
PDE Teaching for Spring, 2022
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Remark 0.1 This notes is based on "Lecture-notes-on-PDE-�rst-part-2022.tex".

1 First order linear PDE with constant coe¢ cients.

Assume u (x; y) is a C1 function of two variables de�ned on some open set 
 � R2: If u (x; y)
satis�es an equation of the form

F (x; y; u; ux; uy) = 0; 8 (x; y) 2 
; (1)

or, more precisely

F (x; y; u (x; y) ; ux (x; y) ; uy (x; y)) = 0; 8 (x; y) 2 
;

we say it satis�es a �rst order PDE on 
: Here F = F (x; y; z; p; q) : 
 � R3 ! R is a given
function de�ned on 
� R3:
On the other hand, if we are given an equation of the form

F (x; y; u; ux; uy) = 0; (x; y) 2 
 � R2; (2)

and you want to solve the �rst-order PDE, that means you want to �nd a C1 function u (x; y)
de�ned at least on some small open set ~
 � 
 such that (2) is satis�ed for all (x; y) 2 ~
: In
general, the solution u (x; y) you �nd cannot be de�ned on the whole 
:

Remark 1.1 In case the domain 
 � R2 in (2) is not speci�ed, which is often the case, then we
usually pick a "natural domain" for it and we want to �nd a C1 solution u (x; y) de�ned on some
open set ~
 � 
:

If the function F (x; y; z; p; q) is linear in the three variables z; p; q; we say the PDE is linear,
otherwise it is nonlinear. Therefore, a general �rst-order linear PDE for a function u (x; y) of two
variables has the form:

a (x; y)ux (x; y) + b (x; y)uy (x; y) + c (x; y)u (x; y) = f (x; y) ; u = u (x; y) ;

where a (x; y) ; b (x; y) ; c (x; y) ; f (x; y) are given functions, which are assumed to be continuous
on a common domain 
 � R2.
Solving a PDE is, in general, very di¢ cult, even for a �rst-order linear PDE. In this elementary

course, in most cases, we will focus on simple �rst and second order linear PDE (with constant
coe¢ cients most of the time). For simplicity of discussions, we will focus on a function u (x; y)
with two variables, but some theory of solution method can be easily generalized to a function
u (x1; ::: ; xn) with n variables.

1.1 A simple �rst order linear PDE with constant coe¢ cients.

Consider the equation

3ux (x; y) + 4uy (x; y) = 0; u = u (x; y) ; F (x; y; z; p; q) = 3p+ 4q (3)

and we want to solve it. Its natural domain for (x; y) is R2: Without further conditions, the PDE
has in�nitely many C1 solutions, some of them are de�ned on whole R2; some of them are de�ned
on open subset of R2 only. Since this equation is linear with constant coe¢ cients, we can try to
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use a linear change of variables to convert it into an ODE and solve it. Let (w; z) be the new
variables given by �

w
z

�
= J

�
x
y

�
=

�
Ax+By
Cx+Dy

�
; J =

�
A B
C D

�
; (4)

where A; :::; D are constants to be determined later on. Under the change of variables, the function
u (x; y) becomes a new function U (w; z) ; i.e.

U (Ax+By;Cx+Dy) = u (x; y) ;

and by the chain rule (since we seek for a C1 solution u (x; y) ; it is di¤erentiable and the chain rule
holds) we have

ux (x; y) = Uw (w; z)A+ Uz (w; z)C; uy (x; y) = Uw (w; z)B + Uz (w; z)D; (5)

which, in terms of matrix notation, is equivalent to the following gradient vector relation:�
@u
@x
@u
@y

�
= JT

�
@U
@w
@U
@z

�
; J =

�
A B
C D

�
(6)

or the �rst-order di¤erential operator relation:�
@
@x
@
@y

�
= JT

�
@
@w
@
@z

�
; where

�
w
z

�
= J

�
x
y

�
: (7)

For later use, we also need to know the second-order operator relation:8>>>><>>>>:

@2

@x2
= @

@x

�
@
@x

�
=
�
A @
@w
+ C @

@z

�
(� � �) = A2 @2

@w2
+ 2AC @2

@w@z
+ C2 @

2

@z2

@2

@x@y
= @

@x

�
@
@y

�
=
�
A @
@w
+ C @

@z

�
(� � �) = AB @2

@w2
+ (AD +BC) @2

@w@z
+ CD @2

@z2

@2

@y2
= @

@y

�
@
@y

�
=
�
B @
@w
+D @

@z

�
(� � �) = B2 @2

@w2
+ 2BD @2

@w@z
+D2 @2

@z2
;

(8)

i.e. we have 
@2

@x2
@2

@x@y
@2

@x@y
@2

@y2

!
=

�
A C
B D

��
@2

@w2
@2

@w@z
@2

@w@z
@2

@z2

��
A B
C D

�
= JT

�
@2

@w2
@2

@w@z
@2

@w@z
@2

@z2

�
J; (9)

or equivalently, the Hessain matrix relation: 
@2u
@x2

@2u
@x@y

@2u
@x@y

@2u
@y2

!
= JT

�
@2U
@w2

@2U
@w@z

@2U
@w@z

@2U
@z2

�
J; J =

�
A B
C D

�
: (10)

Back to the PDE, under the change of variables, the equation for U (w; z) becomes

0 = 3ux (x; y) + 4uy (x; y) = 3 [AUw (w; z) + CUz (w; z)] + 4 [BUw (w; z) +DUz (w; z)]

=
�
3A+ 4B| {z }�Uw (w; z) + �3C + 4D| {z }�Uz (w; z) : (11)

In terms of inner product in linear algebra, the above is the same as

0 = hv; rui =


v; JTrU

�
= hJv; rUi ; v =

�
3
4

�
; J =

�
A B
C D

�
: (12)
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If we choose A = 4; B = �3; we get (3C + 4D)Uz (w; z) = 0 and if we require 3C + 4D 6= 0 (this
is precisely the change of variables condition det J = AD �BC 6= 0), we will get

Uz (w; z) = 0 (this is just an ODE with parameter w). (13)

After integration, we get
U (w; z) = F (w) ; (14)

where F (w) is an arbitrary C1 function de�ned on some open interval in R: Another way to see
(14) is to note that for each �xed w; the function U (w; z) is independent of z due to Uz (w; z) = 0;
hence U (w; z) is a constant C with respect to z: But this constant may depend on w; so we have
U (w; z) = C (w) ; which is exactly (14). Therefore, we conclude that any C1 solution of the PDE
(3) must have the form:

u (x; y) = U (w; z) = F (w) = F (4x� 3y) (15)

for some C1 function F (w) de�ned on some open interval w 2 I: On the other hand, it is easy to
check that for arbitrary C1 function F (w) ; w 2 I; the function

u (x; y) = F (4x� 3y) (16)

is a solution of the PDE (3) de�ned on some open set 
 � R2, where (x; y) 2 
 if and only if
4x� 3y 2 I.
From the above discussion, we can conclude the following:

Theorem 1.2 The "general solution" of the PDE (3) is given by

u (x; y) = U (w; z) = F (w) = F (4x� 3y) (17)

for arbitrary C1 function F (w) de�ned on some open interval w 2 I:

Example 1.3 If we choose F (w) = w2; w 2 (�1;1) ; we get the solution u (x; y) = (4x� 3y)2
and it is de�ned on R2; if F (w) =

p
w; w 2 (0;1) ; then u (x; y) =

p
4x� 3y is de�ned only on

the half-plane 4x� 3y > 0; :::, etc.

De�nition 1.4 Any solution u (x; y) of equation (3) has constant value along each line of the
form 4x� 3y = �; where � is a constant parameter. We call 4x� 3y = � a characteristic line of
the equation (3). A characteristic line has v = (3; 4) as its generating vector.

Remark 1.5 (Important.) The geometric meaning of the equation 3ux (x; y) + 4uy (x; y) =
0 is the following: the gradient vector ru is everywhere perpendicular to the constant vector
(3; 4) ; therefore perpendicular to a characteristic line. One can obtain characteristic lines by
solving the system of ODE

dx

dt
= 3;

dy

dt
= 4 (18)

to get x (t) = 3t+ c1; y (t) = 4t+ c2; where c1; c2 are integration constants. Therefore, if u (x; y) is
a solution of the PDE, then it is a constant function when restricted to each solution curve of
the ODE (18). That is: each level curve of u (x; y) is a solution curve of the ODE (18). Draw
a picture for this ....
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1.2 First order linear PDE with constant coe¢ cients; general discus-
sion.

Let a; b; c be constants with a 6= 0 and b 6= 0 and f (x; y) be a given continuous function de�ned
on domain 
 � R2. Consider the PDE

aux (x; y) + buy (x; y) + cu (x; y) = f (x; y) ; (x; y) 2 
 � R2 (19)

and we want to �nd a C1 solution (or to �nd the general solution if possible) u (x; y) de�ned at
least on some open subset ~
 of 
:

Remark 1.6 (Decomposing the general solution.) Note that if u (x; y) and v (x; y) are two
solutions of (19) de�ned on a common domain ~
 � 
; their di¤erence w (x; y) = u (x; y)� v (x; y)
will satisfy the homogeneous equation on ~
 :

awx (x; y) + bwy (x; y) + cw (x; y) = 0: (20)

By this, the general solution of (19) can be decomposed as a particular solution of the nonhomo-
geneous equation (19) plus the general solution of the homogeneous equation (20).

Motivated by the method in the example in Section 1.1, we consider the linear change of
variables: (

w = Ax+By

z = Cx+Dy
i.e.

