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Remark 0.1 This notes is based on "Lecture-notes-on-elliptic-equation-for-student-2021-5-10.tex".

1 Laplace equation on Rn (for n = 2; 3) and the divergence
theorem.

From now on, we shall focus on second order elliptic equation with constant coe¢ cients. If u (x; y)
is a function of two variables, its canonical form is

uxx (x; y) + uyy (x; y) + (lower order terms) = f (x; y) ;

where f (x; y) is a given continuous function de�ned on some domain 
 � R2: To begin with, for
simplicity, we shall look at the 2-dimensional Laplace equation:

4u (x; y) := uxx (x; y) + uyy (x; y) = 0; (x; y) 2 
 � R2: (1)

The purpose is to �nd C2 solutions u (x; y) : 
 � R2 ! R: If the domain 
 is not speci�ed in
advance, we want the solutions u (x; y) to be de�ned on some open set 
 in R2; as large as possible.
A C2 solution u of (1), de�ned on 
; is called a harmonic function on 
: In case u = u (x; y; z)
is a three-variable function, then the above becomes

4u (x; y; z) := uxx (x; y; z) + uyy (x; y; z) + uzz (x; y; z) = 0; (x; y; z) 2 
 � R3: (2)

Example 1.1 The following functions

u (x; y) = x; y; x2 � y2; 2xy; x3 � 3xy2; y3 � 3x2y; ex cos y; ex sin y (3)

are all harmonic functions de�ned on the whole plane R2: The functions

u (x; y) =
x

x2 + y2
;

�y
x2 + y2

are harmonic functions de�ned on R2n f(0; 0)g : In the above, the polynomials x; y; x2�y2; 2xy; x3�
3xy2; y3 � 3x2y; ::: etc. are called harmonic polynomials with degree 1, 2, 3, ... etc.

De�nition 1.2 Let 
 � Rn be a domain (open and connected) and let V (x) : 
 � Rn ! Rn be a
C1 vector �eld on 
 given by

V (x) = (V1 (x) ; ::: ; Vn (x)) ; Vi (x) : 
 � Rn ! R is a C1 function.

Its divergence, denoted as (div V ) (x) (or just div V (x)): 
 � Rn ! R; is a scalar function
de�ned as

div V (x) =
@V1
@x1

(x) + � � �+ @Vn
@xn

(x) ; x = (x1; ::: ; xn) 2 
:

Note that div V (x) is a continuous function on 
:

Remark 1.3 Note that we can also express div V (x) : 
 � Rn ! R as

div V (x) = Tr (DV ) (x) ; x 2 
; (4)

where DV is the derivative of the map V : 
 � Rn ! Rn:
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We �rst note that for C2 function u (x; y) : 
 � R2 ! R; 4 u (x; y) can be decomposed as

4u (x; y) = (div (ru)) (x; y) = Tr (D (ru)) (x; y) ; (x; y) 2 
: (5)

Similar identity holds for 4u (x) ; x 2 
 � R3 (or x 2 
 � Rn):
The following divergence theorem (general version of the Fundamental Theorem of Calculus)

will be needed often later on:

Theorem 1.4 (Divergence theorem.) Let 
 be a C1 bounded domain in Rn (which means that
its boundary @
 is a C1 (n� 1)-dimensional surface in Rn) and W : �
 ! Rn is a vector �eld on
�
 withW 2 C1 (
)

T
C0
�
�

�
. We have the identityZ




divWdx (volume integral in Rn)

=

Z
@


W �Nd� ( (n� 1) -dimensional surface integral in Rn) (6)

where N is the unit outward normal to @
: Here divW : 
! R is the divergence of the vector
�eldW and d� is the "surface measure" on @
:

Remark 1.5 
 is a C1 bounded domain in Rn means that its boundary @
 is locally a C1 graph
everywhere. For example, if 
 is a C1 bounded domain in R3; then near any p 2 @
; the boundary
@
 can be expressed as a graph z = f (x; y) for some C1 function f (x; y) de�ned on some open
subset of R2: Therefore the boundary @
 is a C1 surface in R3:

Remark 1.6 (Important.) Be careful that the divergence theorem is valid only when 
 � Rn
is bounded. For example, let 
 = Rn+ = f(x1; ::: ; xn) 2 Rn : xn > 0g be the upper half-space of
Rn and letW be the smooth vector �eld on �
 given by

W (x) = (0; 0; :::; 0; xn) ; x = (x1; ::: ; xn) 2 Rn+
[

@Rn+:

Then we have divW � 1 on Rn+ andW � 0 on @Rn+: In such a case, the identity (6) clearly fails.
In view of this, the Green identities also fail on unbounded domains.

Remark 1.7 If n = 2; then d� means ds; where ds is the arc length di¤erential and the above
theorem is the same as the familiar Green Theorem for plane region enclosed by a simple closed
curve �: More precisely, let C � R2 be a counterclockwise simple closed curve parametrized by
� (t) = (x (t) ; y (t)) ; t 2 [a; b] ; where t is an arbitrary parameter (not necessarily the arc length
parameter) and let 
 � R2 be the open region enclosed by C with @
 = C (@
 means the boundary
of 
). LetW 2 C1 (
) \ C0

�
�

�
be a vector �eld on �
 given by

W (x; y) = (p (x; y) ; q (x; y)) ; (x; y) 2 �
:

Now we �rst haveZ



divWdx (volume integral in R2) =
ZZ




�
@p

@x
(x; y) +

@q

@y
(x; y)

�
dxdy (7)

and the unit outward normal N to (x (t) ; y (t)) 2 @
; t 2 [a; b] ; is given by

N (x (t) ; y (t)) =

0@ y0 (t)q
(x0 (t))2 + (y0 (t))2

;
�x0 (t)q

(x0 (t))2 + (y0 (t))2

1A ; t 2 [a; b]
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and we also have

d� = ds =

q
(x0 (t))2 + (y0 (t))2dt; t 2 [a; b] :

Hence we concludeZ
@


W �Nd�

=

Z b

a

�
(p (x (t) ; y (t)) ; q (x (t) ; y (t))) �

�
y0(t)p

(x0(t))2+(y0(t))2
; �x0(t)p

(x0(t))2+(y0(t))2

��q
(x0 (t))2 + (y0 (t))2dt

=

Z b

a

[(p (x (t) ; y (t)) y0 (t)� q (x (t) ; y (t)))x0 (t)] dt =
Z
C

�qdx+ pdy (this is line integral). (8)

By (7) and (8), we conclude the identityZZ



�
@p

@x
(x; y) +

@q

@y
(x; y)

�
dxdy =

Z
C

�qdx+ pdy; (9)

which is exactly the familiar Green Theorem (in a slightly di¤erent way). Note that the
value of the line integral

R
C
�qdx+ pdy is independent of parametrization.

Remark 1.8 If n = 3; then the surface measure d� means

d� =

s
1 +

�
@f

@x

�2
+

�
@f

@y

�2
dxdy (10)

if the surface is represented by the graph of a function z = f (x; y) : Therefore, we are doing
surface integrals in R3: Also, if the surface in R3 is given by the parametrization form

X (u; v) : (u; v) 2 U � R2 ! (x (u; v) ; y (u; v) ; z (u; v)) 2 R3;

then
d� = jXu �Xvj dudv; where � is the cross product in R3: (11)

In case the surface in R3 is given by the equation

' (x; y; z) = 0

for some smooth function ' (x; y; z) : O � R3 ! R; then (assuming the surface can be expressed as
z = f (x; y) for (x; y) 2 U � R2) we have

X (x; y) = (x; y; f (x; y)) : U � R2 ! R3

and by chain rule we have

d� = jXx �Xyj dxdy =
q
1 + f 2x + f 2ydxdy =

p
'2x + '2y + '2z
j'zj

dxdy: (12)

The �rst identity in (12) is clear, to see the second identity, note that by ' (x; y; f (x; y)) = 0 for
all (x; y) 2 U � R2; we have

fx = �
'x
'z
; fy = �

'y
'z

(13)

and so q
1 + f 2x + f 2y =

s
1 +

�
'x
'z

�2
+

�
'y
'z

�2
=

p
'2x + '2y + '2z
j'zj

: (14)
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Proof. (Omit this in class.) (Special case only.) We will give a proof of the theorem only for
the case n = 2 and assuming that 
 takes the simple form:


 = f(x; y) : a � x � b; 0 � y � f (x) ; f (a) = f (b) = 0g (15)

where f (x) is a C1 function de�ned on [a; b] : Although 
 may not be smooth at (a; f (a)) and
(b; f (b)) ; divergence theorem still holds for such 
 as shown below. Its boundary @
 has two parts:
the graph y = f (x) and the segment (x; 0) ; a � x � b: Call them @1
 and @2
 respectively. We
have 8>><>>:

N at (x; f (x)) =
(�f 0 (x) ; 1)q
1 + (f 0 (x))2

N at (x; 0) = (0;�1) :

(16)

Both normal vectors in (16) are pointing outwards. Writing W (x; y) = (u (x; y) ; v (x; y)) ; the
divergence theorem is equivalent toZZ




�
@u

@x
+
@v

@y

�
dxdy; divW =

@u

@x
+
@v

@y

=

Z
@1


(u (x; y) ; v (x; y)) � (�f
0 (x) ; 1)q

1 + (f 0 (x))2
ds+

Z
@2


(u (x; y) ; v (x; y)) � (0;�1) ds; (17)

where ds is the arc length di¤erential. Note that the boundary line integral
R
@

ds in (17) has no

orientation. Clearly we have8<: y = f (x) ; ds =
q
1 + (f 0 (x))2dx on @1


y = 0; ds = dx on @2


(18)

and so the RHS (right-hand side) of (17) becomesZ b

a

(u (x; f (x)) ; v (x; f (x))) � (�f 0 (x) ; 1) dx+
Z b

a

(u (x; 0) ; v (x; 0)) � (0;�1) dx

=

Z b

a

[�u (x; f (x)) f 0 (x) + v (x; f (x))] dx�
Z b

a

v (x; 0) dx

= �

z }| {Z b

a

u (x; f (x)) f 0 (x) dx+

Z b

a

[v (x; f (x))� v (x; 0)] dx| {z } : (19)

Also the LHS of (17) is

ZZ



�
@u

@x
+
@v

@y

�
dxdy =

z }| {Z b

a

Z f(x)

0

�
@u

@x

�
dydx+

Z b

a

Z f(x)

0

�
@v

@y

�
dydx| {z } : (20)

Now we have Z b

a

Z f(x)

0

�
@v

@y

�
dydx| {z } =

Z b

a

[v (x; f (x))� v (x; 0)] dx| {z } : (21)

Hence it su¢ ces to showz }| {Z b

a

u (x; f (x)) f 0 (x) dx+

Z b

a

Z f(x)

0

@u

@x
(x; y) dydx = 0: (22)

4



Note that the LHS (left-hand side) of (22) isZ b

a

 
u (x; f (x)) f 0 (x) +

Z f(x)

0

@u

@x
(x; y) dy

!
dx; (23)

where the integrand in (23) can be written as

u (x; f (x)) f 0 (x) +

Z f(x)

0

@u

@x
(x; y) dy =

d

dx

 Z f(x)

0

u (x; y) dy

!
:

Hence we haveZ b

a

 
u (x; f (x)) f 0 (x) +

Z f(x)

0

@u

@x
(x; y) dy

!
dx

=

Z b

a

d

dx

 Z f(x)

0

u (x; y) dy

!
dx =

Z f(b)

0

u (b; y) dy �
Z f(a)

0

u (a; y) dy = 0;

due to f (a) = f (b) = 0: The proof is done. �

1.1 Averaging property of the Laplace operator.

To understand the "averaging property of the Laplace operator", it su¢ ces to do the following
interesting problem:

Problem 1.9 Let u (x1; x2) : R2 ! R be a C2 function and let fv; wg � R2 be any orthonormal
basis in R2. Let p 2 R2 be a �xed point. By de�nition, we have

(4u) (p) =
2X
i=1

@2u

@x2i
(p) =

d2

dt2

����
t=0

u (p+ te1) +
d2

dt2

����
t=0

u (p+ te2) ; t 2 (�"; ") ; (24)

where fe1; e2g is the standard basis of R2: Show that we also have the identity

(4u) (p) =
2X
i=1

@2u

@x2i
(p) =

d2

dt2

����
t=0

u (p+ tv) +
d2

dt2

����
t=0

u (p+ tw) ; t 2 (�"; ") : (25)

Remark 1.10 Does the quantity d
dt

��
t=0

u (p+ tv) + d
dt

��
t=0

u (p+ tw) have similar property?

Remark 1.11 Similar result holds for the case u (x1; ::: ; xn) : Rn ! R and fv1; ::: ; vng is any
orthonormal basis in Rn: The proof is similar to the case n = 2.

