourier�s law in ~
; we always have the identityZ

~


�
@u

@t
(x; t)� �4 u (x; t)

�
dx = 0; 8 t 2 (0;1) : (12)

Since the domain ~
 � 
 � R3 in (12) is arbitrary, we must have

@u

@t
(x; t) = �4 u (x; t) ; 8 (x; t) 2 
� (0;1) ; (13)

which is the heat equation if we do suitable scaling to make � = 1:

3 The 1-dimensional heat equation.

Most of the time (but not always) we will focus only on the 1-dimensional heat equation in this course
("1-dimensional" means space dimension n is 1). Unlike the 1-dimensional wave equation utt = uxx,
the heat equation ut = uxx is much more di¢ cult to solve. It is not di¢ cult to guess some special
solutions of ut = uxx, like

u (x; t) = x; 2t+ x2; x3 + 6xt; et+x; et�x; e�t cosx; e�t sin x; et coshx; et sinh x; (14)

, etc. (note that et coshx and et sinh x are linear combinations of et+x and et�x). All of the above
solutions are de�ned on R�R: One can check that the only space-time separable solutions of
the heat equation are "essentially" of the form

u (x; t) = 1; x; et+x; et�x; e�t cosx; e�t sin x (15)

and no others. Also note that the solutions u (x; t) = x; 2t+x2; x3+6xt are polynomial solutions
with u (x; 0) = x; x2; x3: There is a formula for a polynomial solution with u (x; 0) = xn for any
n 2 N: We will discuss this later on.
There are several major di¤erences between the wave equation and the heat equation:

1. There is smoothing e¤ect for heat equation, but not so in wave equation. We will discuss this
later on.
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2. For wave equation, if u (x; t) is a solution, so is the function u (x;�t) ; but for the heat equation,
if u (x; t) is a solution, the function u (x;�t) is, in general, no longer a solution. Thus for the
heat equation ut = uxx; one cannot reverse the direction of time.

3. (Scaling property.) If u (x; t) is a solution of the heat equation, so is the function ~u (x; t) =
u (�x; �2t) for any constant � 6= 0 (for the wave equation, if u (x; t) is a solution, so is the
function ~u (x; t) = u (�x; �t) for any constant � 6= 0):

Example 3.1 (Interesting solutions.) We have the following interesting solutions of ut = uxx: They
are all de�ned on R� (�1;1) :

u (x; t) = e�t cosx; e�t sin x (space-periodic solutions, u (x+ 2�; t) = u (x; t) )

and

u (x; t)

= e
� xp

2 cos

�
t� xp

2

�
; e

� xp
2 sin

�
t� xp

2

�
(time-periodic solutions, u (x; t+ 2�) = u (x; t) )

and

u (x; t)

=

(
x2 + 2t; x3 + 6xt;

x4 + 12x2t+ 12t2; x5 + 20x3t+ 60xt2; ::::
(polynomial solutions),

where we note the important property that t is like x2 (see Remark 3.7 below), and

u (x; t) = et+x; et�x (traveling wave solutions).

Note that a function u (x; t) of the form u (x; t) = h (x� �t) for some constant � 2 R is usually
called a traveling wave function. To understand this terminology, you can plot the graphs of
u (x; 0) ; u (x; 1) ; u (x; 2) ; u (x; 3) ; ::::; and see that the graph of u (x; 0) is moving along the x-
direction as time goes on.

3.1 Polynomial solutions of the 1-dimensional heat equation.

If we do not impose any "side condition" on the heat equation ut = uxx; then on R2 it has in�nitely
many solutions. Recall that for the Laplace equation on R2; we have a family of polynomial solutions
known as "harmonic polynomials". They are 1; x; y; xy; x2�y2; , etc., and they are all de�ned
on R2: In terms of polar coordinates (r; �) in the plane they have the forms rn cosn�; rn sinn� for
n 2 N

S
f0g : These solutions are important because we can use them to construct the Poisson

Integral Formula on the disc.
For the heat equation ut (x; t) = uxx (x; t) on (x; t) 2 R2; there are also "heat polynomials"

de�ned on the whole space (x; t) 2 R2. In below, we show you how to derive them.
Consider the 1-dimensional heat equation ut (x; t) � uxx (x; t) = 0 with initial data (data at

t = 0)
u (x; 0) = p0 (x) ; x 2 (�1;1) ; (16)

where p0 (x) is a polynomial de�ned on x 2 (�1;1) with degree n 2 N
S
f0g : We try to look

for a space-time polynomial solution u (x; t) of the heat equation of the form

u (x; t) = p0 (x) + p1 (x) t+ p2 (x) t
2 + p3 (x) t

3 + � � �;

where each pi (x) is also a polynomial in x 2 (�1;1) :
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We compute
ut (x; t) = p1 (x) + 2p2 (x) t+ 3p3 (x) t

2 + � � �
and

uxx (x; t) = p000 (x) + p001 (x) t+ p002 (x) t
2 + p003 (x) t

3 + � � �;
and by comparing the coe¢ cient functions (because we want ut (x; t) = uxx (x; t)), we require8>>>>>>>>>>><>>>>>>>>>>>:

p1 (x) = p000 (x) ;

p2 (x) =
1
2
p001 (x) =

1
2
p00000 (x) ;

p3 (x) =
1
3
p002 (x) =

1
3!
p
(6)
0 (x) ;

� � �
pk (x) =

1
3
p002 (x) =

1
k!
p
(2k)
0 (x) ;

� � �:

(17)

Since p0 (x) is a polynomial with �nite degree n 2 N; the above process will stop at some k (i.e.
p
(2k)
0 (x) will become 0 for some k 2 N). Moreover, we see that all of the other polynomials
p1 (x) ; p2 (x) ; p3 (x) ; ::::; can be uniquely determined by p0 (x) ; which is the initial con-
dition of the heat equation. Therefore, if the polynomial p0 (x) is given in advance, we can �nd a
unique polynomial solution of the heat equation ut = uxx de�ned on (x; t) 2 R2 satisfying (16).
We look at some simple examples.

Example 3.2 Take p0 (x) = x: Then p1 (x) = p000 (x) = 0 and so on. The function u (x; t) = x is a
polynomial solution of the heat equation.

Example 3.3 Take p0 (x) = x2: Then p1 (x) = p000 (x) = 2 and p2 (x) = 0 and so on. The function

u (x; t) = p0 (x) + p1 (x) t = x2 + 2t (18)

is a polynomial solution of the heat equation.

Example 3.4 Take p0 (x) = x3: Then p1 (x) = p000 (x) = 6x and p2 (x) = 0 and so on. The function

u (x; t) = p0 (x) + p1 (x) t = x3 + 6xt (19)

is a polynomial solution of the heat equation.