�
w
z

�
=

�
A B
C D

��
x
y

�
; AD �BC 6= 0 (21)

and denote the function corresponding to u (x; y) as U (w; z) (i.e. U (Ax+By;Cx+Dy) = u (x; y)). By
the chain rule we have

aux (x; y) + buy (x; y) + cu (x; y)

= a [Uw (w; z)A+ Uz (w; z)C] + b [Uw (w; z)B + Uz (w; z)D] + cU (w; z)

=
�
aA+ bB| {z }�Uw (w; z) + �aC + bD| {z }�Uz (w; z) + cU (w; z) ; (22)

which indicates that the new equation for U (w; z) will become an ODE if and only if one of the
following is satis�ed (but not both):

either
�
a
b

�
�
�
A
B

�
= 0 or

�
a
b

�
�
�
C
D

�
= 0: (23)

By (23), we can choose (A;B) so that (a; b) � (A;B) = 0 and choose (C;D) so that (a; b) � (C;D) 6=
0: Hence we can pick the change of variables as:(

w = Ax+By = bx� ay

z = Cx+Dy = y
i.e.,

�
w
z

�
=

�
b �a
0 1

��
x
y

�
; Jacobian = b 6= 0 (24)

and conclude the linear ODE for U (w; z) :

bUz (w; z) + cU (w; z)| {z } = F (w; z)
0@= f �w + az

b
; z

�
| {z }

1A ; (25)

where

u (x; y) = U (bx� ay; y) and U (w; z) = u

�
w + az

b
; z

�
: (26)
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Remark 1.7 Since here a 6= 0; b 6= 0; it is also OK if we use the change of variables w =
bx� ay; z = x:

The ODE is de�ned on a domain � in wz-plane (� is the image of 
 in xy-plane under the
linear map in (24); it is in one-one correspondence with 
). By ODE theory we can solve (25) to
get its general solution:

U (w; z) = e�
c
b
z

�
1

b

Z
e
c
b
zf

�
w + az

b
; z

�
dz + C (w)

�
=
e�

c
b
z

b
�
Z
e
c
b
zf

�
w + az

b
; z

�
dz| {z }+e�

c
b
zC (w) := I (w; z) + II (w; z) ; w = bx� ay; z = y;

(27)

where C (w) is an arbitrary C1 function of w (C (w) is "integration constant" for the integralR
dz).
We note that U (w; z) = I (w; z) + II (w; z) is the sum of a particular solution of bUz + cU = F

and the general solution of bUz + cU = 0: Moreover, we see that I (w; z) is de�ned on �:
However, the domain of II (w; z) depends on how you choose C (w) : Back to u (x; y) ; we
will have

u (x; y)

=

(
a particular solution of aux + buy + cu = f (this is de�ned on 
)

+ the general solution of aux + buy + cu = 0 (this is given by e�
c
b
yC (bx� ay) )

(28)

and we note that the domain of e�
c
b
yC (bx� ay) depends on how you choose C (w) :

Note that (28) describes all possible solutions of (19) and is called the general solution of the
equation (19).

Remark 1.8 (Omit this in class.) This is to explain why the integral function
R
e
c
b
zf
�
w+az
b
; z
�
dz

is de�ned on the domain � in wz-plane. Denote the integrand asH (w; z) and we look at
R
H (w; z) dz: For

each �xed w0 2 R with (w0; z0) 2 � for some z0; since � is an open set in wz-plane, the cross section
fz 2 R : (w0; z) 2 �g is an open set O in R (a countable union of disjoint open intervals) and we
note that the inde�nite integral Z

H (w0; z) dz; z 2 O

is a well-de�ned function on O (since H (w; z) is a C1 function of (w; z) 2 �). One can use an
example to demonstrate this. We look at the ODE

ux (x; y) = e
xy: (29)

The function exy is a C1 function on R2 and by integration we get

u (x; y) =

Z
exydx =

( 1
y
exy; y 2 (�1; 0)

S
(0;1) ; y 6= 0

x; y = 0;
+ C (y) (30)

where C (y) is an arbitrary C1 function of y 2 R2: At this moment, it is not clear that we can �nd
a C1 particular solution of the ODE (29) de�ned on all R2: However, if we use the de�nite
integral

u (x; y) =

Z x

0

e�yd� =

( 1
y
(exy � 1) ; y 6= 0

x; y = 0;
(denote this function as v (x; y) ) (31)
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then we can obtain the following form of general solution

u (x; y) = v (x; y) + C (y) ; (x; y) 2 R2: (32)

One can see that the function v (x; y) is indeed a C1 function on R2 due to the following (write
exy as 1 + xy + x2y2

2!
+ x3y3

3!
+ � � ��):8>>>>>>>>>>><>>>>>>>>>>>:

(1) : limy!0
exy�1
y

= x;

(2) : vx (x; y) = e
xy; y 6= 0; vx (x; 0) = 1; limy!0 vx (x; y) = 1;

(3A) : vy (x; y) =
�1
y2
(exy � 1) + x

y
exy; y 6= 0;

(3B) : vy (x; 0) = limy!0
v(x;y)�v(x;0)

y
= limy!0

1
y
(exy�1)�x

y
= x2

2
;

(3C) : limy!0 vy (x; y) = limy!0

�
�1
y2
(exy � 1) + x

y
exy
�
= limy!0

�
xyexy�exy+1

y2

�
= x2

2
:

(33)

Remark 1.9 One can also express the general solution of aux + buy + cu = 0 as u (x; y) =
e�

c
a
xC (bx� ay) : Reason: multiply e� c

b
yC (bx� ay) by e�(bx�ay); where � = �c=ab.

Remark 1.10 (A trick to absorb the term cu:) For the homogeneous equation aux + buy + cu = 0;
a 6= 0; b 6= 0; you can let v (x; y) = e

c
b
yu (x; y) ; then it will satisfy avx + bvy = 0: similarly, you

can let w (x; y) = e
c
a
xu (x; y) ; then it will satisfy awx + bwy = 0: By this, we see that the general

solution of the homogeneous equation aux + buy + cu = 0 is

u (x; y) = e�
c
a
xC (bx� ay) or u (x; y) = e�

c
b
yC (bx� ay) ; (34)

where C (w) is arbitrary C1 functions of w:

De�nition 1.11 Any line L in xy-space of the form

bx� ay = �; � is a constant (35)

is called a characteristic line of the PDE (19). Characteristic line bx � ay = � correspond to
the coordinate line w = � in the wz-space. We use characteristic lines to do change of
variables.

Remark 1.12 (Important.) The above says that the characteristic lines play an important
role in solving the PDE (19). They are the coordinate lines for the new variable (w; z) :Without
using the characteristic lines, we cannot convert the PDE into ODE. Draw a picture for
this ....

1.2.1 ODE along a characteristic line.

Note that if c = 0 and f (x; y) = 0 in the PDE (19), i.e. aux (x; y) + buy (x; y) = 0; where a 6=
0 and b 6= 0; then we know its general solution is given by u (x; y) = F (bx� ay) ; where F (w)
is an arbitrary C1 function of w: In this situation, we know u (x; y) is constant along each
characteristic line bx� ay = �:
On the other hand, if c 6= 0 or f (x; y) is not a zero function, then u (x; y) is in general no longer

a constant function along each characteristic line. However, if we know the value of u (x; y)
at a point p0 = (x0; y0) 2 L; where L is the characteristic line passing through p0 with equation
bx� ay = �0; �0 = bx0 � ay0; then the function u (x; y) will satisfy an ODE on L (with respect to
the parameter of the line L; you can use x variable or y variable) and by solving the ODE we can

6



know all values of u (x; y) on L: More precisely, one can parametrize the line L as (here we use y
variable as the parameter; you also use use other parameters like x or t)

L =

�
(x; y) =

�
�0 + ay

b
; y

�
; y 2 (�1;1)

�
and let

Q (y) = u

�
�0 + ay

b
; y

�
; Q (y0) = u (x0; y0) is known.

Then from the PDE (for simplicity of discussion, here we assume both u (x; y) and f (x; y) are
de�ned on the whole plane R2)

aux (x; y) + buy (x; y) + cu (x; y) = f (x; y) ; 8 (x; y) 2 R2; (36)

we can derive

Q0 (y) =
a

b
ux

�
�0 + ay

b
; y

�
+ uy

�
�0 + ay

b
; y

�
=
1

b
f

�
�0 + ay

b
; y

�
� c
b
u

�
�0 + ay

b
; y

�
=
1

b
f

�
�0 + ay

b
; y

�
� c
b
Q (y) ; 8 x 2 (�1;1) ;

and so we obtain the ODE along L (which is similar to (25)):

bQ0 (y) + cQ (y) = f

�
�0 + ay

b
; y

�
; y 2 (�1;1) ; Q (y0) = u (x0; y0) is known. (37)

By ODE theory, one can know Q (y) for all y 2 (�1;1) : We can summarize the following: if
u (x; y) satis�es the PDE (36) on R2; then it satis�es the ODE (37) on any characteristic line L (or:
if u (x; y) satis�es the PDE (19) on open domain 
 � R2; then it satis�es the ODE (37) on any
characteristic line L lying inside 
).