The Laplace operator has the following important geometric meaning: let u (x; y) be a C2

function de�ned on R2 and let O = (0; 0) be the origin. Any line L passing through O with
direction v (�) = (cos �; sin �) ; � 2 [0; 2�] ; has the parametric form

L = f(t cos �; t sin �) : t 2 (�1;1) ; � 2 [0; 2�]g :

The function u (x; y) restricted on L becomes a function of t; i.e., we have (here the angle � is �xed)

h (t) := u (tv) ; where v = v (�) = (cos �; sin �) ; t 2 (�1;1) :

We note that

h0 (0) = lim
t!0

u (tv)� u (0; 0)
t

= Dvu (O) = hru (O) ; vi ; (26)
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which is the directional derivative of u at O = (0; 0) in the direction v = (cos �; sin �) : If we
compute the second derivative of h (t) at t = 0 and average it among all possible directions (i.e.
among all possible angle � 2 [0; 2�]), we get

1

2�

Z 2�

0

h00 (0) d� =
1

2�

Z 2�

0

�
d2

dt2

����
t=0

u (tv (�))

�
d�

=
1

2
(4u) (O) ; v (�) = (cos �; sin �) ; � 2 [0; 2�] : (27)

Thus the quantity 1
2
(4u) (O) is the average of the second derivatives of u (among all possible

directions v (�)). To see (27), by the chain rule we have

h0 (0) = D�u (O) = hru (O) ; vi =
@u

@x
(O) cos � +

@u

@y
(O) sin �

h00 (0) =
@2u

@x2
(O) cos2 � + 2

@2u

@x@y
(O) cos � sin � +

@2u

@y2
(O) sin2 �

and (27) follows due to

1

2�

Z 2�

0

h00 (0) d� =
1

2�

Z 2�

0

�
@2u

@x2
(O) cos2 � + 2

@2u

@x@y
(O) cos � sin � +

@2u

@y2
(O) sin2 �

�
d�

=
1

2�

�
@2u

@x2
(O) � � + @2u

@y2
(O) � �

�
=
1

2
(4u) (O) : (28)

Remark 1.12 One can use rotating orthonormal frame in R2 to see why we have the coe¢ cient
1=2 in (28).

1.2 Green identities.

There are many useful consequence of the divergence theorem (equivalent to the Green The-
orem if we are in R2). Among the most important are the Green identities: Assume 
 is a C1
bounded domain in R2 (or Rn; n � 3) and u; v 2 C2 (
)

T
C1
�
�

�
(u; v : 
 ! R): We have the

Green 1st identity:Z



v4 udx+

Z



ru � rvdx =
Z
@


v
@u

@N
d�; ru = gradient of u (29)

and Green 2nd identity:Z



(v4 u� u4 v) dx =

Z
@


�
v
@u

@N
� u @v

@N

�
d�; (30)

where in (29), ru � rv denotes the inner product of the two gradient vectors ru; rv; and @u
@N

is
the directional derivative of u on @
 along the outward unit normal vector N which, by the chain
rule, is equal to

@u

@N
= ru �N; @u

@N
(p) = lim

t!0�
u (p+ tN)� u (p)

t
; p 2 @
: (31)

Remark 1.13 We also call @u
@N
as the outward normal derivative of u on @
.

We note that (29) is a consequence of the divergence theorem and the identity

div (vru) = v4 u+rv � ru; u; v 2 C2 (
)
\

C1
�
�

�
: (32)
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By the divergence theorem, we haveZ



v4 udx+

Z



ru � rvdx =
Z



div (vru) dx =
Z
@


(vru) �Nd� =
Z
@


v
@u

@N
d�; (33)

which gives (29).
In particular, when u = v in (29), we get the identityZ




u4 udx+

Z



jruj2 dx =
Z
@


u
@u

@N
d�; (34)

and when v � 1 in (29), we get the identityZ



4udx =
Z
@


@u

@N
d� =

Z
@


ru �Nd�: (35)

Physically, the quantity
R
@

ru �Nd� is called the �ux of the vector �eld ru across the boundary

@
 of 
: In particular, if u 2 C2 (
)
T
C1
�
�

�
is harmonic function on 
; we have

R
@


@u
@N
d� = 0 (zero

�ux across @
).

1.3 Radial harmonic functions in Rn.
In this section, we look at the Laplace equation on Rn :

4u (x) = 0; x = (x1; ::: ; xn) 2 Rn; (36)

and we want to look for a special solution of the Laplace equation in Rn which is radial, i.e., it has
the form

u (x) = v (r) ; r = jxj =
q
x21 + � � �+ x2n;

where v (r) is chosen so that it satis�es 4u (x) = 0 for all x 2 Rn: Intuitively speaking, since
Laplace equation has symmetry among all directions e1; e2; :::; en, such a radial solution
should exists.

Remark 1.14 At this moment, we do not know if such function v (r) exists or not; we shall see
that the function v (r) does exist, but cannot be de�ned at r = 0; which implies that the radial
function u (x) cannot be de�ned at x = 0.

Instead of solving a PDE for u (x) ; we only have to solve an ODE for v (r) : By the
chain rule, for r > 0 we have

@u

@xi
(x) = v0 (r)

xi
r
;

@2u

@x2i
(x) = v00 (r)

x2i
r2
+ v0 (r)

�
1

r
� x2i
r3

�
; 1 � i � n;

which gives (sum over i = 1; 2; 3; :::; n)

4u (x) = v00 (r) +
n� 1
r

v0 (r) = 0; r > 0 (37)

and we obtain a second-order ODE for v (r) over the domain r 2 (0;1) : Multiplying equation (37)
by rn�1; one can verify that the general solution of (37) is given by

v (r) = v (jxj) = u (x) =

(
Ar2�n +B; n > 2; r = jxj 2 (0;1)

A log r +B; n = 2; r = jxj 2 (0;1)
(38)
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where A; B are integration constants. Since v (r) is not de�ned at r = 0; the above radial
solution u (x) is not de�ned at x = 0: The corresponding u (x) = u (x1; ::: ; xn) lies in the space
C1 (Rnn f0g) ; given by

u (x1; ::: ; xn) =

8<: A (x21 + x22 + � � �+ x2n)
2�n
2 +B; n > 2;

A log
p
x21 + x22 +B = ~A log (x21 + x22) +B; ~A = A

2
; n = 2:

(39)

Remark 1.15 (Interesting observation.) Why does the Laplace equation have radial solutions?
This is because the Laplace operator has symmetry in it. If we change the Laplace operator into a
non-symmetric form, for example, the form:

~4 = @2

@x21
+ � � �+ @2

@x2n
+

@

@x1
= 4+ @

@x1
(or other forms, say 4+ @2

@x21
);

then if u (x) has the radial form v (r) ; r = jxj ; we have

~4u (x) = 4u (x) + @u

@x1
(x) = v00 (r) +

n� 1
r

v0 (r) + v0 (r)
x1
r| {z };

which cannot produce a self-contained equation (ODE) for v (r) due to the term v0 (r) x1
r
: Thus

for the new operator ~4; it has no radial solution at all (except the trivial constant solutions).

We can conclude the following:

Lemma 1.16 Consider the Laplace equation on Rn; given by

(4u) (x) = 0; x = (x1; ::: ; xn) 2 Rn: (40)

Its radial solution (de�ned only on Rnn f0g) is given by

u (x) =

(
A jxj2�n +B; n > 2; x 2 Rnn f0g

A log jxj+B; n = 2; x 2 R2n f0g
(41)

and no others. Here A; B are two arbitrary constants.

De�nition 1.17 The radial function u (x) given by (41) is also called the fundamental solution
of the Laplace equation. It is a harmonic function de�ned on Rnn f0g :

In R3 we have (now we denote x 2 R3n f0g as (x; y; z) 2 R3n f0g) the radial solution of the
Laplace equation:

u (x; y; z) =
A

r
+B =

Ap
x2 + y2 + z2

+B; (x; y; z) 2 R3n f0g

and then

(ru) (x; y; z)

= A

 
�x

(x2 + y2 + z2)3=2
;

�y
(x2 + y2 + z2)3=2

;
�z

(x2 + y2 + z2)3=2

!

=
A

j�!r j2
�
��!r
j�!r j (this is unit vector)

�
; where �!r = (x; y; z) 2 R3n f0g : (42)

For suitable constant A; (42) describes the force �eld of the earth gravity with point mass at
the origin. Note that each component function of (ru) (x; y; z) is also harmonic on R3n f0g :

8



1.4 Laplace equation in polar coordinates (r; �) ; radial and angular har-
monic functions in R2:

Remark 1.18 A major purpose of expressing Laplace operator in polar coordinates (r; �) is to �nd
some important special solutions, in particular, the radial solution U (r) and the angular solution
U (�) : In particular, we can use it to solve the Dirichlet problem of the Laplace equation on the disc
in R2 or on the ball in R3:

The polar coordinates (r; �) in R2 and the Euclidean coordinates (x; y) in R2 are related by

x = r cos �; y = r sin �; r > 0; 0 < � < 2�; (43)

where the change of variables is a di¤eomorphism between the following two open sets:

R2n f(x; 0) : x � 0g � xy-plane ! (r; �) 2 (0;1)� (0; 2�) � r�-plane. (44)

For convenience, we denote the above open in xy-plane set as ~R2 and denote the above open set in
r�-plane as � in this section. Let u (x; y) : ~R2 ! R be a C2 function. Under the above change of
variables u (x; y) becomes a C2 function U (r; �) : �! R; i.e., u (r cos �; r sin �) = U (r; �) : What is
the expression uxx (x; y) + uyy (x; y) under polar coordinates (r; �)? The answer is:

4u (x; y) =
�
@2

@x2
+

@2

@y2

�
u (x; y) =

�
@2

@r2
+
1

r

@

@r
+
1

r2
@2

@�2

�
U (r; �) : (45)

Example 1.19 Let u (x; y) = x2y: Then U (r; �) = r3 cos2 � sin �: We have�
@2

@x2
+

@2

@y2

�
u (x; y) = 2y:

On the other hand, we also have�
@2

@r2
+
1

r

@

@r
+
1

r2
@2

@�2

�
U (r; �)

=

�
@2

@r2
+
1

r

@

@r
+
1

r2
@2

@�2

��
r3 cos2 � sin �

�
= 2r sin �:

Since y = r sin �; both sides of (45) are equal.

To derive (45), for the �rst derivatives, we have the relation:

@U

@r
=

@

@r
[u (r cos �; r sin �)] =

@u

@x

@x

@r
+
@u

@y

@y

@r

=
@u

@x
cos � +

@u

@y
sin � =

1

r

�
x
@u

@x
+ y

@u

@y

�
; r =

p
x2 + y2 (46)

and

@U

@�
=

@

@�
[u (r cos �; r sin �)] =

@u

@x

@x

@�
+
@u

@y

@y

@�

=
@u

@x
(�r sin �) + @u

@y
(r cos �) = �y@u

@x
+ x

@u

@y
: (47)

We can rewrite the above as the system:

r
@U

@r
= x

@u

@x
+ y

@u

@y
;

@U

@�
= �y@u

@x
+ x

@u

@y
(48)
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or equivalently, the operator relation:

r
@

@r
= x

@

@x
+ y

@

@y
;

@

@�
= �y @

@x
+ x

@

@y
: (49)

It says that the operator r @
@r
is comparable to @

@�
: In the matrix form, we have the operator

identity �
r @
@r
@
@�

�
(acting on U (r; �) ) =

�
x y
�y x

��
@
@x
@
@y

�
(acting on u (x; y) ), (50)

and so �
@
@x
@
@y

�
=

1

x2 + y2

�
x �y
y x

��
r @
@r
@
@�

�
=
1

r

�
cos � � sin �
sin � cos �

��
r @
@r
@
@�

�
: (51)

More precisely, the above gives

@u

@x
= cos �

@U

@r
� sin �

r

@U

@�
;

@u

@y
= sin �

@U

@r
+
cos �

r

@U

@�
: (52)

In particular, we have two di¤erent ways to express the gradient vector of u (for clarity, we look
at the vector ru at a particular point (x0; y0)):

ru (x0; y0) =
@u

@x
(x0; y0)

�
1
0

�
+
@u

@y
(x0; y0)

�
0
1

�
=
@U

@r
(r0; �0)

�
cos �0
sin �0

�
+
1

r0

@U

@�
(r0; �0)

�
� sin �0
cos �0

�
; (53)

where (r0; �0) is the polar coordinates corresponding to (x0; y0) : The above says that we can also ex-
press the gradient vectorru (x0; y0) in terms of the orthonormal basis (cos �0; sin �0) ; (� sin �0; cos �0) ;
with the coe¢ cients given by @U

@r
(r0; �0) and 1

r0
@U
@�
(r0; �0) :

Remark 1.20 Draw a picture for the vector ru (x0; y0) and the two orthonormal frames

f(1; 0) ; (0; 1)g ; f(cos �0; sin �0) ; (� sin �0; cos �0)g ;

where we note that the vector (cos �0; sin �0) is pointing in the radial direction and the vector
(� sin �0; cos �0) is pointing in the angular direction.

Keep going and use (49) to get�
r
@

@r

�2
U :=

�
r
@

@r

���
r
@

@r

�
U

�
=

�
x
@

@x
+ y

@

@y

��
x
@u

@x
+ y

@u

@y

�
= x

@

@x

�
x
@u

@x
+ y

@u

@y

�
+ y

@

@y

�
x
@u

@x
+ y

@u

@y

�
= x2

@2u

@x2
+ y2

@2u

@y2
+ 2xy

@2u

@x@y
+ x

@u

@x
+ y

@u

@y
: (54)

Similarly �
@

@�

�2
U :=

@

@�

�
@U

@�

�
= �y @

@x

�
�y@u

@x
+ x

@u

@y

�
+ x

@

@y

�
�y@u

@x
+ x

@u

@y

�
= y2

@2u

@x2
+ x2

@2u

@y2
� 2xy @2u

@x@y
� x@u

@x
� y@u

@y
: (55)
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Add (54) and (55) to get the beautiful identity:�
r
@

@r

�2
U +

�
@

@�

�2
U =

�
x2 + y2

��@2u
@x2

+
@2u

@y2

�
: (56)

Finally, one can simplify
�
r @
@r

�2
u as�

r
@

@r

�2
U =

�
r
@

@r

��
r
@U

@r

�
= r2

@2U

@r2
+ r

@U

@r
(57)

and conclude the identity:

Lemma 1.21 (Laplace operator in polar coordinates (r; �) of R2.) For any C2 function
u (x; y) = u (r cos �; r sin �) = U (r; �) de�ned on R2; then on the two open sets (44), we have
the identity �

x2 + y2
��@2u

@x2
+
@2u

@y2

�
=

�
r
@

@r

�2
U +

�
@

@�

�2
U; (58)

which is the same as

@2u

@x2
+
@2u

@y2
=
@2U

@r2
+
1

r

@U

@r
+
1

r2
@2U

@�2| {z }; r > 0; 0 < � < 2�: (59)

Remark 1.22 In particular, if u (x; y) = U (r) is a radial function, (59) becomes

U 00 (r) +
1

r
U 0 (r) =

@2u

@x2
+
@2u

@y2
; r > 0; (60)

which matches with (37).