Example 3.5 Take p0 (x) = x4: Then p1 (x) = p000 (x) = 12x
2 and p2 (x) = 12 and p3 (x) = 0 and

so on. The function

u (x; t) = p0 (x) + p1 (x) t+ p2 (x) t
2 = x4 + 12x2t+ 12t2 (20)

is a polynomial solution of the heat equation.

Example 3.6 Take p0 (x) = x5: Then p1 (x) = p000 (x) = 20x
3 and p2 (x) = 60x and p3 (x) = 0 and

so on. The function

u (x; t) = p0 (x) + p1 (x) t+ p2 (x) t
2 = x5 + 20x3t+ 60xt2 (21)

is a polynomial solution of the heat equation.
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Remark 3.7 In all of the above examples, note that t is like x2 (so that each term has the same
degree !!). Therefore, in the solution

u (x; t) = x5 + 20x3t+ 60xt2;

we see that each term has "degree 5".

Remark 3.8 (You will understand this remark later on.) If we use the representation
formula (you will see it later on)

u (x; t) =
1p
4�t

Z 1

�1
e�

(x�y)2
4t p0 (y) dy; t > 0; (22)

we will get the same answer on the domain (x; t) 2 (�1;1)� (0;1) : Note that the integral (22)
converges for any polynomial p0 (y) : Moreover, di¤erentiation can move into the integral sign.

3.2 Finding the fundamental solution of the heat equation with the
help of polynomial solutions.

Until now, we have found lots of polynomial solutions of the heat equation ut = uxx on (x; t) 2 R2;
namely

x2 + 2t; x3 + 6xt; x4 + 12x2t+ 12t2; x5 + 20x3t+ 60xt2; � � � ; etc: (23)

Restricted onto the domain R � (0;1), each of the polynomial solution can be expressed as the
form

u (x; t) = g (t)h

�
x2

t

�
; (x; t) 2 R� (0;1)

for some functions g (t) ; h (�) de�ned on t 2 (0;1) ; � 2 [0;1): For example, we can express

x2 + 2t = g (t)h

�
x2

t

�
; where g (t) = t; h (�) = � + 2

and

x3 + 6xt = t3=2

 �
xp
t

�3
+ 6

�
xp
t

�!

= g (t)h

�
x2

t

�
; where g (t) = t3=2; h (�) =

�p
�
�3
+ 6
p
�

and

x4 + 12x2t+ 12t2 = t2

 �
x2

t

�2
+ 12

�
x2

t

�
+ 12

!

= g (t)h

�
x2

t

�
; where g (t) = t2; h (�) = �2 + 12� + 12:

Therefore, we can plug the general form u (x; t) = g (t)h
�
x2

t

�
into the heat equation ut = uxx and

see if we can �nd new interesting solutions. Compute

ut (x; t) = g0 (t)h

�
x2

t

�
� g (t)h0

�
x2

t

�
x2

t2
; ux (x; t) = g (t)h0

�
x2

t

�
2x

t
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and

uxx (x; t) = g (t)h00
�
x2

t

�
4x2

t2
+ g (t)h0

�
x2

t

�
2

t
:

We hope to have the identity

g0 (t)h

�
x2

t

�
�g (t)h0

�
x2

t

�
x2

t2| {z } = g (t)h00
�
x2

t

�
4x2

t2| {z }+g (t)h0
�
x2

t

�
2

t
; 8 (x; t) 2 R�(0;1) ; (24)

which is possible if we require(
�h0 (�) = 4h00 (�) ; � 2 [0;1)

g0 (t)h (�) =
�
g (t) 2

t

�
h0 (�) ; � 2 [0;1); t 2 (0;1) :

(25)

Solving the �rst equation, we get the general solution h (�) = A + Be�
�
4 for arbitrary constants

A; B and we choose A = 0; B = 1 and plug h (�) = e�
�
4 into the second equation to get the

equation for g :

g0 (t) = � 1
2t
g (t) ; (26)

which gives the general solution g (t) = Cp
t
for arbitrary constant C: Therefore, we see that

u (x; t) = g (t)h

�
x2

t

�
=
1p
t
e�

x2

4t ; (x; t) 2 R� (0;1) (27)

is a new solution of the heat equation on R� (0;1) : Note that this solution is di¤erent from any
solution you encountered before. �

Remark 3.9 If g (t) and h (�) are from a polynomial solution u (x; t) ; then they will satisfy (24)
too.

Remark 3.10 (Important.) If we use the fact: if uj (x; t) is a solution for the one-dimensional
heat equation ut = uxx on R� (0;1) ; then the function

u (x; t) = u1 (x1; t) � � � un (xn; t) ; x = (x1; ::: ; xn) 2 Rn (28)

is a solution of the heat equation ut = 4u on Rn � (0;1) : With this, by (27), we will obtain the
solution

u (x; t) =
1p
t
e�

x21
4t � � � 1p

t
e�

x2n
4t =

1

tn=2
e�

jxj2
4t ; x 2 Rn; t > 0 (29)

of the heat equation ut = 4u on Rn � (0;1) :

By (29), we now de�ne the following (for normalization purpose, we divide the solution in (29)
by the constant (4�)n=2 ; see Lemma 3.17):

De�nition 3.11 The function

� (x; t) =

8><>:
1

(4�t)n=2
e�

jxj2
4t ; x 2 Rn; t > 0

0; x 2 Rn; t � 0:
(30)

is called the fundamental solution of the heat equation. For each �xed time t; it is radial in
x 2 Rn: Moreover it satis�es the heat equation @tu = 4u in Rn+1n f(0; 0)g and is invariant under
the space-time scaling � (x; t)! �n� (�x; �2t) ; i.e. we have

�n�
�
�x; �2t

�
= �(x; t) ; 8 � > 0; 8 (x; t) 2 Rn+1: (31)
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Remark 3.12 (1). The only singularity of � is at the point (0; 0) ; i.e. � (x; t) 2 C1 (Rn+1n f(0; 0)g)
and it is not continuous at (0; 0) : To understand the property � (x; t) 2 C1 (Rn+1n f(0; 0)g) you
need to know the fact that for each �xed x0 6= 0 2 Rn; the function