1.2.2 Some examples.

Example 1.13 Find the general solution of the PDE

3ux � 2uy + u = x; u = u (x; y) : (38)

Solution:

To make the change of variables and the ODE look better, we rewrite the equation as �3ux +
2uy � u = �x with a = �3; b = 2; c = �1: According to the method, we introduce the change of
variables

w = bx� ay = 2x+ 3y; z = y; (39)

and the function u (x; y) becomes U (w; z) ; where by (25) we have

�3ux (x; y) + 2uy (x; y)� u (x; y) = 2Uz (w; z)� U (w; z) = �x = �
w � 3z
2

;

and the ODE (in the variable z) for U (w; z) is

Uz (w; z)�
1

2
U (w; z) = �1

4
(w � 3z) :

It has the solution

U (w; z) = e
z
2

�Z
e�

z
2

�
�1
4
(w � 3z)

�
dz + C (w)

�
= e

z
2

�
�w
4

Z
e�

z
2dz +

3

4

Z
ze�

z
2dz + C (w)

�
;
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where by Z
e�

z
2dz = �2e� z

2 ;

Z
ze�

z
2dz = �2ze� z

2 � 4e� z
2

we get

U (w; z) = e
z
2

�
�w
4

�
�2e� z

2

�
+
3

4

�
�2ze� z

2 � 4e� z
2

�
+ C (w)

�
=
w

2
� 3
2
z � 3 + e z2C (w) :

As a result, the general solution of the original equation is

u (x; y) =
2x+ 3y

2
� 3
2
y � 3 + e

y
2C (2x+ 3y) = x� 3 + e

y
2C (2x+ 3y) ;

where C (�) is an arbitrary C1 function. �

Remark 1.14 One can see that

u (x; y) =

(
x� 3 (a particular solution of (38))

+e
y
2C (2x+ 3y) (the general solution of 3ux � 2uy + u = 0).

Example 1.15 Find the general solution of the PDE

ux + uy + u = e
x+2y; u = u (x; y) : (40)

Solution:

We do the change of variables

w = bx� ay = x� y; z = y;

and get the linear ODE for U (w; z) :

Uz (w; z) + U (w; z) = e
x+2y = e(w+z)+2z = ew+3z;

which we can solve it to get

U (w; z) = e�z
�Z

ez � ew+3zdz + C (w)
�
= e�z

�
1

4
ew+4z + C (w)

�
=
1

4
ew+3z + e�zC (w) :

Therefore, the general solution of (40) is given by

u (x; t) = U (x� y; y) = 1

4
e(x�y)+3y + e�yC (x� y) = 1

4
ex+2y + e�yC (x� y) ;

where the particular solution ex+2y=4 for the equation is de�ned onR2 and the domain of e�yC (x� y) depends
on your choice of C (w) : �

1.3 The physical meaning of the equation cux + ut = 0:

Let c > 0 be a constant. The equation cux + ut = 0; u = u (x; t) ; is called a simple transport
equation. Here x 2 R represents space (one-dimensional) coordinate and t 2 R represents time.
Assume we have a �uid (water, say), moving to the right with constant speed c; along a horizontal
thin pipe which we view it as a one-dimensional space with coordinate x 2 R. Let u (x; t) be the
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concentration of some substance suspended in the water. The amount of the substance in the
interval [0; x0] (assume x0 > 0) at time t0 is given by (here we view the space dimension as 1)

M =

Z x0

0

u (x; t0) dx:

A small time h > 0 later, the same substance (previously lies in the interval [0; x0]) has moved to
the right by distance c � h: Hence we have the identity

M =

Z x0

0

u (x; t0) dx =

Z x0+ch

ch

u (x; t0 + h) dx:

Note that the above identity is valid for all x0 > 0 and all h > 0: Di¤erentiation with respect to
x0 gives

u (x0; t0) = u (x0 + ch; t0 + h) ; 8 x0 > 0; 8 h > 0;
which says that u is constant in h 2 (0;1) along the ray (x0 + ch; t0 + h) for all h > 0) and
di¤erentiation with respect to h and letting h = 0 gives

cux (x0; t0) + ut (x0; t0) = 0; 8 x0 > 0; t0 2 R: (41)

The same analysis on the interval [x0; 0] ; x0 < 0; also give us the same equation. Hence we conclude

cux (x0; t0) + ut0 (x0; t0) = 0; 8 x0 2 R; t0 2 R: (42)

Note that for �xed (x0; t0) ; u (x; t) is constant along the line x � ct = x0 � ct0 (it has a simple
physical interpretation due to the identity u (x0; t0) = u (x0 + ch; t0 + h) for any h 2 R). The
general solution of the equation is given by u (x; t) = F (x� ct) for arbitrary C1 function F (w) :

1.4 First order linear PDE with constant coe¢ cients plus side condi-
tion.

Consider equation (19). We know that it has in�nitely many solutions if we do not impose any
condition on the solutions. The purpose of the extra "side condition" is to ensure that the solution
is unique. A general side condition has the form ujC = g; where C is a given curve in the plane
R2; which intersects each characteristic line L "transversally" at exactly one point, and
g is a given function on C: In most cases, we only consider the case when C = ~L is a line in R2: Now
the side condition has the form

u (x;mx+ d) = g (x) ; 8 x 2 R; (43)

where m is the slope of the line ~L : y = mx+ d and d is some number. Here g (x) is a C1 function
of x (g (x) can also be a constant, say g (x) � 0): If the line ~L is vertical, then the side condition
has the form

u (d; y) = g (y) ; 8 y 2 R: (44)

The general fact we know is the following:

Theorem 1.16 (Roughly speaking.) If the line ~L is not a characteristic line of (19), then
the PDE with the side condition has a unique solution. If the line ~L is a characteristic line, the
PDE with the side condition has either no solution or in�nitely many solutions.

Remark 1.17 (Important observation.) The key point is that if ~L is not a characteristic
line, then it intersects each characteristic line L at exactly one point. This allows us
to determine the integration function C (�) uniquely. Note that C (�) is constant along each
characteristic line L.
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We shall not make the above theorem precise. Instead, we will just look at some examples to
convince us the result.

Example 1.18 The equation 2ux (x; y)+5uy (x; y) = 0 has characteristic lines of the form 5x�2y =
� (same as y = 5

2
x+ �); � 2 R: Its general solution is given by

u (x; y) = C (5x� 2y) ; (45)

for arbitrary C1 function C (�) : Let L be the line y = 5
2
x + 1; which is a characteristic line.

Consider the side condition problem(
2ux (x; y) + 5uy (x; y) = 0

u
�
x; 5

2
x+ 1

�
= g (x) ; x 2 (�1;1)

(46)

for some function g (x) : By (45), we have

u

�
x;
5

2
x+ 1

�
= C

�
5x� 2

�
5

2
x+ 1

��
= C (�2) (this is a constant !!): (47)

Therefore, if g (x) is not a constant function, then (46) has no solution at all. On the other hand,
if g (x) is a constant function, say g (x) = 10; then any u (x; y) of the form u (x; y) = C (5x� 2y) is
a solution as long as C satis�es C (�2) = 10: In such a case, we have in�nitely many solutions.
Finally, if we replace the side condition by

u (x; 2x+ 7) = sinx; x 2 (�1;1) ; (48)

then the line y = 2x+ 7 is not a characteristic line and by (45) we can solve the equation

u (x; 2x+ 7) = C (5x� 2 (2x+ 7)) = C (x� 14) = sin x; x 2 (�1;1)

to get C (�) = sin (� + 14) ; � 2 (�1;1) : Therefore, the side condition problem (48) has the
unique solution given by

u (x; y) = C (5x� 2y) = sin (5x� 2y + 14) ; (x; y) 2 R2: (49)

Example 1.19 In Example 1.13, the general solution of the equation

3ux � 2uy + u = x (50)

is
u (x; y) = x� 3 + e

y
2C (2x+ 3y) ; (51)

and if we put the side condition as

u

�
x;�2

3
x+ 2

�
= g (x) ; x 2 (�1;1) ; (52)

for some g (x) ; then the line y = �2
3
x+ 2 is a characteristic line, and we have

u

�
x;�2

3
x+ 2

�
= x� 3 + C (6) e� 1

3
x+1; x 2 (�1;1)

Therefore, unless g (x) has the form g (x) = x � 3 + ke� 1
3
x+1 for some constant k; we have no

solution satisfying the side condition. On the other hand, if g (x) is given by, say, g (x) = x �
3 + 100e�

1
3
x+1; there are in�nitely many solutions satisfying this side condition everywhere on

x 2 (�1;1) as long as we choose the function C (�) to satisfy C (6) = 100:

10



Example 1.20 Consider the same equation as in (50), but now with the condition

u (x; 4x� 2) = g (x) ; x 2 (�1;1) (53)

for some g (x) : The line y = 4x� 2 is not a characteristic line, and by (51) we need to require

u (x; 4x� 2) = x� 3 + e2x�1C (14x� 6) = g (x) ; 8 x 2 (�1;1) ;

i.e.

C (14x� 6) = g (x)� x+ 3
e2x�1

; x 2 (�1;1) ;

which implies (let � = 14x � 6; x = 1
14
(� + 6)) the unique choice of the integration constant

function C (�) ; namely

C (�) =
g
�
1
14
(� + 6)

�
� 1

14
(� + 6) + 3

e
2
14
(�+6)�1

; � 2 (�1;1) :

Hence for the side condition (53) with arbitrary function g (x), the unique solution u (x; y) is

u (x; y) = x� 3 + e
y
2

 
g
�
1
14
(2x+ 3y + 6)

�
� 1

14
(2x+ 3y + 6) + 3

e
2
14
(2x+3y+6)�1

!
:

It satis�es u (x; 4x� 2) = g (x) for all x 2 (�1;1).