Remark 1.23 (Omit this in class.) (Another method.) The following more straightforward
method can also be used, but it involves messier computations. By (51), we have the operator
relation:

@

@x
= (cos �)

@

@r
�
�
1

r
sin �

�
@

@�
;

@

@y
= (sin �)

@

@r
+

�
1

r
cos �

�
@

@�
: (61)

Then we have

@2u

@x2
= (cos �)

@

@r

�
(cos �)

@U

@r
�
�
1

r
sin �

�
@U

@�

�
�
�
1

r
sin �

�
@

@�

�
(cos �)

@U

@r
�
�
1

r
sin �

�
@U

@�

�

=

8<: (cos2 �) @
2U
@r2

+ 1
r2
(cos � sin �) @U

@�
� 1

r
(cos � sin �) @

2U
@r@�

+1
r
sin2 � @U

@r
� 1

r
(cos � sin �) @

2U
@�@r

+ 1
r2
(cos � sin �) @U

@�
+ 1

r2

�
sin2 �

�
@2U
@�2

(62)

and

@2u

@y2
= (sin �)

@

@r

�
(sin �)

@U

@r
+

�
1

r
cos �

�
@U

@�

�
+

�
1

r
cos �

�
@

@�

�
(sin �)

@U

@r
+

�
1

r
cos �

�
@U

@�

�

=

8<:
�
sin2 �

�
@2U
@r2
� 1

r2
(cos � sin �) @U

@�
+ 1

r
(cos � sin �) @

2U
@r@�

+1
r
cos2 � @U

@r
+ 1

r
(cos � sin �) @

2U
@�@r
� 1

r2
(cos � sin �) @U

@�
+ 1

r2
(cos2 �) @

2U
@�2

:
(63)
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Adding (62) and (63) together, we get

@2u

@x2
+
@2u

@y2

=

8>>>>>>><>>>>>>>:

8<: (cos2 �) @
2U
@r2

+ 1
r2
(cos � sin �) @U

@�
� 1

r
(cos � sin �) @

2U
@r@�

+1
r
sin2 � @U

@r
� 1

r
(cos � sin �) @

2U
@�@r

+ 1
r2
(cos � sin �) @U

@�
+ 1

r2

�
sin2 �

�
@2U
@�2

+

8<:
�
sin2 �

�
@2U
@r2
� 1

r2
(cos � sin �) @U

@�
+ 1

r
(cos � sin �) @

2U
@r@�

+1
r
cos2 � @U

@r
+ 1

r
(cos � sin �) @

2U
@�@r
� 1

r2
(cos � sin �) @U

@�
+ 1

r2
(cos2 �) @

2U
@�2

=
@2U

@r2
+
1

r

@U

@r
+
1

r2
@2U

@�2
;

which gives the same formula.

Example 1.24 (Radial harmonic function on R2n f(0; 0)g :) If a function u (x; y) = U (r) ; r =p
x2 + y2; is radial, then by (58) we have�

r
@

@r

�2
U =

�
x2 + y2

��@2u
@x2

+
@2u

@y2

�
: (64)

Thus a radial harmonic function u (r) (de�ned on R2n f(0; 0)g) satis�es�
r
@

@r

�2
U = r

@

@r

�
r
@U

@r

�
= 0;

i.e.,

r
@U

@r
= const:

Hence
u (x; y) = U (r) = a ln r + b = a log

p
x2 + y2 + b; (x; y) 6= (0; 0) : (65)

for some constants a; b: Note that u (x; y) is de�ned only on R2n f(0; 0)g and

lim
(x;y)!(0;0)

u (x; y) =1 (if a > 0).

Its gradient vector is pointing in the radial direction, given by

ru (x; y) =
�
@u

@x
(x; y) ;

@u

@y
(x; y)

�
= a

�
x

x2 + y2
;

y

x2 + y2

�
; (x; y) 6= (0; 0) : (66)

Example 1.25 (Angular harmonic function on R2n f(x; y) : x � 0g :) If a function u (x; y) =
U (�) depends only on angle � 2 (0; 2�), then by (58) we have�

@

@�

�2
U =

�
x2 + y2

��@2u
@x2

+
@2u

@y2

�
: (67)

Thus an angular harmonic function U (�) (de�ned on ~R2 = R2n f(x; y) : x � 0g) satis�es U 00 (�) =
0; i.e.

u (x; y) = U (�) = c� + d = c tan�1
y

x
+ d (if x 6= 0 and (x; y) is in the �rst quadrant) (68)
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for some constants c; d: Its gradient vector is perpendicular to the radial direction, given
by

ru (x; y) =
�
@u

@x
;
@u

@y

�
= c

�
�y

x2 + y2
;

x

x2 + y2

�
; (x; y) 6= (0; 0) : (69)

Since the derivative of a harmonic function is still harmonic, the functions

x

x2 + y2
;

y

x2 + y2

are both harmonic in R2n f(0; 0)g :

Example 1.26 (Two important harmonic functions.) By (59), one can check that for any
n 2 Z the two functions rn cosn�; rn sinn� are both harmonic functions de�ned on R2n f(0; 0)g (not
just on R2n f(x; 0) : x � 0g). For n 2 N; the functions are actually de�ned on the whole plane R2:
The corresponding functions u (x; y) are polynomials in the variables x and y with degree n; and
are de�ned on the whole R2: They are called harmonic polynomials on R2: For example, when
n = 1; we get r cos � = x; r sin � = y and for n = 2; we get

r2 cos 2� = x2 � y2; r2 sin 2� = 2xy;

, etc. For n = �1; we get the familiar ones:

r�1 cos (��) = r cos �

r2
=

x

x2 + y2
; r�1 sin (��) = �r sin �

r2
=

�y
x2 + y2

:

1.5 Laplace equation is invariant under radial inversion in R2:
Lemma 1.27 (Laplace equation is invariant under radial inversion on R2:) Assume u (x; y) is
harmonic on R2 and let U (r; �) = u (r cos �; r sin �) ; (r; �) 2 (0;1) � (0; 2�) : Then the radial
inversion function (i.e. r ! 1

r
)

~U (r; �) = U

�
1

r
; �

�
; (r; �) 2 (0;1)� (0; 2�) (70)

also satis�es the equation

@2 ~U

@r2
(r; �) +

1

r

@ ~U

@r
(r; �) +

1

r2
@2 ~U

@�2
(r; �) = 0 (71)

on (r; �) 2 (0;1)� (0; 2�) : Therefore, if u (x; y) is harmonic on R2; then the function

~u (x; y) = u

�
x

x2 + y2
;

y

x2 + y2

�
(72)

is also harmonic on R2n f(0; 0)g : Note that the length of the vector (x= (x2 + y2) ; y= (x2 + y2)) is
equal to 1=

p
x2 + y2:

Remark 1.28 Lemma 1.27 is a special case of the Kelvin transformation in Rn.

Proof. Assume (x; y) is harmonic on R2 and let U (r; �) = u (r cos �; r sin �) : It satis�es

@2U

@r2
(r; �) +

1

r

@U

@r
(r; �) +

1

r2
@2U

@�2
(r; �) = 0 (73)
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on the domain (r; �) 2 (0;1)� (0; 2�). We compute (write U (r; �) as U (s; �) to avoid confusion)

~U (r; �) = U (s; �) ; s =
1

r

~Ur (r; �) = Us (s; �)

�
�1
r2

�
= �s2Us (s; �)

~Urr (r; �) = Uss (s; �)

�
1

r4

�
+ Us (s; �)

�
2

r3

�
= s4Uss (s; �) + 2s

3Us (s; �)

~U�� (r; �) = U�� (s; �)

and get

@2 ~U

@r2
(r; �) +

1

r

@ ~U

@r
(r; �) +

1

r2
@2 ~U

@�2
(r; �)

=
�
s4Uss (s; �) + 2s

3Us (s; �)
�
+ s

�
�s2Us (s; �)

�
+ s2U�� (s; �)

= s4

(
Uss (s; �) +

1

s
Us (s; �) +

1

s2
U�� (s; �)| {z }

)
= 0: (74)

The proof is done. �

Example 1.29 We know x2 � y2 = r2 cos 2� and 2xy = r2 sin 2� are harmonic on R2: By (72) in
Lemma 1.27, the functions

x2 � y2

(x2 + y2)2
=
1

r2
cos 2�;

2xy

(x2 + y2)2
=
1

r2
sin 2�

are also harmonic on R2n f(0; 0)g :

1.6 Laplace operator in spherical coordinates (r; �; ') of R3:
Remark 1.30 There are several di¤erent methods to derive the Laplace operator in spherical coordi-
nates (r; �; ') of R3: Here we only provide the most straightforward method. For more discussions and
details, see the �le "Laplace-equation-in-polar-and-spherical-coordinates-2019-4-28.tex".

The sphere coordinates in R3 is given by (r; �; ') and its relation with respect to the Euclidean
coordinates is

x = r sin' cos �; y = r sin' sin �; z = r cos'; x2 + y2 = r2 sin2 '; (75)

where r > 0; � 2 (0; 2�) ; � 2 (0; �). We have

r =
p
x2 + y2 + z2;

@r

@x
=
x

r
= sin' cos �;

@r

@y
=
y

r
= sin' sin �;

@r

@z
=
z

r
= cos' (76)

and 8>>>>>><>>>>>>:

� = tan�1 y
x
;

@�
@x
= �y

x2+y2
= � r sin' sin �

r2 sin2 '
= � sin �

r sin'
;

@�
@y
= x

x2+y2
= r sin' cos �

r2 sin2 '
= cos �

r sin'
;

@�
@z
= 0;
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and 8>>>>>>>>><>>>>>>>>>:

' = cos�1 z
r
;

@'
@x
= �1q

1�( zr )
2

�z
r2

@r
@x
= z

r
p
r2�z2

@r
@x
= r cos'

r
p
r2 sin2 '

sin' cos � = cos' cos �
r

@'
@y
= r cos'

r
p
r2 sin2 '

sin' sin � = cos' sin �
r

@'
@z
= �1q

1�( zr )
2

�
1
r
� z

r2
@r
@z

�
= �1p

r2�z2 (1� cos
2 ') = � sin2 'p

r2 sin2 '
= � sin'

r
:

With the above, we conclude the �rst order operator relation:8>>><>>>:
@
@x
= (sin' cos �) @

@r
� sin �

r sin'
@
@�
+ cos' cos �

r
@
@'

@
@y
= (sin' sin �) @

@r
+ cos �

r sin'
@
@�
+ cos' sin �

r
@
@'

@
@z
= (cos') @

@r
� sin'

r
@
@'
:

(77)

By (77), we have the following gradient vector relation similar to (53):

ru (x; y; z) = @u

@x
(x; y; z) (1; 0; 0) +

@u

@y
(x; y; z) (0; 1; 0) +

@u

@z
(x; y; z) (0; 0; 1)

=
@U

@r

0@ sin' cos �
sin' sin �
cos'

1A+ 1

r sin'

@U

@�

0@ � sin �cos �
0

1A+ 1
r

@U

@'

0@ cos' cos �
cos' sin �
� sin'

1A
=
@U

@r
er +

1

r sin'

@U

@�
e� +

1

r

@U

@'
e'; (78)

where the orthonormal basis fer; e�; e'g is given by8>><>>:
er = (sin' cos �; sin' sin �; cos')

e� = (� sin �; cos �; 0)

e' = (cos' cos �; cos' sin �;� sin') :

(79)

Theorem 1.31 (Laplace operator in spherical coordinates (r; �; ') of R3.) Under the spher-
ical coordinates (r; �; ') in R3; we have the identity:"�

r
@

@r

�2
U +

�
r
@

@r

�
U

#
+

1

sin2 '

"�
@

@�

�2
U +

�
(sin')

@

@'

�2
U

#

=
�
x2 + y2 + z2

��@2u
@x2

+
@2u

@y2
+
@2u

@z2

�
= r24 u (x; y; z) ; (80)

which is the same as

4u (x; y; z) =
�
@2U

@r2
+
2

r

@U

@r

�
+

1

r2 sin2 '

@2U

@�2
+
1

r2

�
@2U

@'2
+
cos'

sin'

@U

@'

�
: (81)
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Proof. This is a long but routine computation. By the operator relation (77), we need to check
the following (it is a tedious computation, but not di¢ cult at all !!):

@2u

@x2
(x; y; z) +

@2u

@y2
(x; y; z) +

@2u

@z2
(x; y; z)

=

8>>>>><>>>>>:

h
(sin' cos �) @

@r
� sin �

r sin'
@
@�
+ cos' cos �

r
@
@'

i �
(sin' cos �) @U

@r
� sin �

r sin'
@U
@�
+ cos' cos �

r
@U
@'

�
+
h
(sin' sin �) @

@r
+ cos �

r sin'
@
@�
+ cos' sin �

r
@
@'

i �
(sin' sin �) @U

@r
+ cos �

r sin'
@U
@�
+ cos' sin �

r
@U
@'

�
+
h
(cos') @

@r
� sin'

r
@
@'

i �
(cos') @U

@r
� sin'

r
@U
@'

�
=

�
@2U

@r2
+
2

r

@U

@r

�
+

1

r2 sin2 '

@2U

@�2
+
1

r2

�
@2U

@'2
+
cos'

sin'

@U

@'

�
:

�

Remark 1.32 (Interesting observation.) In case we have u (x; y; z) = h (x; y) for some function
h; i.e. the function u (x; y; z) is independent of z; then the function U (r; �; ') is given by

U (r; �; ') = h (r sin' cos �; r sin' sin �) ; r =
p
x2 + y2 + z2; (82)

which still depends on each variable r; �; and ': In this case, it is better to use cylindrical
coordinates (R; �; z) in R3; where now R =

p
x2 + y2; x = R cos �; y = R sin �; z = z: By this,

we obtain
u (x; y; z) = h (x; y) = h (R cos �;R sin �) (denote it as H (R; �) ), (83)

where by the formula (59) for the Laplace operator in the plane R2 under polar coordinates (R; �) ;
we have the identity

4 u (x; y; z) =
@2h

@x2
(x; y) +

@2h

@y2
(x; y)

=
@2H

@R2
+
1

R

@H

@R
+
1

R2
@2H

@�2
; where R =

p
x2 + y2: (84)

On the other hand, if we use U (r; �; ') in (82), then we must use the identity in (81).