 (t) =

8><>:
1

(4�t)n=2
e�

jx0j
2

4t ; t > 0

0; t � 0
(32)

is a C1 function of t 2 (�1;1) : On the other hand, for x0 = 0;  (t) becomes

 (t) =

8><>:
1

(4�t)n=2
; t > 0

0; t � 0;

with limt!0+  (t) = +1 and so it is not continuous at t = 0: (2). � (x; t) satis�es the heat
equation @t� = 4� in Rn+1n f(0; 0)g : There is an easy way to check this on Rn � (0;1). Let
v = ln�: Then � satis�es the heat equation @t� = 4� if and only if v = ln� satis�es the equation
@tv = 4v + jrvj2 (this is an exercise for you to check). Therefore we check the later equation. We
have

v = ln� = �n
2
ln (4�t)� jxj

2

4t
; t > 0:

and then
@v

@t
= � n

2t
+
jxj2

4t2
:

Also

4v = � n

2t
; jrvj2 = jxj2

4t2
:

Hence we have @tv = 4v + jrvj2 : (3). Exercise: check that we have @t� (x; 0) = 4� (x; 0) for all
x 2 Rnn f0g ; x 6= 0:

3.3 Basic properties of the fundamental solution.

In order to study the initial value problem for the heat equation (see (59) below) and to derive
its solution formula, we need to discuss several important properties for the fundamental solution
� (x; t) given in (30). One can use this fundamental solution to give a representation formula
(solution formula) for the solution of (59) (this is similar to the Poisson Integral Formula for
Laplace equation on the disc).
As a comparison, recall that for the Laplace equation 4u (x) = 0 in Rn there is a radial

solution (with a singularity at the origin of Rn; i.e. x = 0) of the form

u (x) =

(
A jxj2�n +B; n > 2; where x 2 Rnn f0g

A log jxj+B; n = 2; where x 2 R2n f0g ;

where A; B are arbitrary constants. It plays an important role in the theory of Laplace equation.
For the heat equation ut = 4u, the fundamental solution � (x; t) given in (30) is also a radial

solution (radial in space Rn, not in space-time Rn+1), which, similar to the elliptic case, has
a singularity at the origin of Rn+1; i.e. at (x; t) = (0; 0).
In the following, we will discuss several properties of the fundamental solution � (x; t) for the

case n = 1: These properties are all valid for general n > 1; but for simplicity of proof, here we
focus only on the case n = 1:
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Lemma 3.13 Let

� (x; t) =

8><>:
1p
4�t

e�
x2

4t ; x 2 R; t > 0

0; x 2 R; t � 0:
(33)

Then � (x; t) 2 C1 (R2n f(0; 0)g) and it satis�es the heat equation @tu = 4u in R2n f(0; 0)g :

Proof. Since

� (0; t) =

8><>:
1p
4�t

; t > 0

0; t � 0;
we see that � (x; t) is not continuous at (0; 0) : Moreover, we have

lim
t!0+

� (0; t) = lim
t!0+

1p
4�t

=1:

To check that � (x; t) 2 C1 (R2n f(0; 0)g) ; it su¢ ces to look at the behavior of � (x; t) on the
set S = f(x; 0) 2 R2 : x 6= 0g : By the limit

lim
t!0+

�
1

t�
e�

�
t

�
= 0; 8 const. �; � > 0;

one can check that � (x; t) is C1 at any point of S: Computing

@

@x

�
1p
4�t

e�
x2

4t

�
=

1p
4�t

�
� x

2t

�
e�

x2

4t ; t > 0

@2

@x2

�
1p
4�t

e�
x2

4t

�
=

1p
4�t

�
� 1
2t
+
x2

4t2

�
e�

x2

4t ; t > 0

@

@t

�
1p
4�t

e�
x2

4t

�
=

1p
4�

�
�1
2
t�3=2

�
e�

x2

4t +
1p
4�t

e�
x2

4t
x2

4t2
; t > 0 (34)

we see that � (x; t) satis�es the heat equation on R � (0;1) : Clearly it also satis�es the heat
equation on R� (�1; 0) : At any point (x0; 0) 2 S; x0 6= 0; we have �xx (x0; 0) = 0: Also note that

lim
t!0�

� (x0; t)� � (x0; 0)
t

= 0 (x0 6= 0)

and

lim
t!0+

� (x0; t)� � (x0; 0)
t

= lim
t!0+

�
1

t

1p
4�t

e�
x20
4t

�
= 0 (x0 6= 0; x20 > 0),

and so we have �t (x0; 0) = 0: The proof is done. �

Lemma 3.14 For any �xed " > 0; we have

lim
t!0+

� (x; t) = 0 uniformly in the region fx 2 R : jxj � "g : (35)

Also
lim
jxj!1

� (x; t) = 0 uniformly in the region t 2 (�1;1) . (36)

Remark 3.15 We also have

lim
t!1

� (x; t) = 0 uniformly in x 2 (�1;1) . (37)

This is easy due to

j� (x; t)j =
���� 1p
4�t

e�
x2

4t

���� � 1p
4�t

for all x 2 (�1;1) ; t > 0: (38)

9



Remark 3.16 Draw a picture for � (x; t) with t! 0+:

Proof. For (35), we have for t > 0 the inequality

0 < � (x; t) =
1p
4�t

e�
x2

4t � 1p
4�t

e�
"2

4t ; 8 jxj � "

and the conclusion follows. For (36), it su¢ ces to focus on t 2 (0;1) since � (x; t) � 0 for all
x 2 R; t � 0: For �xed x 2 R; x 6= 0; the maximum value of the positive function

1p
4�t

e�
x2

4t ; t 2 (0;1)

over t 2 (0;1) ; is attained at the point t = x2=2 with maximum value equal to

1

jxj
p
2�
e�

1
2 : (39)

This is due to the identity

@

@t

�
1p
4�t

e�
x2

4t

�
=

1p
4�t

1

2t

�
x2

2t
� 1
�
e�

x2

4t ; x 2 R; t 2 (0;1) :

The result follows. �

Lemma 3.17 For each �xed t > 0; we haveZ 1

�1
� (x; t) dx =

Z 1

�1

1p
4�t

e�
x2

4t dx = 1; t > 0: (40)

Moreover, the convergence of the integral is uniform with respect to t 2 (0; T ) for any �xed T >
0 (but not uniform with respect to t 2 (0;1)).