Example 1.21 Solve the equation(
ux (x; y)� uy (x; y) + 2u (x; y) = 1

u (x; 0) = x2; x 2 (�1;1) :
(54)

Solution:

By (27), one can check (or "guess") that the general solution of ux � uy + 2u = 1 is

u (x; y) =
1

2
+ e2yC (�x� y) (same as

1

2
+ e2yC (x+ y) )

for arbitrary function C (�) : The side condition is prescribed on the x-axis, which is not a char-
acteristic line. We need to choose C (�) so that

u (x; 0) =
1

2
+ C (x) = x2:

Hence we have C (x) = x2 � 1=2 and then

u (x; y) =
1

2
+ e2yC (x+ y) =

1

2
+ e2y

�
(x+ y)2 � 1

2

�
; (x; y) 2 R2 (55)

is the unique solution of (54). �

Example 1.22 Solve the equation(
ux (x; y) + 2uy (x; y)� 4u (x; y) = ex+y

u (x; 4x+ 2) = 0; x 2 (�1;1) :
(56)

11



Solution:

By (27), one can check (or "guess") that the general solution of ux + 2uy � 4u = ex+y is

u (x; y) = �ex+y + e2yC (2x� y) :

By the side condition, we require (the line y = 4x+ 2 is not a characteristic line)

0 = u (x; 4x+ 2) = �e5x+2 + e8x+4C (�2x� 2) ;

i.e. we need to require C (�2x� 2) = e�3x�2: To get C (r) ; we let r = �2x� 2 and one can solve
x in terms of r to get

�3x� 2 = �3
�
r + 2

�2

�
� 2 = 3

2
r + 1:

Hence C (r) = e
3
2
r+1 and the unique solution is

u (x; y) = �ex+y + e2ye 32 (2x�y)+1 = �ex+y + e3x+ 1
2
y+1; (x; y) 2 R2: (57)

�

In the next example, the side condition has the form ujC = g; where C is a curve in R2; not a
line.

Example 1.23 Solve the equation(
ux (x; y)� uy (x; y) + u (x; y) = 0

u (x; x3) = e�x (x+ x3) ; x 2 (�1;1) :
(58)

Solution:

Here u is speci�ed on the curve (unlike the previous examples, it is not a line) y = x3: This
curve intersects each characteristic line at exactly one point, which is good (otherwise,
the solution may not exist). The general solution of ux � uy + u = 0 is given by u (x; y) =
eyC (�x� y) (same as u (x; y) = eyC (x+ y)) for arbitrary function C (�) : Then we need to solve

u
�
x; x3

�
= ex

3

C
�
x+ x3

�
= e�x

�
x+ x3

�
and get

C
�
x+ x3

�
=
e�x (x+ x3)

ex3
= e�(x+x

3) �x+ x3� : (59)

Hence C (r) = e�rr and the unique solution is

u (x; y) = eyC (x+ y) = ey (x+ y) e�(x+y) = (x+ y) e�x; (x; y) 2 R2: (60)

�

Remark 1.24 In the above example, the curve y = x3 intersects each characteristic line x + y =
�; � 2 (�1;1) ; at exactly one point. With this, we have the unique solution u (x; y) satisfying
the side condition. If this is not the case, the solution may not exist or may not be unique. If
we replace the side condition by

u
�
x; x2

�
= e�x

�
x+ x3

�
; x 2 (�1;1) ;
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then we note that the curve y = x2 intersects each characteristic line x+ y = �; � 2 (�1;1) ; at
either two points, or one point, or no intersection at all. Now the condition (59) becomes

C
�
x+ x2

�
= e�(x+x

2) �x+ x3� ; x 2 (�1;1) : (61)

One can check that it is "impossible" to �nd a function C (�) satisfying C (x+ x2) = e�(x+x2) (x+ x3) for
all x 2 (�1;1). Exercise: Show that it is impossible to �nd a C1 function C (�) de�ned
on � 2 [�1=4;1) satisfying C (x+ x2) = e�(x+x

2) (x+ x3) for all x 2 (�1;1). Hint: look at
x = 1 and x = �2:

Remark 1.25 In general, if we want to solve an equation of the form C (h (x)) = g (x) ; then
if h0 (x) > 0 (or < 0) for all x 2 (�1;1) ; one can solve x = h�1 (r) and get the function
C (r) = g (h�1 (r)) : It satis�es C (h (x)) = g (h�1 (h (x))) = g (x) :

2 First order linear PDE with variable coe¢ cients.

In this section, we look at �rst order linear PDE for a 2-variable function u = u (x; y) with variable
coe¢ cients. The equation has the form

a (x; y)ux + b (x; y)uy| {z }+c (x; y)u = f (x; y) ; u = u (x; y) ; (x; y) 2 
 � R2; (62)

where the coe¢ cients a (x; y) ; b (x; y) ; c (x; y) ; f (x; y) are given C1 functions de�ned on some
common open set 
 � R2; with

a2 (x; y) + b2 (x; y) > 0 on 
: (63)

To solve (62) means to �nd a C1 function u (x; y) de�ned on some open subset ~
 of 
 which
satis�es (62) on ~
: The solution method will involve some ODE theory.

Remark 2.1 In case (62) does not specify its domain 
 � R2 for the equation, we usually take

 � R2 to be the largest natural domain, which means that a (x; y) ; b (x; y) ; c (x; y) ; f (x; y)
are all de�ned on 
 with a2 (x; y) + b2 (x; y) > 0 on 
:

Remark 2.2 The reason of assuming a (x; y) ; b (x; y) ; c (x; y) ; f (x; y) to be C1 functions on 

(not just C0 functions on 
) is to ensure that the system of ODE (69) below has a unique solution
passing through each point p 2 
: This is because the vector �eld V (x; y) = (a (x; y) ; b (x; y)) is a
C1 vector �eld.

Our purpose is to �nd a "general solution", which can encompass as many solutions as possible.
Here, roughly speaking, "general" means that we have a solution formula and it contains an
arbitrary integration function C (w) as in formula (27).
In this elementary course, we will be satis�ed if we can �nd some open subset ~
 of


 and you can �nd a general solution formula for the PDE (62) on ~
:

The following example says that the nondegenerate condition "a2 (x; y)+ b2 (x; y) > 0 on 
"
is important. In case there is some point (x0; y0) 2 
 such that a2 (x0; y0) + b2 (x0; y0) = 0 (i.e. the
PDE degenerates at (x0; y0)), then it is possible that the equation (62) has no solution de�ned
near (x0; y0) 2 
: We have:

Example 2.3 Consider the equation given by

xux (x; y) + yuy (x; y) = e
x+y; (x; y) 2 
 = R2n f(0; 0)g ; x2 + y2 > 0 on 
: (64)
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We note that if we take 
 = R2; then the condition (63) is not satis�ed at (0; 0) (i.e. the PDE has
a singularity (i.e. degenerate) at (0; 0)). One can see that "any" C1 solution u (x; y) cannot
be de�ned on any open set containing the origin (0; 0) : Otherwise, we will obtain the absurd
identity

0 = 0ux (0; 0) + 0uy (0; 0) = e
0+0 = 1:

Therefore, the natural domain for the PDE (64) is 
 = R2n f(0; 0)g :

It is also possible that the equation (62) has only trivial solution (i.e. constant solution)
de�ned near (x0; y0) 2 
 if we have a2 (x0; y0) + b2 (x0; y0) = 0; which is of no interest at all. We
have:

Lemma 2.4 Let BR (0) � R2 be an open ball centered at the origin 0 = (0; 0) with radius R >
0. Show that if u (x; y) ; de�ned on BR (0) � R2; is a C1 solution of the PDE

xux (x; y) + yuy (x; y) = 0; (x; y) 2 BR (0) ; (65)

then it must be a constant solution on BR (0) :

Proof. I will leave its proof as an homework problem for you. See HW 3. �

Remark 2.5 The phenomena in Example 2.3 and Lemma 2.4 will not happen if a2 (x0; y0)+
b2 (x0; y0) > 0:

Example 2.6 For 
 = R2n f(0; 0)g, there exists a non-constant solution de�ned on the whole

: You can check that (see HW3) the function

u (x; y) =

(
e�y

2=x2 ; x 6= 0; y 2 R

0; x = 0; y 6= 0 2 R;
(66)

lies in the space C1 (
) and satis�es equation (65) on 
 = R2n f(0; 0)g : However, note that the
limit lim(x;y)!(0;0) u (x; y) does not exist. Another C1 solution is u (x; y) = y=x; which is de�ned
only on the open subset ~
 of 
; where ~
 = 
n fy-axisg. Below, we will show you how to �nd the
general solution of (65) on some open subset ~
 of 
:

We �rst look at the easier case

a (x; y)ux + b (x; y)uy = 0; u = u (x; y) ; (67)

where a (x; y) ; b (x; y) are given C1 functions on 
 � R2 with a2 + b2 > 0 on 
 and here we also
assume that u (x; y) is a C1 solution de�ned on 
: One can rewrite the equation as

a (x; y)ux + b (x; y)uy = ru (x; y) �
�
a (x; y)
b (x; y)

�
= 0; (x; y) 2 
: (68)

If we view the vector V (x; y) = (a (x; y) ; b (x; y)) as a C1 vector �eld on 
 (the vector �eld
V (x; y) has no equilibrium point on 
 due to a2 (x; y) + b2 (x; y) > 0 on 
), then (68) has
a geometric meaning. It says that if a C1 curve C : � (t) = (x (t) ; y (t)) 2 
; t 2 I (some open
interval), satis�es the system of ODE (such a C1 curve is called a solution curve of the vector
�eld V (x; y) on 
) 8>><>>:

dx

dt
= a (x; y) ;

dy

dt
= b (x; y) ; t 2 I;

(69)
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then by the chain rule we have

d

dt
u (x (t) ; y (t)) = ux (x (t) ; y (t))

dx

dt
+ uy (x (t) ; y (t))

dy

dt
= a (x (t) ; y (t))ux (x (t) ; y (t)) + b (x (t) ; y (t))uy (x (t) ; y (t)) = 0; 8 t 2 I:

Therefore, we can conclude:

Lemma 2.7 Let V (x; y) = (a (x; y) ; b (x; y)) be a C1 vector �eld on 
 � R2 with a2 (x; y) +
b2 (x; y) > 0 on 
: Then u (x; y) is a C1 solution of the homogeneous equation

a (x; y)ux + b (x; y)uy = 0; u = u (x; y) ; (x; y) 2 
 (70)

on 
 if and only if for any C1 solution curve C : � (t) = (x (t) ; y (t)) ; t 2 I; of the ODE
(69) lying on 
; the function u (� (t)) ; t 2 I; is a constant function along the curve C:

Proof. The direction =) is clear. For the direction (=; we note that at any point p = (x0; y0) 2

 (open set), there is a C1 solution curve C : � (t) = (x (t) ; y (t)) ; t 2 (�"; ") ; � (0) = p; lying on

 and passing through it. By the assumption we have

d

dt
u (x (t) ; y (t)) = a (x (t) ; y (t))ux (x (t) ; y (t)) + b (x (t) ; y (t))uy (x (t) ; y (t)) = 0; 8 t 2 I;

which, at t = 0; implies a (p)ux (p) + b (p)uy (p) = 0: Since p 2 
 can be arbitrary, u (x; y) satis�es
the equation (70) on 
. �

De�nition 2.8 A curve C in the plane is called a characteristic curve of the PDE (67) (or
the more general PDE (62)) if at each point (x; y) 2 C; the vector V (x; y) = (a (x; y) ; b (x; y))
is tangent to C at (x; y) : By a suitable parametrization (i.e., by solving the ODE (69)), a
characteristic curve C can be parametrized as C : � (t) = (x (t) ; y (t)) 2 
; t 2 I; where
x (t) and y (t) satisfy the system of ODE (69) on some interval I.

Remark 2.9 In Lemma 2.7, the constant may be di¤erent on di¤erent solution curves. The lemma
says that a solution curve � (t) = (x (t) ; y (t)) ; t 2 I; is a level curve (in parametric form) of
the function u (x; y) lying inside 
: Thus we have

solution curve of ODE (69) = characteristic curve = level curve of u: (71)

Remark 2.10 (Important.) Roughly speaking, if we can know "all solution curves of the ODE
(69) inside 
", then one can �nd solutions for PDE (67) on 
: If the PDE has a side condition,
then we can obtain an unique solution (if the curve C in the side condition intersects each solution
curve transversally at exactly one point).

2.1 Finding general solution of the PDE (67).

Same as before, the characteristic curves play an important role in solving the PDE (67) (or the
more general PDE (62)). We solve the ODE (69) �rst and obtain a family of solutions (x (t) ; y (t))
with arbitrary initial data (x (0) ; y (0)) 2 
 (each solution is de�ned on some maximal time interval
I with 0 2 I). By ODE theory, solution curves with di¤erent initial data will not intersect at all.
Therefore, the domain 
 can be viewed as the disjoint union of all solution curves in 
: We then
try to convert (by deleting the time variable t or by the Inverse Function Theorem or by
rewriting the system as dy=dx = b (x; y) =a (x; y) and solving it to get a relation between
x and y) this family of ODE solutions (x (t) ; y (t)) into the implicit form
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h (x; y) = d (72)

where h (x; y) is a C1 function and d is an integration constant (serving as a parameter). The
above function h (x; y) ; when restricted to each solution curve (x (t) ; y (t)), is a constant function.
In general, the function h (x; y) is de�ned only on some open subset ~
 of 
: However,

it is also possible for h (x; y) to be de�ned on all 
. Moreover, since the implicit form in (72) is not
unique in general, the domain of h (x; y) may depend on how you choose your h (x; y) : For
example, if the equation is h (x; y) = y=x = d; then the domain is either Rx+ or Rx� ; but if one
derive the equivalent equation h (x; y) = x=y = d; then the domain is either Ry+ or Ry� : As the
constant d varies, the identity h (x; y) = d describes di¤erent characteristic curves (in implicit form,
not in parametric form) of the equation a (x; y)ux + b (x; y)uy = 0 lying inside ~
:
Finally, we note that, since the vector �eld V (x; y) = (a (x; y) ; b (x; y)) is everywhere nonzero

on 
; by restricting the domain ~
 to a smaller open subset if necessary, the function h (x; y) :
~
! R will not be a constant function on ~
; and we must have either

@h

@x
(x; y) 6= 0 everywhere on ~
 (73)

or
@h

@y
(x; y) 6= 0 everywhere on ~
: (74)

The next important result is the following:

Lemma 2.11 The above C1 function h (x; y) : ~
 ! R is a solution of the PDE (67) on ~
:
Moreover, if @h

@x
(x; y) 6= 0 everywhere on ~
; we must have b (x; y) 6= 0 everywhere on ~
; and if

@h
@y
(x; y) 6= 0 everywhere on ~
; we must have a (x; y) 6= 0 everywhere on ~
:

Proof. For each (x (0) ; y (0)) 2 ~
; one can solve the ODE (69) to get an unique solution
curve (x (t) ; y (t)) 2 ~
 for t 2 I (some interval containing t = 0). Since we have

h (x (t) ; y (t)) = d; 8 t 2 I; (75)

chain rule implies

@h

@x
(x (t) ; y (t))

dx

dt
(t) +

@h

@y
(x (t) ; y (t))

dy

dt
(t)

= a (x (t) ; y (t))
@h

@x
(x (t) ; y (t)) + b (x (t) ; y (t))

@h

@y
(x (t) ; y (t)) = 0; 8 t 2 I:

In particular, at t = 0; we get

a (x (0) ; y (0))
@h

@x
(x (0) ; y (0)) + b (x (0) ; y (0))

@h

@y
(x (0) ; y (0)) = 0: (76)

As (x (0) ; y (0)) 2 ~
 can be arbitrary, we conclude

a (x; y)
@h

@x
(x; y) + b (x; y)

@h

@y
(x; y) = 0; 8 (x; y) 2 ~
: (77)

Hence h (x; y) : ~
! R is a solution of the PDE (67) on ~
:
Finally, if @h

@x
(x; y) 6= 0 on ~
; and b (x0; y0) = 0 at some (x0; y0) 2 ~
; then (77) gives

0 = a (x0; y0)
@h

@x
(x0; y0) + b (x0; y0)

@h

@y
(x0; y0) = a (x0; y0)

@h

@x
(x0; y0) ;

which will imply a (x0; y0) = 0; a contradiction due to our main assumption a2 + b2 > 0 on

: Similarly, if @h

@y
(x; y) 6= 0 on ~
; we must have a (x; y) 6= 0 on ~
: The proof is done. �
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Remark 2.12 However, at this moment, the function h (x; y) is not yet a "general so-
lution" of the PDE on ~
.

Example 2.13 Consider the equation

xux + yuy = 0; u = u (x; y) ; (x; y) 2 
 = R2n f(0; 0)g : (78)

If we solve the system of ODE (69), we get x (t) = x0et and y (t) = y0et; t 2 (�1;1) ; where (x0; y0) 6=
(0; 0) : We can use one of the following three ways to �nd h (x; y) :

1. Cancel the parameter t to get a relation between x and y: An obvious way is to look at the
expression x=y (if y0 6= 0) or y=x (if x0 6= 0). Therefore, we get the identity

x

y
=
x0e

t

y0et
=
x0
y0
:= d (missing x-axis), d is a constant

or the identity

y

x
=
y0e

t

x0et
=
y0
x0
:= d (missing y-axis), d is a constant

along each solution curve. Note that the function h (x; y) = x=y (or y=x) cannot be de�ned
on the whole 
 due to the denominator. One can check that u (x; y) = x=y (or y=x) is a
C1 solution of the PDE (78) de�ned on 
n fx-axisg (
n fy-axisg).

2. Rewrite the system of ODE (69) as

dy

dx
=
y

x
(separable equation),

Z
1

y
dy =

Z
1

x
dx

and obtain the identity
x

y
= d (or

y

x
= d).

3. From the equation x (t) = x0et; we get t = log
�
x
x0

�
(if x0 6= 0) and then

y = y (t) = y0e
t = y0e

log
�
x
x0

�
= y0

x

x0
; i.e.

y

x
=
y0
x0
:= d:

2.1.1 Using h (x; y) to do change of variables.

To obtain general solution of the PDE a (x; y)ux + b (x; y)uy = 0; similar to the case of constant
coe¢ cients (see (24)), we can use the function h (x; y) to do the change of variables, where we know
that h (x; y) ; coming from (72), is a solution of the PDE a (x; y)ux + b (x; y)uy = 0 on ~
; and
satis�es either (73) or (74) if we make ~
 smaller.
If h (x; y) satis�es (73), then we can do the change of variables(

w = h (x; y) ; (x; y) 2 ~
;

z = y;
(79)

which has the Jacobian nonzero condition, i.e.