If u (x; y; z) = U (r) is a radial function only, then a radial harmonic function U (r) (de�ned
on R3n f(0; 0; 0)g) satis�es

U 00 (r) +
2

r
U 0 (r) = 0 on (0;1) : (85)

Its solution is given by

U (r) =
a

r
+ b; r 2 (0;1) ; a; b are constants (86)

or
u (x; y; z) =

ap
x2 + y2 + z2

+ b; (x; y; z) 2 R3n f(0; 0; 0)g ; (87)

which has a singularity at the origin O = (0; 0; 0) 2 R3 with

lim
(x;y;z)!(0;0;0)

u (x; y; z) =1 (if a > 0). (88)

On the other hand, if u (x; y; z) = U (�) ; i.e. it depends only on the angle �; we have U 00 (�) =
0; U (�) = c� + d for some constants c; d: This gives the �-angular harmonic function: (here
we use the representation � = tan�1 y

x
)

u (x; y; z) = c tan�1
y

x
+ d (if (x; y; z) lies in the �rst octant of R3).
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The domain of u (x; y; z) = U (�) is R3n f(x; 0; z) : x � 0; z 2 Rg (same as � 2 (0; 2�)). Note that
the set f(x; 0; z) : x � 0; z 2 Rg has measure zero in R3: Any point p on this measure zero set
has angle � = 0 or � = 2�:
Finally, if u (x; y; z) = U (') ; i.e. it depends only on the angle '; we have U 0 (') = c

sin'
for some

constant c and then

U (') = c

Z
1

sin'
d'+ d = c

Z
csc'd'+ d = c log jcsc'� cot'j+ d;

which gives the '-angular harmonic function: (here we use the representation ' = cos�1 z
r
)

u (x; y; z) = c log jcsc'� cot'j+ d

= c log

�����csc
 
cos�1

zp
x2 + y2 + z2

!
� cot

 
cos�1

zp
x2 + y2 + z2

!�����+ d;

where c; d are constants. The domain of u (x; y; z) = U (') is R3 minus the z-axis (same as
' 2 (0; �)). Any point p = (0; 0; z) on z-axis has angle ' = 0 or ' = � and log jcsc'� cot'j is
unde�ned at ' = 0 and ' = �:

To end this section, we have the following invariant result similar to that in Lemma 1.27.

Lemma 1.33 (Put this as a HW problem.) Let (r; �; ') be the spherical coordinates in R3: Assume
that U (r; �; ') is harmonic on the domain (r; �; ') 2 (a; b) � (0; 2�) � (0; �) ; 0 < a < b: Show
that the function

V (r; �; ') =
1

r
U

�
1

r
; �; '

�
is also harmonic on the domain (r; �; ') 2

�
1
b
; 1
a

�
� (0; 2�)� (0; �) :

Remark 1.34 Lemma 1.33 is a special case of the Kelvin transformation in Rn.

Proof. For convenience, we denote U (r; �; ') as U (s; �; ') and it satis�es the equation

@2U

@s2
+
2

s

@U

@s
+

1

s2 sin2 '

"
@2U

@�2
+

�
sin'

@

@'

�2
U

#
= 0; U = U (s; �; ')

on the domain (s; �; ') 2 (a; b)� [0; 2�]� (0; �) : Now we have

V (r; �; ') = sU (s; �; ') ; s =
1

r
2 (a; b) ; r 2

�
1

b
;
1

a

�
;

@s

@r
=
�1
r2
= �s2

and by the chain rule we have

@V

@r
(r; �; ') =

�1
r2
U (s; �; ') + s

@U

@s
(s; �; ')

�1
r2
= �s2U (s; �; ')� s3@U

@s
(s; �; ')

and

@2V

@r2
(r; �; ')

= �2s
�
�s2

�
U (s; �; ')� s2@U

@s
(s; �; ') �

�
�s2

�
� 3s2

�
�s2

� @U
@s
(s; �; ')� s3@

2U

@s2
(s; �; ') �

�
�s2

�
= 2s3U (s; �; ') + 4s4

@U

@s
(s; �; ') + s5

@2U

@s2
(s; �; ')
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and

@2V

@�2
(r; �; ') = s

@2U

@�2
(s; �; ') ;

�
sin'

@

@'

�2
V (r; �; ') = s

�
sin'

@

@'

�2
U (s; �; ') :

Combining all of the above, we obtain

@2V

@r2
(r; �; ')| {z }+2r @V@r (r; �; ') + 1

r2 sin2 '

"
@2V

@�2
(r; �; ') +

�
sin'

@

@'

�2
V (r; �; ')

#

=

8>>>>>>><>>>>>>>:

2s3U (s; �; ') + 4s4
@U

@s
(s; �; ') + s5

@2U

@s2
(s; �; ')| {z }

+2s
�
�s2U (s; �; ')� s3 @U

@s
(s; �; ')

�
+ 1
r2 sin2 '

�
s@

2U
@�2
(s; �; ') + s

�
sin' @

@'

�2
U (s; �; ')

�
; s = 1

r

= 2s4
@U

@s
(s; �; ') + s5

@2U

@s2
(s; �; ')| {z }+ s3

sin2 '

"
@2U

@�2
(s; �; ') +

�
sin'

@

@'

�2
U (s; �; ')

#

= s5

(
@2U

@s2
(s; �; ') +

2

s

@U

@s
(s; �; ') +

1

s2 sin2 '

"
@2U

@�2
(s; �; ') +

�
sin'

@

@'

�2
U (s; �; ')

#)
= 0:

The proof is done. �

1.7 The application of Green identities to Dirichlet problem for Poisson
equation on bounded domains.

When 
 � Rn is a bounded domain, the most important question related to the Laplace operator is
the Dirichlet problem for Poisson equation on 
: Let 
 � R2 (
 � Rn is also OK ..) be a bounded
C1 domain and let f (x) ; h (x) be continuous functions on 
 and @
 respectively. The Dirichlet
problem for Poisson equation has the form(

4u (x) = f (x) in 
 � R2

u (x) = h (x) on @
:
(89)

One can use (34) to show that (89) has a unique solution (we will not discuss the existence of a
solution here). In PDE theory, the boundary condition u (x) = h (x) on @
 is also called Dirichlet
condition.

Lemma 1.35 (Uniqueness of solution for Dirichlet problem of Poisson equation.) Let
u; v 2 C2 (
)

T
C1
�
�

�
be two solutions of (89) on 
; where f 2 C0 (
) and h 2 C1 (@
) are given.

Then we must have u � v on �
:

Proof. Set w = u� v 2 C2 (
)
T
C1
�
�

�
: It satis�es(

4w (x) = 0 in 
 � R2

w (x) = 0 on @
:
(90)

By (34), we have the identityZ



w4 wdx+

Z



jrwj2 dx =
Z
@


w
@w

@N
d� (d� = ds here since we are in R2); (91)
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which, together with (90), gives the identityZ



jrwj2 dx = 0; (92)

where we also know that jrwj2 is a continuous function on 
 with jrwj2 � 0 everywhere. Hence
we conclude jrwj2 � 0 on 
 and w (x) must be a constant function on 
: As w (x) = 0 on @
; we
must have w (x) � 0 on �
: The proof is done. �

Remark 1.36 (Important.) The above uniqueness result does not hold on unbounded domains.
This is because the divergence theorem and the Green identities are valid only on bounded
domains 
 � Rn. See Remark 1.6. For example, the two functions

w (x; y) � 0; v (x; y) = y; (x; y) 2 R2y+ =
�
(x; y) 2 R2 : y > 0

	
all satisfy the equation 4u = 0 on R2y+ with u � 0 on @R2y+.

1.8 Comparing the Laplace equation and the wave equation.

There are many striking di¤erences between the Laplace equation and the wave equation. One can
notice this from many aspects. For simplicity, we just look at one interesting example. For the
convenience of constructing a solution for the Laplace equation, here we take 
 to be unbounded,
with 
 = R2; and consider the following two initial value problems (here for u (x; y) we view y as
time and denote it as t):(

@2u
@x2
(x; t) + @2u

@t2
(x; t) = 0; (x; t) 2 R2;

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1) :
(93)

and (
@2u
@x2
(x; t)� @2u

@t2
(x; t) = 0; (x; t) 2 R2;

u (x; 0) = � (x) ; ut (x; 0) =  (x) ; x 2 (�1;1)
(94)

We know that the equation in problem (94) is awave equation and the ivp has a unique solution
given by:

u (x; t) =
1

2
[� (x+ t) + � (x� t)] + 1

2

Z x+t

x�t
 (s) ds; 8 (x; t) 2 R2: (95)

From it we can see that the problem is well-posed (the solution exists, is unique, and depends
"continuously" (in some distance sense) on the data � (x) ;  (x).
On the other hand, the equation in problem (93) is a Laplace equation and it is not well-

posed. To see this, in both examples we take � (x) = 0 and  (x) = sinnx
n
; x 2 (�1;1) ;

where n 2 N is a positive integer. Clearly, the function

un (x; t) =
1

2

Z x+t

x�t

sinns

n
ds =

1

2

�
�cosn (x+ t)

n2
+
cosn (x� t)

n2

�
; (x; t) 2 R2 (96)

is a solution of the wave equation problem (94). As n ! 1; the initial data  (x) ; although
oscillates a lot, satis�es

lim
n!1

j (x)j = lim
n!1

����sinnxn

���� = 0 uniformly in x 2 (�1;1) : (97)

For wave equation solution un (x; t) ; given by (96), it also satis�es

lim
n!1

un (x; t) = lim
n!1

1

2

�
�cosn (x+ t)

n2
+
cosn (x� t)

n2

�
= 0 uniformly in (x; t) 2 R2: (98)
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On the other hand, one can verify that the function

un (x; t) =
(sinhnt) (sinnx)

n2
; (x; t) 2 R2 (99)

is a solution of the Laplace equation problem (93) with

un (x; 0) = 0; (un)t (x; 0) =
sinnx

n
; 8 x 2 R: (100)

However, note that

un

�
�

2n
;
1p
n

�
=

�
sinhn

�
1p
n

�� �
sinn

�
�
2n

��
n2

=
sinh
p
n

n2
!1 as n!1: (101)

By (101), we see that the solution to problem (93) does not depend on the initial data � (x) and  (x)
in a continuous way. Therefore, the initial value problem (93) for the Laplace equation is not
well-posed. As n ! 1; we have sinnx

n
! 0 uniformly on x 2 R: So naturally we expect the

solution un (x; t) to be uniformly small too. However, there exists a sequence (xn; tn) 2 R2 with
limn!1 (xn; tn) = (0; 0) such that limn!1 un (xn; yn) =1:

Remark 1.37 (Important observation.) On the other hand, if we take 
 � R2 (the (x; t)-plane)
to be a C1 bounded domain and look at the following two Dirichlet problems (boundary value
problems): (

4u (x; t) = @2u
@x2
(x; t) + @2u

@t2
(x; t) = f (x; t) in 
 � R2

u (x; t) = h (x; t) on @

(102)

and (
@2u
@x2
(x; t)� @2u

@t2
(x; t) = f (x; t) in 
 � R2

u (x; t) = h (x; t) on @
;
(103)

where f 2 C0 (
) and h 2 C1 (@
) are given (to be safe, maybe take 
 � R2 to be a smooth
bounded domain and f and h to be two smooth functions on �
 and @
 respectively; with this,
the existence of a solution for (102) has no problem), then the problem (102) is well-posed and the
problem (103) is not well-posed. For example, take 
 to be the unit disc in R2 and f = h � 0; then
by Lemma 1.35, problem (102) has unique solution u (x; t) � 0; but problem (103) does not have
unique solution. The two functions (note that the general solution of the wave equation has the form
F (x+ t) +G (x� t))

u (x; t) � 0; u (x; t) = (x+ t)2 + (x� t)2 � 2 = 2
�
x2 + t2

�
� 2 (104)

are both solutions. From this, one can see that problem (103) is not well-posed.