Remark 3.18 Draw a picture for � (x; t) (for small t > 0 and for large t > 0) and show the
property

R1
�1� (x; t) dx = 1 for all t > 0:

Remark 3.19 (Helpful interpretation ...) For �xed t > 0; if we let

FN (t) =

Z N

�N
� (x; t) dx; t 2 (0; T ) ; N 2 N;

then the convergence of the integral is uniform with respect to t 2 (0; T ) can be interpreted as

lim
N!1

FN (t) = 1 uniformly in t 2 (0; T ) :

Remark 3.20 Similarly, we haveZ 1

�1

1p
4�t

e�
(x�y)2
4t dx = 1; 8 y 2 R; t > 0 (41)

and Z 1

�1

1p
4�t

e�
(x�y)2
4t dy = 1; 8 x 2 R; t > 0: (42)
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Proof. We �rst recall the following improper integral identity from calculus:Z 1

�1
e�s

2

ds =
p
�: (43)

By a change of variables (let s = �y + �), we haveZ 1

�1
e�(�y+�)

2

dy =

p
�

�
; 8 � 2 R; � > 0: (44)

Letting x =
p
4ts; we obtainZ 1

�1

1p
4�t

e�
x2

4t dx =

Z 1

�1

1p
4�t

e�s
2p
4tds =

1p
�

Z 1

�1
e�s

2

ds = 1:

Next, let T > 0 be a �xed time. For any " > 0; then there exists a large M > 0 (M depends only
on " and T ) such that for all t 2 (0; T ) we have the estimate (again, let x =

p
4ts)

0 <

Z 1

M

1p
4�t

e�
x2

4t dx =
1p
�

Z 1

Mp
4t

e�s
2

ds <
1p
�

Z 1

Mp
4T

e�s
2

ds < "; 8 t 2 (0; T ) :

The same result holds for the integral
R �M
�1

1p
4�t
e�

x2

4t dx: Therefore, the convergence of the integral
is uniform with respect to t 2 (0; T ) for any �xed T > 0: �

Remark 3.21 By the integral identityZ
Rn
e�jxj

2

dx =
�p

�
�n
;

one can also obtain the identity Z
Rn

1

(4�t)n=2
e�

jxj2
4t dx = 1 (45)

for each t > 0:

Lemma 3.22 For �xed � > 0; we have

lim
t!0+

Z
jy�xj>�

1p
4�t

e�
(x�y)2
4t dy = 0 uniformly in x 2 R; (46)

which means that the values of the fundamental solution � (x� y; t) (view it as a function of y with
parameter x) concentrate around x as t! 0+:

Remark 3.23 For �xed � > 0; the quantityZ
jy�xj>�

1p
4�t

e�
(x�y)2
4t dy

is a function of (x; t) 2 R�(0;1) (denote it as F (x; t)). The above lemma says that limt!0+ F (x; t) =
0 uniformly in x 2 R:

Proof. Let y = x+
p
4ts: Then

lim
t!0+

Z
jy�xj>�

1p
4�t

e�
(x�y)2
4t dy = lim

t!0+
1p
�

Z
jsj>�=

p
4t

e�s
2

ds = 0: (47)

Note that the right hand side of (47) does not depend on x 2 R: Hence we have convergence to zero
uniformly in x 2 R: The proof is done. �

The following lemma is crucial in solving the initial value problem (59) below.
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Lemma 3.24 Let � (x) be a bounded function de�ned on (�1;1) and is continuous at x =
x0: Then we have

lim
(x;t)!(x0;0+)

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy = � (x0) : (48)

In particular, we also have

lim
t!0+

Z 1

�1

1p
4�t

e�
(x0�y)

2

4t � (y) dy = � (x0) : (49)

Remark 3.25 The above two limits have di¤erent meaning. In the �rst limit, (x; t)! (x0; 0
+) means

that (x; t) 2 R � (0;1) approaches the point (x0; 0) 2 R � f0g in the plane R2, while maintain-
ing t > 0: In the second limit, we take x = x0 in the integrand and look at the limit t ! 0; still
maintaining t > 0: Note that (48) is a 2-dimensional limit, but (49) is just a 1-dimensional limit.

Proof. Let
u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy; (x; t) 2 R� (0;1) : (50)

For any " > 0; we choose � > 0 such that j� (y)� � (x0)j < " if jy � x0j < 2�: Let M = supR j�j : If
jx� x0j < �; then

ju (x; t)� � (x0)j =
���� 1p
4�t

Z 1

�1
e�

(x�y)2
4t (� (y)� � (x0)) dy

����
� 1p

4�t

�Z
jy�xj<�

e�
(x�y)2
4t j� (y)� � (x0)j dy +

Z
jy�xj��

e�
(x�y)2
4t j� (y)� � (x0)j dy

�
� 1p

4�t

�Z
jy�x0j<2�

e�
(x�y)2
4t j� (y)� � (x0)j dy + 2M

Z
jy�xj��

e�
jx�yj2
4t dy

�
� "

�Z
jy�x0j<2�

1p
4�t

e�
(x�y)2
4t dy

�
+ 2M

�Z
jy�xj��

1p
4�t

e�
(x�y)2
4t dy

�
(51)

Therefore, by (42) and (46), if t > 0 is small enough and jx� x0j < �, (51) will imply

ju (x; t)� � (x0)j � "+ 2M";

Hence we have
lim

(x;t)!(x0;0+)
u (x; t) = � (x0)

and (48) is proved. (49) is a consequence of (48). �

Lemma 3.26 Let � (y) be a continuous bounded function de�ned on (�1;1) : Then we have�
@m+n

@tm@xn

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy

�
(x0; t0)

=

Z 1

�1

��
@m+n

@tm@xn
1p
4�t

e�
(x�y)2
4t � (y)

�
(x0; t0; y)

�
dy (52)

for all (x0; t0) 2 (�1;1)� (0;1) and all m; n 2 N
S
f0g : In particular, the function

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy; (x; t) 2 (�1;1)� (0;1) ; (53)

satis�es (
(1) : u (x; t) 2 C1 ((�1;1)� (0;1))

(2) : ut (x; t) = uxx (x; t) ; 8 (x; t) 2 (�1;1)� (0;1) :
(54)
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Remark 3.27 (Important.) To understand the proof of Lemma 3.26, you need to know when a
di¤erentiation (say @

@x
) and an improper integral (say of the form

R1
�1 g (x; y) dy or

R1
0
g (x; y) dy for

some di¤erentiable function g (x; y)) can commute. For your convenience, here I provide two
results in the following:

1. Let f (x; y) 2 C0 (I � [0;1)) ; where I � R is an arbitrary connected interval and assume
that the improper integral

R1
0
f (x; y) dy converges uniformly to a function F (x) on

I: Then F (x) is continuous on I: This means that we have the identity

lim
x!x0

Z 1

0

f (x; y) dy =

Z 1

0

f (x0; y) dy; 8 x0 2 I: (55)

The same conclusion holds if we replace
R1
0
f (x; y) dy by

R1
�1 f (x; y) dy:

2. Let f (x; y) 2 C0 (I � [0;1)) ; where I � R is an arbitrary connected interval and assume
that the improper integral

R1
0
f (x; y) dy converges to a function F (x) on I (does not have

to be uniform) and @f
@x
2 C0 (I � [0;1)) and

R1
0

@f
@x
(x; y) dy converges uniformly on

I;Then F (x) is di¤erentiable with respect to x 2 I and

F 0 (x) =

Z 1

0

@f

@x
(x; y) dy; 8 x 2 I: (56)