J (x; y) =

���� wx wy
zx zy

���� = ���� @h
@x
(x; y) @h

@y
(x; y)

0 1

���� = @h

@x
(x; y) 6= 0 on ~
: (80)
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Moreover, by Lemma 2.11, we also have b (x; y) 6= 0 on ~
. Now the function u (x; y) becomes
U (w; z) (i.e. U (h (x; y) ; y) = u (x; y) or U (w; z) = u (x (w; z) ; z)) and by the chain rule, we get(

ux (x; y) = Uw (w; z)
@w
@x
+ Uz (w; z)

@z
@x
= Uw (w; z)

@h
@x

uy (x; y) = Uw (w; z)
@w
@y
+ Uz (w; z)

@z
@y
= Uw (w; z)

@h
@y
+ Uz (w; z)

Therefore, in terms of the new variables (w; z) ; the PDE for U (w; z) becomes:

0 = a (x; y)ux (x; y) + b (x; y)uy (x; y)

= a (x; y)Uw (w; z)
@h

@x
+ b (x; y)

�
Uw (w; z)

@h

@y
+ Uz (w; z)

�
=

�
a (x; y)

@h

@x
(x; y) + b (x; y)

@h

@y
(x; y)

�
Uw (w; z) + b (x; y)Uz (w; z) = b (x; y)Uz (w; z) ; (81)

where in the above we have used the identity (77). Since b (x; y) 6= 0 on ~
; we conclude Uz (w; z) �
0 on its domain in wz-space. The general solution of the ODE (81) is given by

U (w; z) = F (w) = F (h (x; y)) ; w = h (x; y) ; (x; y) 2 ~
 (82)

for arbitrary C1 function F (w) :
If h (x; y) satis�es (74), then we can do the change of variables(

w = h (x; y) ; (x; y) 2 ~
;

z = x;
(83)

and has the Jacobian nonzero condition, i.e.

J (x; y) =

���� wx wy
zx zy

���� = ���� @h
@x
(x; y) @h

@y
(x; y)

1 0

���� = �@h@y (x; y) 6= 0 on ~
: (84)

Moreover, by Lemma 2.11, we also have a (x; y) 6= 0 on ~
. In terms of the new variables (w; z) ; the
PDE for U (w; z) becomes:

0 = a (x; y)ux (x; y) + b (x; y)uy (x; y)

= a (x; y)

�
Uw (w; z)

@h

@x
+ Uz (w; z)

�
+ b (x; y)Uw (w; z)

@h

@y

=

�
a (x; y)

@h

@x
(x; y) + b (x; y)

@h

@y
(x; y)

�
Uw (w; z) + a (x; y)Uz (w; z) = a (x; y)Uz (w; z) ; (85)

Since a (x; y) 6= 0 on ~
; we conclude Uz (w; z) � 0 on its domain in wz-space. The general solution
of the ODE (81) is also given by (82) for arbitrary C1 function F (w) :
We can now conclude the following result:

Theorem 2.14 (General solution of the PDE (67).) Let a (x; y) ; b (x; y) be two C1 functions
on a domain 
 � R2 with a2 + b2 > 0 on 
: Consider the PDE a (x; y)ux + b (x; y)uy = 0 on

: There exists some open subset ~
 of 
 such that on ~
 any C1 solution u (x; y) of the PDE has
the form

u (x; y) = F (h (x; y)) ; (x; y) 2 ~
; (86)

where F (�) is an arbitrary C1 function and the function h (x; y) ; which is de�ned on ~
; comes from
solving the ODE (69) on 
: Note that, in general, the open set ~
 � 
 is smaller than 
.
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Remark 2.15 In the above theorem, the domain of the function F (�) will a¤ect the domain of
u (x; y) : However, if we choose F (�) a C1 function de�ned on R; then u (x; y) = F (h (x; y)) will be
de�ned on ~
:

Remark 2.16 It is possible that there are di¤erent disjoint open sets ~
1; ~
2 of 
 such that the
functions h1 (x; y) on ~
1 and h2 (x; y) on ~
2 are di¤erent (and the integration constant functions
F and G on ~
1 and ~
2 can be independent to each other).

Since the PDE (67) is nondegenerate on 
 (due to the condition (63)), we also have the
following local result similar to Theorem 2.14:

Theorem 2.17 (General solution of the PDE (67) near a point (x0; y0) 2 
:) Let a (x; y) ; b (x; y)
be two C1 functions on a domain 
 � R2 with a2 + b2 > 0 on 
: Consider the PDE a (x; y)ux +
b (x; y)uy = 0 on 
: For any point (x0; y0) 2 
 there exists some small open set ~
 � 
 containing
(x0; y0) such that on ~
 any C1 solution u (x; y) of the PDE has the form

u (x; y) = F (h (x; y)) ; (x; y) 2 ~
; (87)

where F (�) is an arbitrary C1 function and the function h (x; y) ; which is de�ned on ~
; comes from
solving the ODE (69) on ~
:

Let us go back to the equation xux + yuy = 0 again:

Example 2.18 Find the general solution of the equation

xux + yuy = 0; u = u (x; y) ; (x; y) 2 
 = R2n f(0; 0)g : (88)

Solution:

We already know that h (x; y) = x
y
is a solution on 
n fx-axisg :We focus on the open half-plane

R2y+ = f(x; y) 2 R2 : y > 0g (or on R2y� = f(x; y) 2 R2 : y < 0g) and on it we do the change of
variables (

w = x
y
2 (�1;1)

z = y 2 (0;1)
same as

(
x = wz; z 6= 0;

y = z;

which has Jacobian ���� 1
y
� x
y2

0 1

���� = 1

y
6= 0 on R2y+ :

We note that the above change of variables is a bijection map between the open set (�1;1)�
(0;1) in xy-space and the open set (�1;1) � (0;1) in wz-space. By chain rule the equation
on R2y+ becomes

0 = xux + yuy = x

�
Uw (w; z)

@w

@x
+ Uz (w; z)

@z

@x

�
+ y

�
Uw (w; z)

@w

@y
+ Uz (w; z)

@z

@y

�
= x

�
Uw (w; z)

1

y

�
+ y

�
Uw (w; z)

�
� x
y2

�
+ Uz (w; z)

�
= yUz (w; z) ; y > 0;

which gives the general solution U (w; z) = F (w) and so we get u (x; y) = F
�
x
y

�
for (x; y) 2

R2y+ and similarly on R
2
y� the general solution is given by u (x; y) = G

�
x
y

�
for (x; y) 2 R2y� ; where

F (�) and G (�) are two arbitrary C1 functions de�ned on (�1;1) (in order for u (x; y) to have
maximal domain of de�nition).
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If we allow a solution u (x; y) to be unde�ned on x-axis (y = 0), then the above two integration
constant functions F (�) and G (�) can be independent to each other.Note that each solution
curve on R2y+ (given by (x (t) ; y (t)) = (x0e

t; y0e
t) ; t 2 (�1;1) ; y0 > 0) will not traverse into

R2y�, and vice versa. Therefore, there is no discontinuity/inconsistency problem here even
if F (�) and G (�) are di¤erent.
However, it is possible to choose some special F and G so that u (x; y) can be de�ned across

the x-axis (more precisely, de�ned on the whole 
 = R2n f(0; 0)g). One trivial solution is u (x; y) is
a constant function; another less trivial one is

u (x; y) =

8<: e�(
x
y )

2

; y 6= 0; x 2 (�1;1)

0; y = 0; x 6= 0 2 (�1;1) :
(89)

We leave it to you to check that the function u (x; y) in (89) satis�es u 2 C1 (
) ; where 
 =
R2n f(0; 0)g and xux+yuy = 0 on 
: Also, note that the 2-dimensional limit lim(x;y)!(0;0) u (x; y) does
not exist. �

Exercise 2.19 (This is a HW problem.) Find the general solution of the equation

yux + xuy = 0; u = u (x; y) ; (x; y) 2 R2n f(0; 0)g : (90)

Example 2.20 Find the general solution of the equation

yux � xuy = 0; u = u (x; y) ; (x; y) 2 
 = R2n f(0; 0)g : (91)

Solution:

The ODE for the equation is

dx

dt
= y;

dy

dt
= �x; dy

dx
= �x

y
(92)

which gives x00 (t)+x (t) = 0 and y00 (t)+y (t) = 0: The general solution (x (t) ; y (t)) of (92) is given
by

x (t) = A cos t+B sin t; y (t) = B cos t� A sin t; t 2 (�1;1); x (0) = A; y (0) = B;

where A; B are two arbitrary numbers with (A;B) 2 
. The implicit form of the characteristic
curve (x (t) ; y (t)) is given by the equation

h (x; y) = x2 + y2 = A2 +B2 = d > 0 (93)

for arbitrary number d > 0 (when d = 0; the characteristic curve (x (t) ; y (t)) � (0; 0) is the equi-
librium solution of the ODE). Each characteristic curve is a circle with radius

p
d > 0; centered

at the origin.
The function h (x; y) = x2 + y2 is de�ned on 
 and is constant along each characteristic curve

lying in 
. Hence h (x; y) = x2 + y2 : 
 ! R is a solution of (91). Moreover, it is de�ned on the
whole 
:
Another way to �nd (93) is to rewrite the ODE system as (now we view y as a function of x)

dy

dx
= �x

y
(this is a separable equation; we get

Z
ydy = �

Z
xdx) (94)

and solve it to get the implicit solution for y (x) ; i.e.

x2 + y2 = C > 0; C is a constant, (95)
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which is the same as (93) (the explicit solution for (94) is given by y (x) =
p
C � x2).