Example 1.38 (Important.) (Omit this in class !!) Laplace equation is also not well-posed
for Dirichlet problem (boundary value problem) on "unbounded" domains. For example, we
take 
 = R2; Consider the equation(

4u (x; y) = 0 for y > 0

u (x; 0) = sinnx
n
; x 2 R

and note that for each n 2 N the function

un (x; y) =
sinnx � eny

n
; n 2 N
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is a harmonic function in the upper half plane with un (x; 0) = sinnx
n

for all x 2 R: For large
n; un (x; 0) is close to 0 (but oscillate a lot when n is large) uniformly in x 2 R, but we have

sup
x2R; y2[0;")

jun (x; y)j = sup
x2R; y2[0;")

����sinnx � enyn

����!1 as n!1

for any " > 0: We conclude: Laplace equation is also not well-posed for "Dirichlet problems
on unbounded domains". Another easy example is that the problem(

4u (x; y) = 0 for y > 0

u (x; 0) = 0; x 2 R

has a nonzero solution u (x; y) = y on the space R2+ = f(x; y) 2 R2 : y > 0g.

1.9 The weak maximum/minimum principle for harmonic, subharmonic,
and superharmonic functions on bounded domains.

From now on, 
 will denote a bounded domain in R2 or R3: However, the maximum/minimum
principle for harmonic functions on any bounded domain 
 � Rn is also valid.

Lemma 1.39 (Weak maximum/minimum principle for harmonic, subharmonic, and
superharmonic functions on bounded domains.) Let 
 be a bounded domain in R2 or R3.
Assume u 2 C2 (
)

T
C0
�
�

�
. If 4u � 0 (� 0) everywhere in 
; then

max
�

u = max

@

u

�
min
�

u = min

@

u

�
: (105)

Consequently for a harmonic function u 2 C2 (
)
T
C0
�
�

�
; we have

min
@


u � u (x) � max
@


u; 8 x 2 �
: (106)

Remark 1.40 The condition that 
 is a bounded domain is essential in the above lemma. Lemma
1.39 is false on unbounded domains. For example, take u (x; y) = y on R2y+ : It does not satisfy the
maximum principle.

Remark 1.41 By the above lemma, we conclude that, if 4u � 0 in 
; it satis�es the maximum
principle; and if 4u � 0 in 
; it satis�es the minimum principle.

Remark 1.42 (An interesting simple example.) Here is a simple example in the 1-dimensional
case. Let f (x) = x2; x 2 (�1; 1) : It satis�es f 00 (x) = 2 > 0 everywhere in 
 = (�1; 1) � R: The
maximum value of f (x) on �
 is 1; attained at x = �1 2 @
: Similarly, the function g (x) =
�x2; x 2 (�1; 1) satis�es g00 (x) = �2 < 0 everywhere in 
 = (�1; 1) � R: The minimum value
of g (x) on �
 is �1; attained at x = �1 2 @
: Finally, the function h (x) = ax + b (a; b are
any two numbers) is harmonic on 
 = (�1; 1) : Its maximum value and minimum value attained
at x = �1 2 @
 respectively. Unless h (x) is a constant function, otherwise, it is impossible for
the harmonic function h (x) to attain its maximum value (or minimum value) at some x0 2 
 =
(�1; 1) (this is the strong maximum/minimum principle, to be proved later on).

Proof. Assume �rst that 4u > 0 everywhere in 
: Then since u is continuous on �
 (compact set),
there is some point p 2 �
 such that u (p) = max�
 u: If p 2 @
; the result follows. If p 2 
 (interior
point), we get

4u (p) = @2u

@x2
(p) +

@2u

@y2
(p) � 0; (107)
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a contradiction. Hence p must lie on the boundary of 
 and so max�
 u � max@
 u (note that we
always have max�
 u � max@
 u).
Next, assume that 4u � 0 everywhere in 
: We can use a small perturbation argument. Let

v (x; y) = u (x; y) + "
�
x2 + y2

�
; (x; y) 2 �
;

where " > 0 is a constant. We have

4v (x; y) = 4u (x; y) + 4" � 0 + 4" > 0 everywhere in 
:

Hence we have
max
�

u � max

�

v = max

@

v �

�
max
@


u
�
+ "max

�


�
x2 + y2

�
: (108)

As " > 0 is arbitrary and 
 is a bounded domain (hence max�
 (x2 + y2) is �nite), letting "! 0+ in
(108), we conclude

max
�

u � max

@

u:

On the other hand, we also have max�
 u � max@
 u and so (105) is veri�ed. The proof of the
minimum case is similar. �

1.9.1 Application of the weak maximum/minimum principle.

Let f 2 C0 (
) and h 2 C0 (@
) : We can consider the following problem on bounded domain 
 :(
4u (x) = f (x) in 


u (x) = h (x) on @
:
(109)

This problem is well-posed and we have the following uniqueness property due to the maximum
principle:

Lemma 1.43 (Uniqueness of solution for Dirichlet problem of Poisson equation.) The
problem (109) has at most one solution u 2 C2 (
)

T
C0
�
�

�
.

Remark 1.44 Recall that we have used Green identity to prove Lemma 1.43 before for the case
u 2 C2 (
)

T
C1
�
�

�
: See Lemma 1.35.

Proof. Assume there are two solutions u; v 2 C2 (
)
T
C0
�
�

�
: Then the function w = u � v 2

C2 (
)
T
C0
�
�

�
satis�es (

4w (x) = 0 in 


w (x) = 0 on @
:
(110)

By the weak maximum/minimum principle, we have w � 0 in 
: Hence u � v in 
 (and so on
�
). �

1.10 Poisson integral formula in the plane; Dirichlet problem on a disc.

Let Ba (0) � R2 be the open disc centered at the origin (0; 0) with radius a > 0: We want to solve
the Dirichlet problem (this is a well-posed problem):(

4u (x; y) = 0 in (x; y) 2 Ba (0) � R2

u (x; y) = h (x; y) on (x; y) 2 @Ba (0) (the boundary of Ba (0) ),
(111)

where h (x; y) is a given continuous function de�ned on @Ba (0) :
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Due to the symmetry of the domain and the symmetry of the Laplace operator, there is a so-
lution formula for this problem. The solution lies in the spaceC2 (Ba (0))

T
C0
�
Ba (0)

�
:Moreover,

by the maximum principle, the solution in the function space C2 (Ba (0))
T
C0
�
Ba (0)

�
is unique.

As the domain Ba (0) is a disc, to solve the problem (111), it is natural to use polar coordinates
(r; �) instead of the Euclidean coordinates (x; y) : The Laplace equation under polar coordinates
(r; �) is given by

@2u

@r2
+
1

r

@u

@r
+
1

r2
@2u

@�2
= 0; u = u (r; �) ; 0 < r < a; 0 < � < 2�: (112)

and we we want to solve it. Since in the problem (111) the solution u (x; y) is to be de�ned at
(x; y) = (0; 0) ; we hope equation (112) can also be de�ned at r = 0 and the solution u (r; �) will
not have a singularity at r = 0 (i.e. u (r; �) is well-de�ned at r = 0): In view of this, we
multiply the equation by r2 to get

r2
@2u

@r2
+ r

@u

@r
+
@2u

@�2
= 0; u = u (r; �) ; 0 < r < a; 0 < � < 2� (113)

and focus on equation (113). Moreover, we also want the solution u (r; �) to be 2�-periodic
in � 2 (�1;1) so that the corresponding solution u (x; y) can be de�ned on the whole open
disc Ba (0) : Using polar coordinates (r; �) ; the problem (111) can be expressed as (note that since
the radius of Ba (0) is �xed, the continuous boundary function h (x; y) on @Ba (0) is a 2�-periodic
continuous function depending only on � 2 [0; 2�])(

(1) : r2 @
2u
@r2
(r; �) + r @u

@r
(r; �) + @2u

@�2
(r; �) = 0; (r; �) 2 [0; a)� [0; 2�]

(2) : u (a; �) = h (�) ; 8 � 2 [0; 2�] :
(114)

Recall that there is a family of separable solutions fun (r; �)g1n=0 for equation (1) in (114),
which are de�ned on (r; �) 2 [0; a)� [0; 2�] ; given by

un (r; �) =

(
rn (An cosn� +Bn sinn�) ; n 2 N; (r; �) 2 [0; a)� [0; 2�]

A0; n = 0;
(115)

where A0; An; Bn are arbitrary constants. They satisfy the boundary condition

un (a; �) = an (An cosn� +Bn sinn�) ; 8 � 2 [0; 2�] : (116)

Therefore, if h (�) is a �nite linear combination of cosn� and sinn� for n 2 N; then (114) can be
easily solved.

Remark 1.45 Note that each corresponding function un (x; y) is a harmonic polynomial on the
whole disc Ba (0) (or on R2).

Example 1.46 Solve the problem on Ba (0) :(
(1) : r2 @

2u
@r2
(r; �) + r @u

@r
(r; �) + @2u

@�2
(r; �) = 0; (r; �) 2 [0; a)� [0; 2�]

(2) : u (a; �) = 3 sin � � 5 cos � + 7 cos (2�) ; 8 � 2 [0; 2�] :
(117)

Solution:

The function

u (r; �) = 3
�r
a

�
sin � � 5

�r
a

�
cos � + 7

�r
a

�2
cos (2�) ; (r; �) 2 [0; a)� [0; 2�]
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is clearly a solution of (??). In terms of (x; y)-coordinates, the corresponding u (x; y) is

u (x; y) = 3
�y
a

�
� 5

�x
a

�
+ 7

�
x2 � y2
a2

�
; (x; y) 2 Ba (0)

and the corresponding function h (x; y) on @Ba (0) is given by (note that � = tan�1
y
x
)

h (x; y) = 3
yp

x2 + y2
� 5 xp

x2 + y2
+ 7

�
x2 � y2
x2 + y2

�
; (x; y) 2 @Ba (0) :

�

We can use the above observation as a motivation to solve the general Dirichlet problem (114)
for arbitrary continuous function h (�) "if one can express h (�) as a linear combination
of all possible cosn� and sinn� for all possible n 2 N". This is indeed possible if we assume
h (�) is a 2�-periodic C1 function on � 2 [0; 2�]. More precisely, we have the following result
from Fourier series theory:

Lemma 1.47 (Fourier series result.) Assume h (�) is a 2�-periodic C1 function de�ned
on � 2 [0; 2�] (or on � 2 R). Then the following series

a0
2
+

1X
n=1

(an cosn� + bn sinn�) ; � 2 [0; 2�] (118)

converges absolutely and uniformly to h (�) on [0; 2�] : That is

h (�) =
a0
2
+

1X
n=1

(an cosn� + bn sinn�) ; 8 � 2 [0; 2�] ; (119)

where 8>>><>>>:
an =

1

�

Z 2�

0

h (') cos (n') d'; n = 0; 1; 2; 3; :::;

bn =
1

�

Z 2�

0

h (') sin (n') d'; n = 1; 2; 3; ::::

(120)

The series (118) is called the Fourier series of the function h on � 2 [0; 2�] :

Remark 1.48 The above lemma fails if we only assume h (�) is a 2�-periodic continuous func-
tion.

Proof. Omit. �

We now assume that h (�) is a 2�-periodic C1 function and see what we can do (in the problem
(114) we only assume h to be a continuous function). Motivated by the Fourier series, we now
consider the sum of un (r; �) from (115) for all n = 0; 1; 2; 3; :::; and get a function of the form

u (r; �) =
A0
2
+

1X
n=1

rn (An cosn� +Bn sinn�) ; (r; �) 2 [0; a)� [0; 2�] ; (121)

where the constants A0; An; Bn will be chosen so that when r = a it reduces to the Fourier series
of h (�) on � 2 [0; 2�] :
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Remark 1.49 Since A0=2 and each rn (An cosn� +Bn sinn�) are harmonic on (r; �) 2 [0; a) �
[0; 2�], we "expect" that the series (121) to converge to a harmonic function on [0; a)� [0; 2�] :
Moreover, if we choose the coe¢ cients A0; An and Bn suitably, then the sum of the series (i.e. the
function u (r; �) in (121)) will tend to h (�) as r ! a and the Dirichlet problem (114) can be solved.
See below for details.

To satisfy the boundary condition we need to require

u (a; �) =
A0
2
+

1X
n=1

an (An cosn� +Bn sinn�) = h (�) ; 8 � 2 [0; 2�] : (122)

Hence, by (120), we must require8>><>>:
A0 =

1

�

R 2�
0
h (') d'

An =
1

�an
R 2�
0
h (') cos (n') d'; Bn =

1

�an
R 2�
0
h (') sin (n') d'; n 2 N:

(123)

Remark 1.50 It is impossible to have u (a; �) = h (�) for arbitrary h (�) if we only consider
�nite sum in (122).