In particular, F (x) is also continuous on I:Moreover, if I is a �nite interval, then
R1
0
f (x; y) dy

also converges uniformly on I: The same conclusion holds if we replace
R1
0
f (x; y) dy byR1

�1 f (x; y) dy and
R1
0

@f
@x
(x; y) dy by

R1
�1

@f
@x
(x; y) dy:

Note: Compare with Rudin�s Advanced Calculus book (Principle of Mathematical Analysis,
3rd edition) Theorem 7.17 in p. 152. In terms of series of functions, Rudin�s Theorem 7.17 can
be stated as: Let ffng be a sequence of di¤erentiable functions on [a; b] such that the seriesP1

n=1 fn (x) converges for some x0 2 [a; b] and assume that the series
P1

n=1 f
0
n (x) converges

uniformly on [a; b] to a function h (x) ; then the series
P1

n=1 fn (x) converges uniformly on
[a; b] to a function f (x) ; which is di¤erentiable, and we have

f 0 (x) = h (x) ; 8 x 2 [a; b] :

Proof. For any �xed m; n 2 N
S
f0g and �xed (x0; t0) 2 (�1;1)� (0;1) the function�

@m+n

@tm@xn
1p
4�t

e�
(x�y)2
4t � (y)

�
(x0; t0; y) ; y 2 (�1;1)

decays exponentially in the variable y as jyj ! 1: In fact, it also decays exponentially in the
variable y as jyj ! 1 for all (x; t) in some neighborhood R of (x0; t0) : For example, one can take
R as

R =

�
(x; t) : x0 � 1 < x < x0 + 1;

t0
2
< t <

3t0
2

�
; t0 > 0: (57)

By this decay property, one can check that the integralZ 1

�1

��
@m+n

@tm@xn
1p
4�t

e�
(x�y)2
4t � (y)

�
(x; t; y)

�
dy; (x; t) is near (x0; t0)

converges uniformly for all (x; t) in R: By standard theory in advanced calculus, the function
(as a function of (x; t) 2 R) Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy
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is di¤erentiable with respect to t up to m times and di¤erentiable with respect to x up to n times,
i.e. one can apply @m+nu

@tm@xn
onto it and obtain the identity�

@m+nu

@tm@xn

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy

�
(x; t)

=

Z 1

�1

��
@m+nu

@tm@xn
1p
4�t

e�
(x�y)2
4t � (y)

�
(x; t; y)

�
dy; 8 (x; t) 2 R: (58)

As the point (x0; t0) 2 (�1;1) � (0;1) is arbitrary and the numbers m; n 2 N
S
f0g are also

arbitrary, the identity (52) is proved for all (x0; t0) 2 (�1;1)� (0;1). Moreover, the functionZ 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy

is aC1 function of (x; t) 2 (�1;1)�(0;1) ; which implies u (x; t) 2 C1 ((�1;1)� (0;1)) : Finally,
we have �

@

@t
� @2

@x2

�
u (x; t) =

�
@

@t
� @2

@x2

��Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy

�
=

Z 1

�1

��
@

@t
� @2

@x2

�
1p
4�t

e�
(x�y)2
4t

�
� (y) dy =

Z 1

�1
0 � � (y) dy = 0;

which means that u (x; t) satis�es the heat equation on (�1;1)� (0;1) : �

3.4 Heat equation on the whole line with initial condition.

Motivated by the heat polynomials, to get unique solution (we hope so) of a heat equation ut = uxx,
we focus on the following initial value problem:(

ut (x; t) = uxx (x; t) ; (x; t) 2 R� (0;1)

u (x; 0) = f (x) ; x 2 R:
(59)

Here f (x) is a given continuous function on R and we want (hope) to �nd a "unique" solution
u (x; t) lying in the space C2 (R� (0;1))

T
C0 (R� [0;1)) :

Remark 3.28 In physical reality, most phenomena described by heat equation (and wave equa-
tion) has initial-boundary conditions (where the space domain for x is bounded). However, for
x 2 (�1;1) ; the initial value problem (59) has a nice solution formula (this is similar to the
wave equation utt (x; t) = uxx (x; t) with initial conditions u (x; 0) and ut (x; 0)) and it is easier to
manipulate. Therefore, for mathematical reason (not for physical reason), instead of looking
at initial-boundary value problem for heat equation, we look at (59) �rst.

Note that, unlike the wave equation, here we do not need the condition ut (x; 0) = g (x) for
the heat equation. This is due to physical phenomenon (heat equation is not a mechanical
equation coming from Newton�s law) and also due to the fact that if u (x; t) is C2 up to t = 0 (with
f 2 C2 (R)), then we also have

ut (x; 0) = uxx (x; 0) = f 00 (x) ; x 2 R;

i.e. the condition ut (x; 0) = g (x) is automatically a consequence of the condition u (x; 0) =
f (x) : On the other hand, for the case of wave equation, we can not determine ut (x; 0) from
the condition u (x; 0) (but we can determine utt (x; 0) from the condition u (x; 0) due to the identity
utt (x; 0) = uxx (x; 0)).
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Unfortunately, the initial value problem (59) has in�nitely many solutions (this is
unlike the wave equation, which has a unique solution once we know u (x; 0) and ut (x; 0))
unless we impose condition on the behavior of solution u (x; t) for large jxj. This is because
the data is prescribed on the line t = 0; which is a characteristic line of the heat equation
uxx (x; t)� ut (x; t) = 0:
In spite of this defect, when f (x) is given and x 2 (�1;1) ; there is some "special solution" of

(59), which is given by a representation formula (solution formula), which has good properties
and is close to the physical reality.

Remark 3.29 Recall that for a second order linear parabolic equation with constant coe¢ cients
for u (x; y) (here we view y as time), given by

auxx + 2buxy + cuyy + (lower order terms) = 0; ac = b2; (60)

where a; b; c are constants with ac = b2; the leading terms auxx + 2buxy + cuyy can be factored as

auxx + 2buxy + cuyy =

�
A
@

@x
+B

@

@y

���
A
@

@x
+B

@

@y

�
u

�
= 0 (61)

for some constants A; B; C: The 1-parameter family of lines

Bx� Ay = �; � 2 (�1;1) (62)

are called the characteristic lines of the parabolic equation (60). By this, for the standard heat
equation uxx + (�ut) = 0; the 1-parameter family of characteristic lines are given by (we now
have B = 0; A = 1; y = t in (62))

�t = �; � 2 (�1;1) : (63)

From it, we know that the line t = 0 (i.e. x-axis) is a characteristic line of the heat equation.
This may explain the nonuniqueness of the initial value problem (59).