Now we do the nonlinear change of variables(
w = x2 + y2;

z = y:

The Jacobian of the change of variables is���� wx wy
zx zy

���� = ���� 2x 2y
0 1

���� = 2x:
Thus the change of variables is good either on the half-plane R2x+ or on the half-plane R

2
x� (note

that both (x; y) = (1; 1) and (x; y) = (�1; 1) are mapped to (w; z) = (2; 1)): On R2x+ ; the inverse
function relation (x; y)  ! (w; z) is globally valid with x =

p
w � z2; y = z: The open domain

in wz-space corresponding to R2x+ is

� =
�
(w; z) 2 R2 : w > z2

	
; � ! R2x+ is a bijection;

and the equation yux � xuy = 0 is equivalent to the equation xUz = 0: Similarly, on R2x� ; the
inverse function relation (x; y) ! (w; z) is globally valid with x = �

p
w � z2; y = z:

The general solution of the above ODE is U (w; z) = F (w) for arbitrary C1 function F (w) : Thus
on R2x+ the general solution of the PDE is

u (x; y) = F
�
x2 + y2

�
; x > 0; (96)

where F (w) is an arbitrary C1 function de�ned on open interval I � (0;1) : Similarly, on R2x� the
general solution of the PDE is

u (x; y) = G
�
x2 + y2

�
; x < 0; (97)

where G (w) is an arbitrary C1 function de�ned on open interval J � (0;1) :
Unlike the previous example, where each solution curve on R2y+ will not traverse into

R2y� (so F (�) on R2y+ and G (�) on R2y� can be independent), here solution curve on R2x+ will
traverse into R2x� : Hence we must choose F (�) = G (�) on (0;1) to make u (x; y) consistent on
both sides of y-axis and have larger domain (across both sides of y-axis). Hence any
solution u (x; y) of the equation on 
 = R2n f(0; 0)g must have the form

u (x; y) = F
�
x2 + y2

�
; where (x; y) 2 
 = R2n f(0; 0)g (98)

for arbitrary C1 function F (�) de�ned on (0;1) : In case F (w) has smaller domain (a; b) �
(0;1) ; then u (x; y) has smaller domain�

(x; y) 2 R2 : a < x2 + y2 < b
	
� 
:

We call (98) the general solution of the equation. Note that u (x; y) is constant along each char-
acteristic curve (circle) x2 + y2 = C > 0. �

Remark 2.21 The function u (x; y) = x2+y2 is a solution of yux�xuy = 0 on 
 = R2n f(0; 0)g : In
fact, it also de�ned on the whole R2: That is, there exists a non-constant solution de�ned near
the singularity (0; 0) of the PDE yux � xuy = 0:

Example 2.22 Find the general solution of the equation

xux � yuy = 0; u = u (x; y) ; (x; y) 2 
 = R2n f(0; 0)g : (99)
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Solution:

The system of ODE is

dx

dt
= x;

dy

dt
= �y; x (t) = c1e

t; y (t) = c2e
�t

and we obtain the equation h (x; y) = xy = k (k = c1c2 2 (�1;1) is a constant) on characteristic
curves. Now we do the change of variables(

w = xy

z = y
same as

(
x = w

z
; z 6= 0

y = z:

Its Jacobian is ���� wx wy
zx zy

���� = ���� y x
0 1

���� = @w

@x
= y:

Thus the change of variables is good either onR2y+ = f(x; y) 2 R2 : y > 0g or onR2y� = f(x; y) 2 R2 : y < 0g :On
R2y+ the change of variables is a bijection map betweenR

2
y+ and the open set� = f(w; z) 2 R2 : z > 0g

in wz-space and the equation xux � yuy = 0 on R2y+ is equivalent to the equation on � :

0 = xux � yuy = x (Uwwx + Uzzx)� y (Uwwy + Uzzy) = �yUz; y > 0:

Therefore the general solution on R2y+ is given by

u (x; y) = F (w) = F (xy) ; (x; y) 2 R2y+ ;

where F (�) is an arbitrary C1 function de�ned on (�1;1) and u (x; y) is de�ned on R2y+ : Similarly,
on R2y� the general solution is given by

u (x; y) = G (xy) ; (x; y) 2 R2y�,

where G (�) is an arbitrary C1 function de�ned on (�1;1) : Unlike the example yux � xuy = 0,
now each characteristic curve does not traverse from R2y+ to R

2
y� ; and vice versa. If u (x; y) is not

de�ned on the x-axis (y = 0), then the function F and the function G in the above can be arbitrary
and independent to each other. Compare with Example 2.18. �

Remark 2.23 If we choose z = x; the analysis is exactly the same except that the two open
sets R2y+ and R

2
y� become R

2
x+ and R

2
x� :

Remark 2.24 (Interesting.) The function u (x; y) = xy is a solution of xux � yuy = 0 on 
 =
R2n f(0; 0)g : In fact, it also de�ned on the whole R2: That is, there exists a non-constant solution
de�ned near the singularity (0; 0) of the PDE xux � yuy = 0: More generally, you can check that
for two arbitrary C1 functions F (�) ; G (�) de�ned on R with F (0) = G (0) and F 0 (0) = G0 (0) the
function

u (x; y) =

(
F (xy) x 2 R; y 2 [0;1)

G (xy) ; x 2 R; y 2 (�1; 0]
is a C1 function on R2 and it satis�es the equation xux � yuy = 0 on R2: This fact says that it
is not enough to use just one arbitrary function to describe the general solution of the equation
xux � yuy = 0 on R2:

Example 2.25 Find the general solution of the equation

ux + yuy = 0; u = u (x; y) ; (x; y) 2 R2: (100)

Note that the equation has no singularity on R2:
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Solution:

The ODE has the form

dx

dt
= 1;

dy

dt
= y; x (t) = c1 + t; y (t) = c2e

t

or
dy

dx
=
y

1
;

Z
1

y
dy =

Z
dx:

Each gives the implicit solution equation

h (x; y) = e�xy = k; k is an arbitrary constant.

One can see that h (x; y) = e�xy is a solution of the equation ux + yuy = 0 on R2. By @h
@x
(x; y) =

�e�xy; @h
@y
(x; y) = e�x; we see that @h

@y
(x; y) 6= 0 everywhere on R2: Hence we do the change of

variables (
w = e�xy;

z = x;
with Jacobian J (x; y) = �@h

@y
(x; y) = �e�x 6= 0 on R2:

(if we choose z = y; then the Jacobian is �e�xy; which is bad at y = 0). Thus this change of
variables is a bijection from R2 to R2; with(

w = e�xy;

z = x;
 !

(
x = z;

y = ezw:

Now we have

0 = ux + yuy = (Uwwx + Uzzx) + y (Uwwy + Uzzy)

=
�
�Uwe�xy + Uz

�
+ yUwe

�x = Uz; U = U (w; z)

and so the general solution is

u (x; y) = U (w; z) = F (w) = F
�
e�xy

�
;

where F (�) is an arbitrary C1 function and if F (�) is de�ned on (�1;1) ; then u (x; y) is de�ned
on R2: The solution is constant along each characteristic curve e�xy = k: �

2.2 Finding general solution of the PDE (62).

We now focus on the general form for �rst order linear PDE with variable coe¢ cients:

a (x; y)ux + b (x; y)uy + c (x; y)u = f (x; y) ; u = u (x; y) ; (x; y) 2 
: (101)

The method is the same as that in solving the PDE (67). We can use the system of characteristic
ODE (69) to �nd the function h (x; y) ; which satis�es

h (x; y) = d; (x; y) 2 ~
 (102)

along each characteristic curve in ~
. After that we can use the change of variables (we assume @h
@x
(x; y) 6=

0 on ~
; which implies b (x; y) 6= 0 on ~
)(
w = h (x; y) ;

z = y (or z = x),
where

���� wx wy
zx zy

���� = @h

@x
(x; y) 6= 0 on ~
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to convert the PDE (101) into an ODE for U (w; z) : To see this, letA (w; z) ; B (w; z) ; C (w; z) ; U (w; z) ;
F (w; z) be the functions corresponding to a (x; y) ; b (x; y) ; c (x; y) ; u (x; y) ; f (x; y) : Then by

a (x; y)ux + b (x; y)uy + c (x; y)u

= a (x; y)Uwhx + b (x; y) (Uwhy + Uz) + C (w; z)U

=

�
a (x; y)hx + b (x; y)hy| {z }

�
Uw +B (w; z)Uz + C (w; z)U = B (w; z)Uz + C (w; z)U;

we see that the PDE (101) for the function U (w; z) becomes an ODE of the form

B (w; z)Uz (w; z) + C (w; z)U (w; z) = F (w; z) ; (103)

which can be rewritten as

Uz (w; z) +
C (w; z)

B (w; z)
� U (w; z) = F (w; z)

B (w; z)
; (104)

where B (w; z) 6= 0 on its domain. Note that (104) is a �rst order linear ODE (in the
variable z) containing a parameter w; which can be solved.