By the above, we arrive at a series of the form

u (r; �) =

8>><>>:
1

2�

R 2�
0
h (') d'

+
P1

n=1 r
n

��
1

�an
R 2�
0
h (') cos (n') d'

�
cosn� +

�
1

�an
R 2�
0
h (') sin (n') d'

�
sinn�

�
=
1

2�

Z 2�

0

h (') d'+
1

�

1X
n=1

Z 2�

0

�r
a

�n
h (') [cosn' cosn� + sinn' sinn�]| {z } d'

=
1

2�

"Z 2�

0

h (') d'+ 2
1X
n=1

Z 2�

0

 �r
a

�n
cosn (� � ')| {z }

!
h (') d'

#
; (124)

where (r; �) 2 [0; a)� [0; 2�] :
The identity (124) gives us a motivation to look at the series

1 + 2
1X
n=1

�r
a

�n
cosn (� � ') ; (125)

which is convergent when (r; �; ') 2 [0; a) � [0; 2�] � [0; 2�] and we can �nd its sum explicitly.
Before we go on, we note the following comparison:

1. If we assume h (�) is a 2�-periodic C1 function, then the series (124) converges at r = a and
it is equal to the Fourier series of h (�) :

2. On the other hand, the series (125) diverges at r = a for any �; '.

To go on, motivated by (124), we study the following series properties:

Lemma 1.51 The series

1 + 2

1X
n=1

�r
a

�n
cosn (� � ') (126)
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converges absolutely on (r; �; ') 2 [0; a)� [0; 2�]� [0; 2�] and uniformly on (r; �; ') 2 [0; a� "]�
[0; 2�]� [0; 2�] for any small " > 0: We also have

@k

@rk

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!
= 2

1X
n=1

@k

@rk

h�r
a

�n
cosn (� � ')

i
(127)

and
@k

@�k

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!
= 2

1X
n=1

@k

@�k

h�r
a

�n
cosn (� � ')

i
(128)

on (r; �; ') 2 [0; a) � [0; 2�] � [0; 2�] for all k 2 N: For each k 2 N; the series on the right hand
side of (127) and (128) also converge absolutely on [0; a) � [0; 2�] � [0; 2�] and uniformly on
[0; a� "]� [0; 2�]� [0; 2�] :

Proof. The convergence result is a consequence of standard Series Theory. We omit its proof. �

By Lemma 1.51, we can move the summation
P1

n=1 into the integral sign as long as we con�ne
(r; �) 2 [0; a)� [0; 2�], i.e.

Corollary 1.52 (Commute the summation and the integral.) We have

u (r; �) =
1

2�

"Z 2�

0

h (') d'+ 2
1X
n=1

Z 2�

0

��r
a

�n
cosn (� � ')

�
h (') d'

#

=
1

2�

Z 2�

0

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!
h (') d'; 8 (r; �) 2 [0; a)� [0; 2�] : (129)

Moreover, on the domain (r; �) 2 [0; a)� [0; 2�] ; we have the identities:

@k

@rk
u (r; �) =

1

2�

Z 2�

0

 
@k

@rk

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!!
h (') d' (130)

and
@k

@�k
u (r; �) =

1

2�

Z 2�

0

 
@k

@�k

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!!
h (') d': (131)

The lemma below says that we can simplify the series (126) and �nd its sum explicitly.

Lemma 1.53 (Evaluating the series.) We have the identity

1 + 2
1X
n=1

�r
a

�n
cosn (� � ') = a2 � r2

a2 � 2ar cos (� � ') + r2
; 8 (r; �; ') 2 [0; a)� [0; 2�]� [0; 2�] :

(132)
In particular, by Lemma 1.51, we know that for �xed a > 0 and ' 2 [0; 2�] ; the function

a2 � r2
a2 � 2ar cos (� � ') + r2

(133)

is a harmonic function on the domain (r; �) 2 [0; a)� [0; 2�] :

Remark 1.54 (Be careful.) Note that the series in (132) diverges when r = a for any �; ': At
r = a; it has the form

1 + 2
1X
n=1

cosn (� � ')

and note that limn!1 cosn (� � ') does not converge to zero for any values of �; ' (recall
that in Calculus, if a series

P1
n=1 an converges, we must have limn!1 an = 0).
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Proof. Since, by Lemma 1.51, we can di¤erentiate under the summation sign, and each�
r
a

�n
cosn (� � ') is a harmonic function on Ba (0) (for �xed ' and a), the sum is also a harmonic

function on Ba (0) : To prove (132), you may have to use Euler�s formula for complex number
z = rei�; r 2 [0;1); � 2 [0; 2�] ; which is

zn = [r (cos � + i sin �)]n = rn (cosn� + i sinn�) ; 8 n 2 N:

Then look at the series

1 + 2
1X
n=1

�r
a

�n
[cosn (� � ') + i sinn (� � ')]

and use the identity

1 + 2

1X
n=1

zn =
2

1� z � 1; 8 z 2 C with jzj < 1

to get

1 + 2
1X
n=1

�r
a

�n
cosn (� � ') = Re

"
1 + 2

1X
n=1

zn

#
; z =

r

a
ei(��'); r 2 [0; a)

= Re

�
2

1� z � 1
�
= Re

�
2

1� r
a
ei(��')

� 1
�

= Re

�
2a [a� r cos (� � ') + ir sin (� � ')]

[a� r cos (� � ')� ir sin (� � ')] [a� r cos (� � ') + ir sin (� � ')] � 1
�

=
2a [a� r cos (� � ')]� [a2 � 2ar cos (� � ') + r2]

a2 � 2ar cos (� � ') + r2
=

a2 � r2
a2 � 2ar cos (� � ') + r2

:

�

Lemma 1.55 (Geometric way to express the function in (132).) We have

a2 � r2
a2 � 2ar cos (� � ') + r2

=
a2 � jxj2

jx� zj2
; (r; �; ') 2 [0; a)� [0; 2�]� [0; 2�] : (134)

where x = (r cos �; r sin �) 2 Ba (0) ; z = (a cos'; a sin') 2 @Ba (0) : For each �xed z 2 @Ba (0) ; the
function

a2 � jxj2

jx� zj2
; x 2 Ba (0) (135)

is harmonic in x 2 Ba (0) :

Proof. This is a simple veri�cation. We have jxj2 = r2 and

jx� zj2 = (r cos � � a cos')2 + (r sin � � a sin')2 = a2 � 2ar cos (� � ') + r2:

The proof is done. �

Example 1.56 (Put this as a HW problem.) Let Ba (0) be the open disc in R2 centered at
O = (0; 0) with radius a > 0: For each �xed z = (x0; y0) 2 @Ba (0) ; by direct computation, show
that the function

a2 � jxj2

jx� zj2
=

a2 � (x2 + y2)

(x� x0)2 + (y � y0)2
; x = (x; y) 2 Ba (0) (136)

is harmonic in x 2 Ba (0) :
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Solution:

Denote the function as u (x; y) : Compute

@u

@x
= � 2x

(x� x0)2 + (y � y0)2
� 2 (x� x0) [a

2 � (x2 + y2)]�
(x� x0)2 + (y � y0)2

�2 := A+B

and
@u

@y
= � 2y

(x� x0)2 + (y � y0)2
� 2 (y � y0) [a

2 � (x2 + y2)]�
(x� x0)2 + (y � y0)2

�2 := C +D

and then

4u (x; y) = @A

@x
+
@B

@x
+
@C

@y
+
@D

@y
=

�
@A

@x
+
@C

@y

�
+

�
@B

@x
+
@D

@y

�
;

where

@A

@x
+
@C

@y
=

8><>:
� 2
(x�x0)2+(y�y0)2

+ 2x�2(x�x0)
[(x�x0)2+(y�y0)2]

2

� 2
(x�x0)2+(y�y0)2

+ 2y�2(y�y0)
[(x�x0)2+(y�y0)2]

2

=
1�

(x� x0)2 + (y � y0)2
�2
(
�2
�
(x� x0)2 + (y � y0)2

�
+ 4x (x� x0)

�2
�
(x� x0)2 + (y � y0)2

�
+ 4y (y � y0)

)

=
1�

(x� x0)2 + (y � y0)2
�2 ��2x2 � 2y2 � 2a2 + 4yy0�+ �2y2 � 2x2 � 2a2 + 4xx0�	

=
1�

(x� x0)2 + (y � y0)2
�2 ��4a2 + 4xx0 + 4yy0� : (137)

We also have

@B

@x
=

8><>:
� 1

[(x�x0)2+(y�y0)2]
2 f2 (a2 � (x2 + y2)) + 2 (x� x0) (�2x)g

+ 2�2(x�x0)
[(x�x0)2+(y�y0)2]

3 f2 (x� x0) [a2 � (x2 + y2)]g

=

8>><>>:
� 1

[(x�x0)2+(y�y0)2]
2 f2 (a2 � (x2 + y2))� 4x (x� x0)g

+
8(x�x0)2[a2�(x2+y2)]
[(x�x0)2+(y�y0)2]

3

and

@D

@y
=

8>><>>:
� 1

[(x�x0)2+(y�y0)2]
2 f2 (a2 � (x2 + y2))� 4y (y � y0)g

+
8(y�y0)2[a2�(x2+y2)]
[(x�x0)2+(y�y0)2]

3

and then

@B

@x
+
@D

@y

=

8>><>>:
1

[(x�x0)2+(y�y0)2]
2 f�4a2 + 4 (x2 + y2) + 4x (x� x0) + 4y (y � y0)g

+
8[a2�(x2+y2)]

[(x�x0)2+(y�y0)2]
2 :

=
1�

(x� x0)2 + (y � y0)2
�2 �4a2 � 4xx0 � 4yy0� (138)
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The proof is done due to (137) and (138). �

By Lemma 1.53 we conclude the important formula:

u (r; �) =
1

2�

"Z 2�

0

h (') d'+ 2
1X
n=1

Z 2�

0

 �r
a

�n
cosn (� � ')| {z }

!
h (') d'

#
(139)

=
1

2�

Z 2�

0

0B@1 + 2 1X
n=1

�r
a

�n
cosn (� � ')| {z }

1CAh (') d' (140)

=
a2 � r2
2�

Z 2�

0

h (')

a2 � 2ar cos (� � ') + r2
d'; (r; �) 2 [0; a)� [0; 2�] ; (141)

which is known as the Poisson Integral Formula.

Remark 1.57 (Important.) Note that the interchange of the summation
P1

n=1 and the integralR 2�
0
is valid only for r 2 [0; a); not for r = a. In case we assume h (�) is a C1 function on @Ba (0) ;

then the identity in (139) makes sense at r = a and it gives

u (a; �)

=
1

2�

"Z 2�

0

h (') d'+ 2
1X
n=1

Z 2�

0

cosn (� � ') � h (') d'
#
(this is the Fourier series of h (�) )

= h (�) ; 8 � 2 [0; 2�] : (142)

On the other hand, we cannot let r = a in the identity (140) since the series
P1

n=1 cosn (� � ')
diverges for any �; '. Also, we cannot let r = a in the identity (141) since the integralZ 2�

0

h (')

1� cos (� � ')d' (143)

diverges too, and the quantity a2�r2
2�

R 2�
0

h(')
a2�2ar cos(��')+r2d' is of the form 0 � 1 as r ! a: However,

the identity in (139) suggests that we have the limit (148) (or (149)) below as (r; �)! (a; '0) when
h (�) is a C1 function on @Ba (0) : Moreover, the limit is still valid when h (�) is a continuous
function on @Ba (0) :

By (134), one can also write u (r; �) in a more geometric way as

u (x) =
a2 � jxj2

2�a

Z 2�

0

h (')

jx� zj2
ad' =

a2 � jxj2

2�a

Z
jzj=a

h (z)

jx� zj2
ds; x 2 Ba (0) ; (144)

where
x = (r cos �; r sin �) 2 Ba (0) ; z = (a cos'; a sin') 2 @Ba (0) ; (145)

and the integral on the right hand side of (144) is the line integral with respect to arc length
parameter s on @Ba (0) ; where we know that ds = ad':
Before we go on, we summarize the following important properties again:

1. For each �xed a > 0 and ' 2 [0; 2�] ; the (r; �) function, given by

a2 � r2
a2 � 2ar cos (� � ') + r2

 
= 1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!
; (r; �) 2 [0; a)� [0; 2�]

is harmonic in (r; �) 2 [0; a)� [0; 2�] :
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2. Let Ba (0) be the open disc in R2 centered at O = (0; 0) with radius a > 0: For each �xed
z = (x0; y0) 2 @Ba (0) ; the function

a2 � jxj2

jx� zj2
=

a2 � (x2 + y2)

(x� x0)2 + (y � y0)2
; x = (x; y) 2 Ba (0) (146)

is harmonic in x = (x; y) 2 Ba (0).

The Poisson Integral Formula (141) is motivated by the fact that h 2 C1 (so that we can
apply the Fourier series theory). However, to solve the Dirichlet problem (111), it su¢ ces to assume
that h 2 C0 (i.e. h is a continuous function).
Our main result is the following:

Theorem 1.58 Let h be a continuous function on @Ba (0) and let

u (x) =
a2 � jxj2

2�a

Z
jzj=a

h (z)

jx� zj2
ds; x = (x; y) 2 Ba (0) ; jxj < a: (147)

Then u (x) = u (x; y) is harmonic in Ba (0) and for each �xed p 2 @Ba (0) we have the limit

lim
x!p; x2Ba(0)

u (x) = h (p) : (148)

Remark 1.59 (Important.) In terms of (r; �) ; the limit (148) is the same as (assume p 2 @Ba (0)
has angle '0 2 [0; 2�])

lim
(r;�)!(a;'0)

u (r; �)

= lim
(r;�)!(a;'0)

�
a2 � r2
2�

Z 2�

0

h (')

a2 � 2ar cos (� � ') + r2
d'

�
= h ('0) : (149)

Remark 1.60 (Important observation ...) Note that the integralZ
jzj=a

h (z)

jx� zj2
ds

diverges if x = (r cos �; r sin �) 2 @Ba (0) (i.e. at r = a). In such a case we have (for convenience,
assume � = 0) Z

jzj=a

h (z)

jx� zj2
ds =

Z 2�

0

h (')

2a2 � 2a2 cos (� � ')ad'

=
1

2a

Z 2�

0

h (')

1� cos (� � ')d' =
1

2a

Z 2�

0

h (')

1� cos'd'

and we know that the improper integral Z 2�

0

1

1� cos'd'

diverges (near ' = 0; 1�cos' is like 1
2
'2). However, as x! p 2 @Ba (0) ; the term

�
a2 � jxj2

�
=2�a

will tend to zero. As a result of balance, we will get the limit (148).