We now consider the following initial value problem for heat equation de�ned on the whole line:(
ut = uxx; x 2 (�1;1) ; t 2 (0;1)

u (x; 0) = � (x) ; x 2 (�1;1) :
(64)

Here � (x) is a given continuous function on (�1;1) and we want to �nd a solution lying in the
function space:

u (x; t) 2 C2 ((�1;1)� (0;1))
\

C0 ((�1;1)� [0;1)) ; (65)

where satis�es (64).
As a consequence of Lemma 3.24 and Lemma 3.26, we can obtain the following solution for-

mula for the initial value problem (64):

Theorem 3.30 Assume � (x) is a continuous bounded function de�ned on (�1;1). Then the
function

u (x; t) =

8><>:
Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy; x 2 (�1;1) ; t 2 (0;1)

� (x) ; t = 0

(66)

belongs to the space C1 (R� (0;1))
T
C0 (R� [0;1)) (i.e. continuous up to t = 0) and satis�es

the initial value problem(
ut (x; t) = uxx (x; t) ; x 2 (�1;1) ; t 2 (0;1)

u (x; 0) = � (x) ; x 2 (�1;1) :
(67)
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Proof. This is a direct consequence of Lemma 3.24 and Lemma 3.26. �

Remark 3.31 (Important.) As long as t > 0; u (x; t) becomes a smooth function even if the
initial data � (x) is only a continuous function. We call this a smoothing e¤ect of the heat equation.
This is unlike the wave equation, which has no smoothing e¤ect.

Corollary 3.32 (The maximum principle.) The solution u (x; t) given by (66), where � (x) is
a continuous bounded function de�ned on (�1;1) ; satis�es the maximum principle:

inf
R
� � u (x; t) � sup

R
� for all x 2 (�1;1) ; t 2 (0;1) : (68)

Proof. We have

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y)|{z} dy �

Z 1

�1

1p
4�t

e�
(x�y)2
4t sup

R
�| {z } dy

= sup
R
� �
Z 1

�1

1p
4�t

e�
(x�y)2
4t dy = sup

R
�

and similarly u (x; t) � infR �: �

Corollary 3.33 (In�nite speed of propagation of the heat equation.) Let � (x) be a con-
tinuous bounded function de�ned on (�1;1) : Assume � (x) � 0 everywhere, has compact
support, and � 6� 0. Then the solution u (x; t) given by (66) satis�es

u (x; t) > 0; 8 x 2 (�1;1) ; t 2 (0;1) ; (69)

i.e., as long as time is positive, u (x; t) is positive everywhere no matter how large jxj is (that is why
we say the equation has in�nite speed of propagation).

Remark 3.34 This is di¤erent from the wave equation. The function u (x; t) = � (x� t) satis�es
the wave equation utt = uxx with u (x; 0) = � (x) : However, for t > 0; u (x; t) = 0 if jxj > 0 is large
enough.

Proof. Since � is not a zero function, we have � (x0) > 0 for some x0 2 (�1;1) : By continuity,
� > 0 on (x0 � "; x0 + ") for some " > 0: Now at any (x; t) 2 (�1;1)� (0;1) ; we have

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy �

Z x0+"

x0�"

1p
4�t

e�
(x�y)2
4t � (y) dy > 0:

The proof is done. �

To go on, we need the following special case of Fubini Theorem from advanced calculus
textbook:

Lemma 3.35 (Tonelli�s theorem.) Let � (x; y) be a continuous "nonnegative" function de-
�ned on R2 = (�1;1)� (�1;1) : Then the �niteness of any one of the following three integrals:Z 1

�1

�Z 1

�1
� (x; y) dx

�
dy;

Z 1

�1

�Z 1

�1
� (x; y) dy

�
dx;

ZZ
R2
� (x; y) dxdy

implies that of the other two. Moreover, their values are all equal.

Remark 3.36 The condition � (x; y) � 0 on R2 is essential.
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Proof. We omit it. �

Lemma 3.37 (Conservation of total energy.) Let � (x) be a continuous bounded function
de�ned on (�1;1) (� (x) may not be nonnegative). Assume

R1
�1 j� (x)j dx converges. Then the

solution u (x; t) given by (66) satis�esZ 1

�1
u (x; t) dx =

Z 1

�1
� (x) dx; 8 t 2 (0;1) : (70)

This means that the total energy (heat) is conserved.

Proof. For each x 2 (�1;1) ; let �+ (x) = max f� (x) ; 0g � 0 and �� (x) = �min f� (x) ; 0g �
0: Then we have

� (x) = �+ (x)� �� (x) ; j� (x)j = �+ (x) + �� (x) ; 8 x 2 (�1;1) :

The convergence of
R1
�1 j� (x)j dx implies that of

R1
�1 �

+ (x) dx and
R1
�1 �

� (x) dx: Also, since � (x)
is a bounded function, for each �xed (x; t) 2 (�1;1)� (0;1) ; the three improper integralsZ 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy;

Z 1

�1

1p
4�t

e�
(x�y)2
4t �+ (y) dy;

Z 1

�1

1p
4�t

e�
(x�y)2
4t �� (y) dy

all converge. Now we haveZ 1

�1
u (x; t) dx =

Z 1

�1

�Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy

�
dx

=

Z 1

�1

�Z 1

�1

1p
4�t

e�
(x�y)2
4t �+ (y) dy �

Z 1

�1

1p
4�t

e�
(x�y)2
4t �� (y) dy

�
dx (71)

and by Lemma 3.35, we haveZ 1

�1

�Z 1

�1

1p
4�t

e�
(x�y)2
4t �+ (y) dy

�
dx

=

Z 1

�1

24�+ (y)Z 1

�1

1p
4�t

e�
(x�y)2
4t dx| {z }

35 dy = Z 1

�1
�+ (y) dy <1

and similarly Z 1

�1

�Z 1

�1

1p
4�t

e�
(x�y)2
4t �� (y) dy

�
dx =

Z 1

�1
�� (y) dy <1:

Therefore, the two iterated integrals in (71) converge and we concludeZ 1

�1
u (x; t) dx =

Z 1

�1
�+ (y) dy �

Z 1

�1
�� (y) dy =

Z 1

�1
� (x) dx; 8 t 2 (0;1) :

The proof is done. �

3.5 The maximum principle.

Assume that u (x; t) is a solution of the heat equation ut = uxx on (�1;1) � (�1;1) : The
maximum principle of the di¤usion equation says that (roughly speaking), for �xed time t0; we
have ut (x0; t0) � 0 if u (x0; t0) has a local maximum at x = x0 (so the value of u (x0; t0) will
"decrease" at the moment t = t0); and ut (x0; t) � 0 if u (x0; t) has a local minimum at x = x0 (so
the value of u (x0; t0) will "increase" at the moment t = t0) (draw a picture for this). This is called
the maximum principle of the heat equation. It matches with the physical phenomenon that
heat goes from hot points to cold points and vice versa.
The maximum principle on the unbounded domain x 2 (�1;1) is more di¢ cult to describe.