Example 2.26 Find the general solution of the equation

ux + yuy + u = e
x+y; u = u (x; y) ; (x; y) 2 R2: (105)

Note that the equation has no singularity on R2:

Solution:

Similar to Example 2.25, we let w = e�xy; z = x; which is a global change of variables with
Jacobian matrix J (x; y) = �e�x 6= 0 on R2. We have

ux + yuy + u =
�
�Uwe�xy + Uz

�
+ y

�
Uwe

�x�+ U
= Uz + U = e

z+ezw; (w; z) 2 R2 (106)

which is an ODE for U (w; z) in the variable z with a parameter w; and get

U (w; z) = e�z
�Z

e2z � eezwdz + F (w)
�
: (107)

To �nd the integral, we let s = ez and get ds = ezdz (i.e. dz = 1
s
ds)Z

e2z � eezwdz =
Z
s2 � esw 1

s
ds =

Z
seswds =

Z
sd

�
1

w
esw
�

=
s

w
esw � 1

w

Z
eswds =

s

w
esw � 1

w2
esw =

�
ez

w
� 1

w2

�
ee

zw; s = ez

and so

U (w; z) = e�z
��
ez

w
� 1

w2

�
ee

zw + F (w)

�
; where w = e�xy; z = x:

We obtain the general solution

u (x; y) = e�x
��

ex

e�xy
� 1

(e�xy)2

�
ey + F

�
e�xy

��
= ex+y

�
1

y
� 1

y2

�
+ e�xF

�
e�xy

�
; y 6= 0 (108)

where F (�) is an arbitrary C1 function and if F (�) is de�ned on R; then u (x; y) is de�ned on
R2nfy = 0g: �
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Remark 2.27 (Omit this in class.) Since the ODE Uz + U = ez+e
zw is de�ned on R2 (the

function ez+e
zw is de�ned on R2), one should be able to �nd a solution u (x; y) of the PDE (105)

de�ned on R2: We can use de�nite integral to get (see Remark 1.8 also)

ezU (w; z) =

Z z

0

e2� � ee�wdz + F (w) =
Z z

0

e2�+e
�wd�| {z }+F (w) ; (109)

where by the inde�nite integral formulaZ
e2�ee

�wdz =

�
e�

w
� 1

w2

�
ee

�w;

we get Z z

0

e2�+e
�wd�| {z } =

( �
ez

w
� 1

w2

�
ee

zw �
�
1
w
� 1

w2

�
ew; w 6= 0

1
2
e2z � 1

2
; w = 0:

:= V (w; z) (110)

By (109) and (110), we conclude

U (w; z) = e�zV (w; z) + e�zF (w) ; w = e�xy; z = x: (111)

We claim that the V (w; z) 2 C1 (R2) : To see this, it su¢ ces to check the continuity and derivatives
continuity across w = 0: By L�Hospital rule, we �rst have

lim
w!0

��
ez

w
� 1

w2

�
ee

zw �
�
1

w
� 1

w2

�
ew
�
= lim

w!0

(ezw � 1) eezw � (w � 1) ew
w2

�
0

0
form

�
= lim

w!0

ezee
zw + (ezw � 1) eezwez � ew � (w � 1) ew

2w
= lim

w!0

(ezw) ee
zwez � wew
2w

= lim
w!0

(ez) ee
zwez � ew
2

=
1

2
e2z � 1

2
: (112)

Hence V (w; z) is continuous across w = 0: We leave the check of the rest as an exercise. From
(111), we can obtain the general solution formula for u (x; y), which is slightly di¤erent
from (108), given by

u (x; y) = e�xF
�
e�xy

�
+ e�xV

�
e�xy; x

�
; with e�xV

�
e�xy; x

�
2 C1

�
R2
�
; (113)

where

e�xV
�
e�xy; x

�
=

8>>><>>>:
e�x

24� ex

e�xy �
1

(e�xy)2

�
ey �

�
1

e�xy
� 1

(e�xy)2

�
ee

�xy| {z }
35 (call it �); y 6= 0

1
2
ex � 1

2
e�x; y = 0:

(114)
By applying L�Hospital rule twice, one can check the continuity of the function f� � � in (114) across
y = 0 :

lim
y!0

�

�
0

0
form

�
= lim

y!0

 
e�xyey � e�xey � e�2xyee�xy + e�xee�xy

(e�xy)2

!

= lim
y!0

 
exey + exyey � exey � ee�xy � yee�xye�x + ee�xy

2y

!

= lim
y!0

 
exey + exey + exyey � exey � ee�xye�x � ee�xye�x � yee�xye�xe�x + ee�xye�x

2

!

=
ex � e�x

2
:

One can continue the process to check that e�xV (e�xy; x) 2 C1 (R2) :
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2.2.1 ODE along a characteristic curve.

Recall the important fact that every solution of the PDE a (x; y)ux + b (x; y)uy = 0 is constant
along each characteristic curve lying in its domain. That means if we know the value of u (x; y) at
one point p 2 C (C is a characteristic curve), then we know the values of u (x; y) at every point of
C: This is also true for the general nonhomogeneous equation

a (x; y)ux + b (x; y)uy + c (x; y)u = f (x; y) ; u = u (x; y) : (115)

More precisely, we have:

Lemma 2.28 Let u (x; y) be a C1 solution of (115) on some open set 
 with (x0; y0) 2 
: Let C :
� (t) = (x (t) ; y (t)) 2 
; t 2 I (some open interval containing t = 0), be the unique characteristic
curve of (115) satisfying (x (0) ; y (0)) = (x0; y0) 2 C; and lies in 
: Then the function U (t) =
u (x (t) ; y (t)) ; t 2 I; satis�es the ODE

U 0 (t) + C (t)U (t) = F (t) ; t 2 I; U (0) = u (x0; y0) ; (116)

where C (t) = c (x (t) ; y (t)) and F (t) = f (x (t) ; y (t)) : In particular, if we know the value of U (0) (i.e.
if we know the value of u (x0; y0)), then we can know the value of U (t) on the whole interval I (by
solving the ODE (116)).

Proof. This is straightforward. We have

U 0 (t) =
d

dt
u (x (t) ; y (t)) = ux (x (t) ; y (t))x

0 (t) + uy (x (t) ; y (t)) y
0 (t)

= a (x (t) ; y (t))ux (x (t) ; y (t)) + b (x (t) ; y (t))uy (x (t) ; y (t))

= �c (x (t) ; y (t))u (x (t) ; y (t)) + f (x (t) ; y (t)) = �C (t)U (t) + F (t) ; t 2 I: (117)

Hence U (t) satis�es the ODE (116) on I and if we know U (0) ; U (t) can be expressed as

U (t) = e�
R t
0 C(�)d�

�Z t

0

�
e
R s
0 C(�)d�F (s)

�
ds+ U (0)

�
; t 2 I:

The result follows. �

Remark 2.29 In the special case when the equation is a (x; y)ux + b (x; y)uy = 0; (117) becomes
U 0 (t) = 0; i.e. u (x (t) ; y (t)) is a constant function along the characteristic curve C:

2.3 First order linear PDE with variable coe¢ cients and side condition.

Due to Lemma 2.28, a "well-posed" side condition on a curve  is that it intersects each charac-
teristic curve C at exactly one point (so that we have exactly one initial condition U (0) for
the ODE in Lemma 2.28 on each characteristic curve). Otherwise, the problem may have
no solution or in�nitely many solutions.

Example 2.30 Find the solution to the problem(
yux � xuy = 0; u = u (x; y) ; (x; y) 2 R2x+ ;

u (s; s2) = s3; s 2 (0;1) :
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Solution:

We already know that the general solution on R2x+ has the form u (x; y) = F (x2 + y2) for
arbitrary C1 function F (�) : Since the curve  = (s; s2) ; s 2 (0;1) ; intersects each characteristic
curve x2+y2 = d > 0; lying on R2x+ ; at exactly one point, one should be able to �nd a unique F (�)
satisfying the condition. We need to solve the equation

F
�
s2 + s4

�
= s3; s 2 (0;1) :

Let r = s2 + s4 > 0; and let p = s2 > 0: We have p2 + p� r = 0 and so

p =
�1�

p
1 + 4r

2
> 0 (the minus sign does not make sense).

Thus we have

F (r) = s3 = p3=2 =

�
�1 +

p
1 + 4r

2

�3=2
and the solution is given by

u (x; y) = F
�
x2 + y2

�
=

 
�1 +

p
1 + 4 (x2 + y2)

2

!3=2
; (x; y) 2 R2x+ (118)

The solution is de�ned on R2x+ and lies in the space C
1 �R2x+� : To see this, note that we have

g (x; y) =
�1 +

p
1 + 4 (x2 + y2)

2
2 C1

�
R2x+

�
; g (x; y) : R2x+ ! (0;1)

and the function h (�) = �3=2 2 C1 (0;1) : Therefore, chain rule implies

u (x; y) = h (g (x; y)) 2 C1
�
R2x+

�
; (119)

and we have

u
�
s; s2

�
=

 
�1 +

p
1 + 4 (s2 + s4)

2

!3=2
=

�
�1 + (2s2 + 1)

2

�3=2
= s3; 8 s 2 (0;1) :

�

Example 2.31 Find the solution to the problem(
yux � xuy + u = 0; u = u (x; y) ; (x; y) 2 R2x+ ;

u (x; 0) = h (x) ; x 2 (0;1) :

Solution:

We already know that h (x; y) = x2+ y2 is a solution of yux�xuy = 0 on R2x+ : According to the
standard method, we do the change of variables(

w = x2 + y2;

z = y
Jacobian =

���� 2x 2y
0 1

���� = 2x 6= 0 on R2x+

and the new equation for U (w; z) becomes

y (Uwwx)� x (Uwwy + Uzzy) + U = �xUz + U = 0; x =
p
w � z2; w > z2
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and the linear ODE for U (w; z) is

Uz �
1p

w � z2
U = 0;

where we see that the integrating factor of the above ODE is

exp

�
�
Z

1p
w � z2

dz

�
= exp

�
� sin�1

�
zp
w

��
:

Hence we get

U (w; z) = esin
�1(z=

p
w) � F (w) ; F (w) is integration constant,

which implies the general solution for u (x; y) :

u (x; y) = e
sin�1

�
y=
p
x2+y2

�
� F
�
x2 + y2

�
; (x; y) 2 R2x+ ;

where F (�) is an arbitrary C1 function. Thus the solution satisfying the side condition is

u (x; y) = e
sin�1

�
y=
p
x2+y2

�
� h
�p

x2 + y2
�
; (x; y) 2 R2x+ :

The proof is done. �

Remark 2.32 One can also write the solution as

u (x; y) = u (x; y) = etan
�1(y=x) � h

�p
x2 + y2

�
; (x; y) 2 R2x+

due to

sin�1

 
yp

x2 + y2

!
= tan�1

�y
x

�
; (x; y) 2 R2x+ :

This is the end of �rst order linear PDE, 2022-3-7
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