Remark 1.61 The integral in (147) is a proper integral when x 2 Ba (0) :
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Proof. In the integral (147), we have jx� zj 6= 0 for each x 2 Ba (0) and z 2 @Ba (0) : Thus the
integral is a regular integral (not an improper integral) and one can di¤erentiate (with respect to
x or y) under the integral sign. Thus u (x) = u (x; y) is harmonic in Ba (0).
Next we note that

a2 � jxj2

2�a

Z
jzj=a

1

jx� zj2
ds

=
a2 � r2
2�

Z 2�

0

1

a2 � 2ar cos (� � ') + r2
d'

=
1

2�

Z 2�

0

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!
d' = 1; 8 x 2 Ba (0) ; (150)

where in the above we have used the identityZ 2�

0

 
2

1X
n=1

�r
a

�n
cosn (� � ')

!
d' = 2

1X
n=1

��r
a

�n Z 2�

0

cosn (� � ') d'
�
= 2

1X
n=1

0 = 0:

Hence

ju (x)� h (p)j

=

�����a2 � jxj22�a

Z
jzj=a

h (z)� h (p)
jx� zj2

ds

����� � a2 � jxj2

2�a

Z
jzj=a

jh (z)� h (p)j
jx� zj2

ds:

Since h is continuous at p; for any " > 0 there exists a small arc C (p) � @Ba (0) centered at p
with length 2� such that

jh (z)� h (p)j < " if z 2 C (p) :
Now

ju (x)� h (p)j �

8><>:
a2�jxj2
2�a

R
z2C(p)

jh(z)�h(p)j
jx�zj2 ds

+a2�jxj2
2�a

R
z2@Ba(0)nC(p)

jh(z)�h(p)j
jx�zj2 ds

� "+
a2 � jxj2

2�a

Z
z2@Ba(0)nC(p)

jh (z)� h (p)j
jx� zj2

ds| {z } :
Now if x 2 Ba (0) and x is close to p 2 @Ba (0) with jx� pj < �=2; then by the triangle inequality

jz� pj � jx� zj+ jx� pj ;

we will have for z 2 @Ba (0) nC (p) the estimate

jx� zj � jz� pj � jx� pj � � � �

2
=
�

2
: (151)

Hence for x close to p 2 @Ba (0) with jx� pj < �=2; we have the estimateZ
z2@Ba(0)nC(p)

jh (z)� h (p)j
jx� zj2

ds �
Z
z2@Ba(0)nC(p)

jh (x)� h (p)j�
�
2

�2 ds � 2M�
�
2

�2 � 2�a
where M = supz2@Ba(0) jh (z)j : Hence

lim
x!p; x2Ba(0)

ju (x)� h (p)j � "+ lim
x!p; x2Ba(0)

 
a2 � jxj2

2�a
� 2M�

�
2

�2 � 2�a
!
= "

and since " > 0 is arbitrary, we obtain limx!p; x2Ba(0) ju (x)� h (p)j = 0: The proof is done. �

We can summarize the following:
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Theorem 1.62 (Solution of the Dirichlet problem (111).) Consider the Dirichlet problem for
the Laplace equation on Ba (0):(

4u (x; y) = 0 in (x; y) 2 Ba (0)

u (x; y) = h (x; y) on (x; y) 2 @Ba (0) (the boundary of Ba (0) ),
(152)

where h (x; y) is a given continuous function de�ned on @Ba (0) : The solution in the space

C2 (Ba (0))
\

C0
�
�Ba (0)

�
is unique and is given by

u (x) =

8><>:
a2 � jxj2

2�a

Z
jzj=a

h (z)

jx� zj2
ds; x 2 Ba (0)

h (x) ; x 2 @Ba (0) :
(153)

Remark 1.63 (Important observation.) The representation formula (153) says that the values
of u at interior points x 2 Ba (0) is completely determined by its boundary data. This matches with
the maximum/minimum principle.

Remark 1.64 In terms of the polar coordinates (r; �) ; the function u (x) in (153) can be written
as (note that ds = ad')

u (r; �) =

8><>:
a2 � r2
2�

Z 2�

0

h (')

a2 � 2ar cos (� � ') + r2
d'; (r; �) 2 [0; a)� [0; 2�]

h (�) ; r = a; � 2 [0; 2�] :
(154)

1.11 The case when h is a C1 function on @Ba (0) :

In case h is a C1 function on @Ba (0) in the Dirichlet problem (111), then h (�) is a 2�-periodic
C1 function de�ned on � 2 [0; 2�] with Fourier series expansion

h (�) =
a0
2
+

1X
n=1

(an cosn� + bn sinn�) ; 8 � 2 [0; 2�] ; (155)

where the coe¢ cients an; bn are given by (120). In this situation, we have:

Theorem 1.65 (Solution of the Dirichlet problem (111) when h is C1 on @Ba (0) :) Assume h (�)
is a 2�-periodic C1 function de�ned on � 2 [0; 2�] : The solution of the Dirichlet problem (111)
can also be expressed as

u (r; �) =
a0
2
+

1X
n=1

"
an �

�r
a

�n
cosn�| {z }+bn �

�r
a

�n
sinn�| {z }

#
; (r; �) 2 [0; a]� [0; 2�] (156)

where an; bn are the Fourier series coe¢ cients of h (�) on � 2 [0; 2�] :

Remark 1.66 (Important.) Note that the series in (156) is de�ned at r = a with sum equal to
h (�) for all � 2 [0; 2�].
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Proof. We already know that the solution u (r; �) is given by

u (r; �) =
a2 � r2
2�

Z 2�

0

h (')

a2 � 2ar cos (� � ') + r2
d'; (r; �) 2 [0; a)� [0; 2�]

=
1

2�

Z 2�

0

 
1 + 2

1X
n=1

�r
a

�n
cosn (� � ')

!
h (') d'

=
1

2�

Z 2�

0

 
1 + 2

1X
n=1

�r
a

�n
(cosn� cosn'+ sinn� sinn')

!
h (') d' (157)

and we can change the order of integration and summation to get

u (r; �)

=
1

2�

Z 2�

0

h (') d'+
1X
n=1

266664
�
1

�

Z 2�

0

h (') (cosn') d'

��r
a

�n
cosn�| {z }

+

�
1

�

Z 2�

0

h (') (sinn') d'

��r
a

�n
sinn�| {z }

377775
=
a0
2
+

1X
n=1

"
an �

�r
a

�n
cosn�| {z }+bn �

�r
a

�n
sinn�| {z }

#

where (r; �) 2 [0; a) � [0; 2�] : When r = a; � 2 [0; 2�] ; the above becomes the Fourier series of
h (�) ; which is the same as h (�) : The proof is done. �

Example 1.67 (Symmetry of h implies symmetry of u:) Assume h (x; y) : @Ba (0)! R is an
odd (or even) continuous function with respect to y (i.e. in the odd case we have h (x;�y) =
�h (x; y) for (x; y) 2 @Ba (0) and in the even case we have h (x;�y) = h (x; y) for (x; y) 2
@Ba (0)). Then by the Poisson Integral Formula, the solution u (x; y) for(

4u (x; y) = 0 in (x; y) 2 Ba (0)

u (x; y) = h (x; y) on (x; y) 2 @Ba (0) (the boundary of Ba (0) ),
(158)

is also an odd (or even) function of y: In particular, for the odd case, we have u (x; 0) = 0 on the
x-axis inside the open disc Ba (0) : To see this, note that for any (r; �) 2 [0; a)� [0; 2�] we have

u (r;��) = a2 � r2
2�

Z 2�

0

h (')

a2 � 2ar cos (�� � ') + r2
d'

=
a2 � r2
2�

Z 2�

0

h (')

a2 � 2ar cos (� + ') + r2
d'

=
a2 � r2
2�

Z 0

�2�

h (��)
a2 � 2ar cos (� � �) + r2

d�; ' = ��

=
a2 � r2
2�

Z 2�

0

h (��)
a2 � 2ar cos (� � �) + r2

d�

=
a2 � r2
2�

Z 2�

0

�h (�)
a2 � 2ar cos (� � �) + r2

d� = �u (r; �) : (159)

By (??), we will have u (x;�y) = �u (x; y) for all (x; y) 2 Ba (0) : The proof for the even case is
similar.
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1.12 Representation formula for harmonic functions on a disc.

An important consequence of Theorem 1.62 is the following:

Theorem 1.68 (Representation formula for harmonic functions on the disc Ba (0) :) As-
sume

u (x) 2 C2 (Ba (0))
\

C0
�
�Ba (0)

�
is a harmonic function on Ba (0) and is continuous up to the boundary @Ba (0) : Then
on Ba (0) we have the identity

u (x) =
a2 � jxj2

2�a

Z
jzj=a

u (z)

jx� zj2
ds; 8 x 2 Ba (0) ; (160)

which is the same as

u (r; �) =
a2 � r2
2�

Z 2�

0

u (')

a2 � 2ar cos (� � ') + r2
d'; (r; �) 2 [0; a)� [0; 2�] ; (161)

where u (') = u (a cos'; a sin') ; ' 2 [0; 2�] :

Remark 1.69 See Theorem 1.86 below for a similar result when u (x) satisfying4u (x) � 0 on Ba (0) (or
4u (x) � 0 on Ba (0)).

Remark 1.70 (Important.) On the disc Ba (x0) centered at some x0 2 R2; the identity (160)
becomes

u (x) =
a2 � jx� x0j2

2�a

Z
jz�x0j=a

u (z)

jx� zj2
ds; 8 x 2 Ba (x0) : (162)

To see this, let v (x) = u (x+ x0) ; then v is harmonic on Ba (0) if and only if u is harmonic on
Ba (x0) : For v; we have

v (x) =
a2 � jxj2

2�a

Z
jzj=a

v (z)

jx� zj2
ds; 8 x 2 Ba (0) ; (163)

and back to u we have

u (x+ x0) =
a2 � j(x+ x0)� x0j2

2�a

Z
jzj=a

u (z+ x0)

j(x+ x0)� (z+ x0)j2
ds; 8 x 2 Ba (0) : (164)

If we let y = x+ x0 2 Ba (x0) and ~z = z+ x0 2 @Ba (x0), then the above is the same as

u (y) =
a2 � jy � x0j2

2�a

Z
j~z�x0j=a

u (~z)

jy � ~zj2
ds; 8 y 2 Ba (x0) ; (165)

which gives (162).

1.13 The strong maximum/minimum principle for harmonic functions
on the disc Ba (0).

Theorem 1.71 (Strong maximum/minimum principle for harmonic functions on the
disc Ba (0) :) Assume that u (x) 2 C2 (Ba (0))

T
C0
�
�Ba (0)

�
; x = (x; y) 2 R2; is harmonic

on Ba (0). Let M = maxx2 �Ba(0) u (x) and m = minx2 �Ba(0) u (x) : If there exists x0 2 Ba (0) (x0 is
an interior point of �Ba (0)) such that u (x0) = M (or u (x0) = m), then u must be a constant
function on �Ba (0) :
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Remark 1.72 Note that the strong maximum/minimum principle will imply the weak maximum/minimum
principle.

Proof. By the Poisson Integral Formula, we have

u (x) =
a2 � jxj2

2�a

Z
jzj=a

u (z)

jx� zj2
ds; 8 x = (x; y) 2 Ba (0)

where u (z) �M for all z 2 @Ba (0) : By the identity (see (150) also)

0 = u (x0)�M =
a2 � jx0j2

2�a

Z
jzj=a

u (z)�M
jx0 � zj2

ds; where a2 � jx0j2 > 0; (166)

we must have Z
jzj=a

u (z)�M
jx0 � zj2

ds = 0; (167)

where we also note that u (z)�M � 0 for all z 2 @Ba (0) due to M = maxx2 �Ba(0) u (x) : Therefore
we must have u (z) � M on @Ba (0) : Hence u (x) is harmonic in Ba (0) and has constant value
on @Ba (0). By the weak maximum principle, u (x) must be a constant function on �Ba (0) with
u (x) �M: Similar result holds for the case u (x0) = m: �

Remark 1.73 Draw a one-dimensional picture for the above theorem.

1.14 Mean value formula for harmonic functions.

Theorem 1.74 (Mean value formula; line integral version.) Assume u 2 C2 (
) is har-
monic on some open set 
 � R2; then for any open disc Ba (x0) �� 
; a > 0; we have the
identity

u (x0) =
1

2�a

Z
jz�x0j=a

u (z) ds (line integral on the circle @Ba (x0) ), (168)

i.e. the value of u at the center x0 of the disc Ba (x0) is equal to its average on the circumference
jz� x0j = a: The integral in (168) is the line integral with respect to arc length parameter s on
@Ba (x0) ; ds = ad'; ' 2 [0; 2�] :

Remark 1.75 For harmonic functions u 2 C2 (Ba (0))
T
C0
�
�Ba (0)

�
de�ned on an open disc

Ba (0) � Rn for arbitrary n 2 N; there is also a mean value formula.