We will discuss the maximum principle on bounded domains only.
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3.5.1 The maximum principle on bounded domains.

Let UT � R2 be the set given by

UT =
�
(x; t) 2 R2 : 0 < x < `; 0 < t � T

	
; `; T > 0 (72)

and assume that u = u (x; t) 2 C2 (UT )
T
C0
�
�UT
�
satis�es the heat equation ut = uxx on UT (note

that the segment (x; T ) ; 0 < x < `; is included). Note that since u is continuous on the compact
set �UT ; it has global maximum and minimum on �UT :

Remark 3.38 Explain the meaning of u 2 C2 (UT ) :

The maximum principle says the following:

Lemma 3.39 (Weak maximum principle for heat equation.) Assume u 2 C2 (UT )
T
C0
�
�UT
�

satis�es the heat equation ut = uxx on UT : Then we have

max
�UT

u = max
�T

u; (73)

where �T := �UT � UT ; which is called the parabolic boundary of UT :

Remark 3.40 The above result is still true if we have ut � uxx on UT :

Proof. Assume v 2 C2 (UT )
T
C0
�
�UT
�
is a function such that

vxx (x; t)� vt (x; t) > 0 in UT : (74)

Then since v 2 C0
�
�UT
�
; there is a point (x0; t0) 2 �UT such that v (x0; t0) = max �UT v: If (x0; t0) 2

UT with t < T; then from calculus we know that

vx (x0; t0) = 0; vxx (x0; t0) � 0; vt (x0; t0) = 0: (75)

This contradicts vxx � vt > 0 in UT :
If (x; t) 2 UT with t = T; then we replace vt (x0; t0) = 0 by vt (x0; t0) � 0 in (75) and get the

same contradiction. Thus the point (x0; t0) must lie on the parabolic boundary of UT and
cannot lie on UT (for v (x; t) satisfying the di¤erential inequality (74)). In such a case we have

max
�UT

v = max
�T

v (call this value M), where vxx (x; t)� vt (x; t) > 0 in UT ; (76)

and moreover, v (x; t) cannot attain the value M on UT :
Now let v (x; t) = u (x; t)+"x2 (" > 0 is a small constant), where u 2 C2 (UT )

T
C0
�
�UT
�
satis�es

the heat equation on UT . We now have

vxx (x; t)� vt (x; t) = uxx (x; t) + 2"� ut (x; t) = 2" > 0 in UT :

By the above discussion, we know that

max
�UT

v = max
�T

v = max
�T

�
u (x; t) + "x2

�
�
�
max
�T

u (x; t)

�
+ "`2

and by u (x; t) = v (x; t)� "x2 � v (x; t) ; we get

max
�UT

u � max
�UT

v �
�
max
�T

u (x; t)

�
+ "`2: (77)

As " > 0 is arbitrary, letting "! 0+ (note that here ` is �nite), we obtainmax �UT u � max�T u (x; t) :On
the other hand, we also have max �UT u � max�T u (x; t) : Hence max �UT u = max�T u (x; t) : �
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Exercise 3.41 Instead of using v (x; t) = u (x; t) + "x2; now use the function v (x; t) = u (x; t) �
"t; " > 0; and repeat the same argument of proof. Can you obtain the same result?

Remark 3.42 (Be careful.) In the above proof, we do not exclude the possibility that the maximum
of u (x; t) (note that ut = uxx) can also be attained at some point in UT : For example, when the
solution u (x; t) is a constant, then this can happen. However, this is the only case that can happen
(this is the strong maximum principle).

We also have the following minimum principle:

Corollary 3.43 (Weak minimum principle for heat equation.) Assume u 2 C2 (UT )
T
C0
�
�UT
�

satis�es the heat equation ut = uxx on UT : Then we have

min
�UT

u = min
�T

u: (78)

Remark 3.44 The above result is still true if we have ut � uxx on UT :

Remark 3.45 Again, here we do not exclude the possibility that the minimum can be attained at
some point in UT :

Proof. The proof for the minimum case is similar by looking at �u (it also satis�es the heat
equation) and the identity max �UT (�u) = max�T (�u) becomes �min �UT u = �min�T u: �

Corollary 3.46 Assume u 2 C2 (UT )
T
C0
�
�UT
�
satis�es the heat equation ut = uxx on UT and u �

0 on the parabolic boundary �T ; then u � 0 on �UT :

Proof. This is a consequence of the maximum-minimum principle. �

Example 3.47 (Give this as an homework problem ....) Let u (x; t) be one of the following
functions:

t+
x2

2
; et+x; et�x; e�t cosx; e�t sin x; et coshx; et sinh x; (x; t) 2 R2:

They all satisfy the heat equation ut = uxx (note that et coshx and et sinh x are linear combinations
of et+x and et�x). Let UT = (0; 1)� (0; T ]: We have8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(1) : max �UT

�
t+ x2

2

�
= T + 1

2
; attained at (1; T ) 2 �T := �UT � UT

(2) : max �UT (e
t+x) = eT+1; attained at (1; T ) 2 �T

(3) : max �UT (e
t�x) = eT�0; attained at (0; T ) 2 �T

(4) : max �UT (e
�t cosx) = e�0 cos 0 = 1; attained at (0; 0) 2 �T

(5) : max �UT (e
�t sin x) = e�0 sin 1 = sin 1; attained at (1; 0) 2 �T

(6) : max �UT (e
t coshx) = eT cosh 1; attained at (1; T ) 2 �T

(7) : max �UT (e
t sinh x) = eT sinh 1; attained at (1; T ) 2 �T :

From the above, we see that each solution attains its maximum point on the parabolic boundary �T :
Also note that the maximum can be attained at any corner point (there are four of them) of �T :

One can also use Energy Method (integral method) to prove the following (without using the
maximum principle):
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Lemma 3.48 Assume u 2 C2
�
�UT
�
satis�es the heat equation ut = uxx on UT and u � 0 on the

parabolic boundary �T ; then u � 0 on �UT :

Proof. Let E (t) ; 0 � t � T; be the quantity

E (t) =
1

2

Z `

0

u2 (x; t) dx � 0; 0 � t � T:

Then E (t) is a di¤erentiable function on [0; T ] ; E (0) = 0; and we have

dE

dt
(t) =

Z `

0

u (x; t)ut (x; t) dx =

Z `

0

u (x; t)uxx (x; t) dx

=

Z `

0

��
d

dx
[u (x; t)ux (x; t)]

�
� (ux (x; t))2

�
dx

= [u (x; t)ux (x; t)]jx=`x=0 �
Z `

0

(ux (x; t))
2 dx = �

Z `

0

(ux (x; t))
2 dx � 0: (79)

Hence we have
0 � E (t) � E (0) = 0; 8 t 2 [0; T ]: (80)

Thus E (t) = 0 for all time t 2 [0; T ] and so u � 0 on �UT : �

3.6 Discontinuous bounded initial data.

What happens if the initial condition � (x) is a bounded function de�ned on (�1;1) but discon-
tinuous somewhere ? (here we assume that � (x) is discontinuous only at a �nite number of points
and at each discontinuous point x0 both limx!x+0

� (x) and limx!x�0
� (x) exist).

We have the following interesting result:

Lemma 3.49 Let � (x) be a bounded function de�ned on (�1;1) and at x = x0 it is discon-
tinuous and satis�es

lim
x!x+0

� (x) = A; lim
x!x�0

� (x) = B; where A 6= B (81)

Then the function

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy; x 2 (�1;1) ; t 2 (0;1)

lies in the space u 2 C1 ((�1;1)� (0;1)) and satis�es the heat equation

ut (x; t) = uxx (x; t) ; 8 (x; t) 2 (�1;1)� (0;1) (82)

with

lim
t!0+

u (x0; t) = lim
t!0+

Z 1

�1

1p
4�t

e�
(x0�y)

2

4t � (y) dy =
A+B

2
: (83)

Remark 3.50 (Be careful.) In general, the limit

lim
(x;t)!(x0;0+)

u (x; t) (note that this is not the same as lim
t!0+

u (x0; t) ) (84)

does not exist (see Example 3.51 below). On the other hand, if � (x) is continuous at x = x1; then
we have

lim
(x;t)!(x1;0+)

u (x; t) = lim
t!0+

u (x1; t) = � (x1) : (85)
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Proof. It su¢ ces to verify (83). Let M = supR j�j and let

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy; (x; t) 2 (�1;1)� (0;1) : (86)

Then (let y = x0 +
p
4ts)

u (x0; t) =
1p
�

Z 1

0

e�s
2

�
�
x0 +

p
4ts
�
ds+

1p
�

Z 0

�1
e�s

2

�
�
x0 +

p
4ts
�
ds: (87)

For any " > 0; there exists � > 0 such that if x 2 (x0; x0 + �) ; then j� (x)� Aj < ": Hence the �rst
integral in (87) satis�es���� 1p�

Z 1

0

e�s
2

�
�
x0 +

p
4ts
�
ds� A

2

���� = ���� 1p�
Z 1

0

e�s
2
h
�
�
x0 +

p
4ts
�
� A

i
ds

����
� 1p

�

Z �=
p
4t

0

e�s
2
�����x0 +p4ts�� A

��� ds+ 1p
�

Z 1

�=
p
4t

e�s
2
�����x0 +p4ts�� A

��� ds
� "

2
+ 2M � 1p

�

Z 1

�=
p
4t

e�s
2

ds

and so

lim
t!0+

1p
�

Z 1

0

e�s
2

�
�
x0 +

p
4ts
�
ds =

A

2
:

Similarly, we have

lim
t!0+

1p
�

Z 0

�1
e�s

2

�
�
x0 +

p
4ts
�
ds =

B

2
:

The proof is done. �

Example 3.51 Let

� (x) =

(
1; x > 0

0; x < 0;
; � (x) is not continuous at x = 0:

It is a bounded function. De�ne the function

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy =

Z 1

0

1p
4�t

e�
(x�y)2
4t dy

and let y = x�
p
4ts to get (we will get the same result if we let y = x+

p
4ts)

u (x; t) =
1p
�

Z x=
p
4t

�1
e�s

2

ds =
1p
�

 Z 0

�1
+

Z x=
p
4t

0

!
e�s

2

ds

=
1

2
+

1p
�

Z x=
p
4t

0

e�s
2

ds; (x; t) 2 (�1;1)� (0;1) :

We note that8>>>>>>>>>>>>><>>>>>>>>>>>>>:

u (x; t) 2 C1 ((�1;1)� (0;1)) and ut = uxx on (�1;1)� (0;1)

lim
(x;t)!(x0;0+)

u (x; t) = 1; if x0 > 0

lim
(x;t)!(x0;0+)

u (x; t) = 0; if x0 < 0

lim
t!0+

u (0; t) = 1
2
= 1+0

2
;

lim
(x;t)!(0;0+)

u (x; t) = lim
(x;t)!(0;0+)

�
1
2
+ 1p

�

R x=p4t
0

e�s
2
ds
�
does not exist.

(88)
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The last limit in (88) does not exist is due to the fact that as (x; t) ! (0; 0+) ; the quantity x=
p
4t

can approach any possible number in (�1;1) : Hence the limit

lim
(x;t)!(0;0+)

Z x=
p
4t

0

e�s
2

ds

does not exist.

Example 3.52 Let the initial data � (x) be

� (x) =

(
e�x; x 2 (0;1)

0; x 2 (�1; 0) :

� is bounded but not continuous at x = 0: Now we have

u (x; t) =

Z 1

�1

1p
4�t

e�
(x�y)2
4t � (y) dy

=

Z 1

0

1p
4�t

e�
x2�2xy+y2+4ty

4t dy =

Z 1

0

1p
4�t

e�
[y+(2t�x)]2

4t et�xdy (let y = x� 2t+
p
4ts)

=
1p
�
et�x

Z 1

2t�xp
4t

e�s
2

ds; (x; t) 2 (�1;1)� (0;1) :

It satis�es ut (x; t) = uxx (x; t) on (�1;1)� (0;1) and8>>>>>>>><>>>>>>>>:

lim
(x;t)!(x0;0+)

�
1p
�
et�x

R1
2t�xp
4t

e�s
2
ds

�
= 1p

�
e�x0

R1
�1 e

�s2ds = e�x0 ; if x0 > 0

lim
(x;t)!(x0;0+)

�
1p
�
et�x

R1
2t�xp
4t

e�s
2
ds

�
= 1p

�
e�x0

R1
1 e�s

2
ds = 0; if x0 < 0

lim
t!0+

u (0; t) = lim
t!0+

�
1p
�
et
R1

2tp
4t

e�s
2
ds

�
= 1p

�

R1
0
e�s

2
ds = 1

2
:

This is the end of parabolic equations.
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