Proof. On the disc Ba (x0) ; by the representation formula (162), we have

u (x) =
a2 � jx� x0j2

2�a

Z
jz�x0j=a

u (z)

jx� zj2
ds; 8 x 2 Ba (x0)

and so

u (x0) =
a2

2�a

Z
jz�x0j=a

u (z)

jx0 � zj2
ds

=
a2

2�a

Z
jz�x0j=a

u (z)

a2
ds =

1

2�a

Z
jz�x0j=a

u (z) ds:

The proof is done. �
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Theorem 1.76 (Mean value formula; double integral version.) Assume u 2 C2 (
) is har-
monic on some open set 
 � R2; then for any open disc Ba (x0) �� 
; a > 0; we have the
identity

u (x0) =
1

�a2

ZZ
Ba(x0)

u (x) dx (double integral on the disc Ba (x0) ). (169)

Proof. By (168), we have

ru (x0) =
1

2�

Z
jz�x0j=r

u (z) ds =
1

2�

Z 2�

0

u (x0 + r (cos �; sin �)) � rd�

for any Br (x0) � Ba (x0) �� 
; r 2 [0; a] ; and if we integrate with respect to the radius r from 0
to a; we get Z a

0

ru (x0) dr =
1

2�

Z a

0

�Z 2�

0

u (x0 + r (cos �; sin �)) � rd�
�
dr

and so
a2

2
u (x0) =

1

2�

Z 2�

0

Z a

0

u (x0 + r (cos �; sin �)) � rdrd�| {z };
which, by the change of variables formula for double integral in the plane, we have

u (x0) =
1

�a2

ZZ
Ba(x0)

u (x) dx| {z } :
The proof is done. �

1.15 Gradient estimate and Liouville theorem for harmonic functions.

Theorem 1.77 (Derivatives estimate of harmonic functions.) Assume u (x; y) 2 C2 (
) is
harmonic on 
 � R2: Then we have����@u@x (x0; y0)

���� �or ����@u@y (x0; y0)
����� � 2a max

@Ba(x0;y0)
juj (170)

as long as Ba (x0; y0) �� 
:

Proof. First note that u 2 C1 (
) (note that aC2 harmonic function is automatically aC1 function;
we can see this from the Poisson Integral Formula). In particular, the function @u

@x

�
or @u

@y

�
is

also a harmonic function on 
: Hence by the mean value formula we have

@u

@x
(x0; y0) =

1

�a2

ZZ
Ba(x0;y0)

@u

@x
(x; y) dxdy| {z }; (171)

where by the divergence theorem, we knowZZ
Ba(x0;y0)

@u

@x
(x; y) dxdy| {z }

=

ZZ
Ba(x0;y0)

div (u (x; y) ; 0) dxdy =

Z
@Ba(x0;y0)

h(u (x; y) ; 0) ; Nout (x; y)i ds: (172)
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Therefore ����@u@x (x0; y0)
���� � ���� 1�a2

Z
@Ba(x0;y0)

h(u (x; y) ; 0) ; Nout (x; y)i ds
����

� 1

�a2

Z
@Ba(x0;y0)

jh(u (x; y) ; 0) ; Nout (x; y)ij ds

� 2�a
�a2

max
@Ba(x0;y0)

j(u (x; y) ; 0)j = 2

a
max

@Ba(x0;y0)
juj : (173)

The proof is done. �

We also have:

Corollary 1.78 (Derivatives estimate of nonnegative harmonic functions.) Assume u (x; y) 2
C2 (
) is harmonic on 
 � R2 with u � 0 everywhere in 
: Then we have����@u@x (x0; y0)

���� �or ����@u@y (x0; y0)
����� � 2au (x0; y0) (174)

as long as Ba (x0; y0) �� 
:

Proof. By (171) and (172), we have

@u

@x
(x0; y0) =

1

�a2

Z
@Ba(x0;y0)

h(u (x; y) ; 0) ; Nout (x; y)i ds

and so ����@u@x (x0; y0)
���� � 1

�a2

Z
@Ba(x0;y0)

jh(u (x; y) ; 0) ; Nout (x; y)ij ds:

Since u � 0 everywhere in 
; we have

jh(u (x; y) ; 0) ; Nout (x; y)ij � j(u (x; y) ; 0)j = u (x; y) ; 8 (x; y) 2 @Ba (x0; y0) :

By this, we get (we use mean value property again)����@u@x (x0; y0)
���� � 1

�a2

Z
@Ba(x0;y0)

u (x; y) ds =
2�a

�a2

�
1

2�a

Z
@Ba(x0;y0)

u (x; y) ds

�
=
2

a
u (x0; y0) :

The proof is done. �

Example 1.79 Let 
 � R2 be a domain. Assume u (x; y) 2 C2 (
) is harmonic on 
 � R2 with
u � �13 everywhere in 
: Assume Ba (x0; y0) �� 
 and u (x0; y0) = �5 (here Ba (x0; y0) is an open
disc in R2 centered at (x0; y0) with radius a > 0). Then we have the following derivatives estimate:����@u@x (x0; y0)

���� �or ����@u@y (x0; y0)
����� � :

Solution:

The function v (x; y) = u (x; y) + 13 is harmonic on 
 � R2 with v � 0 everywhere in 
: Hence
we have����@u@x (x0; y0)

���� = ����@v@x (x0; y0)
���� � 2av (x0; y0) = 2

a
(u (x0; y0) + 13) =

2

a
(�5 + 13) = 16

a
:

�
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Theorem 1.80 (Liouville theorem of harmonic functions on entire space.) If u is har-
monic on R2 and is bounded either above or below on R2; then u must be a constant function.

Remark 1.81 Note that here u (x; y) is de�ned on the whole space R2: This is essential.

Remark 1.82 The same property holds if u is harmonic on Rn; n > 2; and is bounded either
above or below on Rn:

Proof. Without loss of generality, assume u is bounded below (if u is bounded above, we can
look at �u). By adding a large constant if necessary, we may assume u � 0 on R2: Apply (174) to
u (x; y) with 
 = R2; a!1; to get

@u

@x
(x0; y0) =

@u

@y
(x0; y0) � 0; 8 (x0; y0) 2 R2:

As the point (x0; y0) is arbitrary, we are done. �

1.16 C2 Harmonic functions are automatically C1 functions.

Theorem 1.83 Let 
 � R2 be any open set (may not be bounded) and u 2 C2 (
) is harmonic on

. Then we must have u 2 C1 (
) :

Proof. For any x0 2 
 one can �nd a small open disc Ba (x0) �� 
 and we have the identity

u (x) =
a2 � jx� x0j2

2�a

Z
jz�x0j=a

u (z)

jx� zj2
ds

=
1

2�a

Z
jz�x0j=a

a2 � jx� x0j2

jx� zj2| {z }u (z) ds; 8 x 2 Ba (x0) (175)

Note that, for z 2 @Ba (x0) ; the function
�
a2 � jx� x0j2

�
= jx� zj2 is a C1 function of x 2 Ba (x0)

and at any �xed x� 2 Ba (x0) the line integral

1

2�a

Z
jz�x0j=a

0B@ @m+n

@xm@yn

����
x=x�

 
a2 � jx� x0j2

jx� zj2

!
| {z }

1CAu (z) ds; 8 m; n 2 N
[
f0g

still converges, by standard theorem in Advanced Calculus (see any textbook), the function u (x)
is a C1 function of x 2 Ba (x0) and one can di¤erentiate under the integral sign, i.e.

@m+n

@xm@yn

����
x=x�

u (x)

=
1

2�a

Z
jz�x0j=a

0B@ @m+n

@xm@yn

����
x=x�

 
a2 � jx� x0j2

jx� zj2

!
| {z }

1CAu (z) ds; 8 m; n 2 N
[
f0g :

The proof is done. �
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1.17 Mean value inequality for subharmonic and superharmonic func-
tions.

We�rst note that the "name" for subharmonic and superharmonic functions are due to the following
properties:

Lemma 1.84 Assume 
 is a bounded domain and assume u; v 2 C2 (
)
T
C0
�
�

�
with

(1) : 4 u � 0 in 
: (2) : 4 v = 0 in 
: (3) : u � v on @
; (176)

then u � v in 
 (this is why we call v a subharmonic function). Similarly, if we have

(1) : 4 u � 0 in 
: (2) : 4 v = 0 in 
: (3) : u � v on @
; (177)

then u � v in 
 (this is why we call v a superharmonic function).

Remark 1.85 Draw an one-dimensional picture for this.

Proof. This is a consequence of the weak maximum/minimum principle. We prove the �rst case.
Let w = u� v: It satis�es

4w � 0 in 
 and w � 0 on @
:

Therefore, by the weak maximum principle, we have max�
w = max@
w � 0; which implies that
w = u� v � 0 in 
: For the second case, let w = u� v and apply the weak minimum principle. �

Theorem 1.86 (Poisson integral inequality for subharmonic and superharmonic func-
tions.) Let Ba (0) be the open disc in R2 centered at O = (0; 0) with radius a > 0: Assume
u (x) is a function de�ned on �Ba (0) ; lying in the space C2 (Ba (0))

T
C0
�
�Ba (0)

�
; and satis�es

4u (x) � 0 on Ba (0) (i.e. it is subharmonic on Ba (0)). Then we have

u (x) � a2 � jxj2

2�a

Z
jzj=a

u (z)

jx� zj2
ds; 8 x 2 Ba (0) : (178)

Similarly, if u (x) satis�es 4u (x) � 0 on Ba (0) ; then we have

u (x) � a2 � jxj2

2�a

Z
jzj=a

u (z)

jx� zj2
ds; 8 x 2 Ba (0) : (179)

Remark 1.87 In case the disc is Ba (x0) ; (178) and (179) become

u (x) � a2 � jx� x0j2

2�a

Z
jz�x0j=a

u (z)

jx� zj2
ds; 8 x 2 Ba (x0) (180)

and

u (x) � a2 � jx� x0j2

2�a

Z
jz�x0j=a

u (z)

jx� zj2
ds; 8 x 2 Ba (x0) : (181)

Proof. This is a consequence of Lemma 1.84. Let

v (x) =

8><>:
a2 � jxj2

2�a

Z
jzj=a

u (z)

jx� zj2
ds; x 2 Ba (0)

u (x) ; x 2 @Ba (0) :

We know that v (x) 2 C2 (Ba (0))
T
C0
�
�Ba (0)

�
is harmonic in Ba (0) with v (x) = u (x) on

@Ba (0) : If we have 4u (x) � 0 on Ba (0) ; then Lemma 1.84 implies u (x) � v (x) in 
; which gives
(178). The proof of (179) is similar. �
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Theorem 1.88 (Mean value inequality for subharmonic and superharmonic functions.)
For any open set 
 � R2; if u 2 C2 (
) is subharmonic on 
 (i.e. 4u � 0 on 
), then for any
open disc Ba (x0) �� 
; a > 0; we have the following mean value inequality

u (x0) �
1

2�a

Z
jz�x0j=a

u (z) ds (line integral on the circle @Ba (x0) ) (182)

and

u (x0) �
1

�a2

ZZ
Ba(x0)

u (x) dx (double integral on the disc Ba (x0) ). (183)

Similarly, if u 2 C2 (
) is superharmonic on 
 (i.e. 4u � 0 on 
), then we have (182) and
(183) with " � " replaced by " � ":

Proof. Assume u is subharmonic. For any open disc Ba (x0) �� 
; by (180) (evaluated at
x = x0), we have

u (x0) �
a2 � jx0 � x0j2

2�a

Z
jz�x0j=a

u (z)

jx0 � zj2
ds =

1

2�a

Z
jz�x0j=a

u (z) ds;

which proves (182).
For (183), we note that the inequality (182) is valid for any radius r > 0 as long as Br (x0) �

Ba (x0) �� 
: Hence we have

ru (x0) �
1

2�

Z
jz�x0j=r

u (z) ds =
1

2�

Z 2�

0

u (x0 + r (cos �; sin �)) � rd�; 8 r 2 [0; a]

and if we integrate with respect to the radius r from 0 to a; we getZ a

0

ru (x0) dr �
1

2�

Z a

0

�Z 2�

0

u (x0 + r (cos �; sin �)) � rd�
�
dr

and so
a2

2
u (x0) �

1

2�

Z 2�

0

Z a

0

u (x0 + r (cos �; sin �)) � rdrd� = 1

2�

ZZ
Ba(x0)

u (x) dx;

where the last identity in the above is due to the change of variables formula for double
integral in the plane. The proof is done for the subharmonic case. The proof for the superharmonic
case is similar. �

1.18 The strong maximum/minimum principle for harmonic, subhar-
monic, and superharmonic functions on bounded domains.

Recall that we already have the weak maximum/minimum principle for harmonic, subharmonic,
and superharmonic functions on bounded domains; see Lemma 1.39. Now we can use mean value
inequality to prove the following strong maximum/minimum principle :

Theorem 1.89 (Strong maximum/minimum principle for harmonic, subharmonic, and
superharmonic functions on bounded domains.) Let 
 � R2 be a bounded domain (open
and connected) in R2 and u 2 C2 (
)

T
C0
�
�

�
: Assume u is subharmonic on 
 (i.e. 4u � 0 on


) and there exists a point p 2 
 such that u (p) = max�
 u; then u must be a constant function on

. Similarly, if u is superharmonic on 
 (i.e. 4u � 0 on 
) and there exists a point p 2 
 such
that u (p) = min�
 u; then u must be a constant function on 
. In particular, if u is harmonic
on 
 and there exists a point p 2 
 such that u (p) = max�
 u or u (p) = min�
 u; then u must be a
constant function on 
.

40



Proof. Assume u is subharmonic on 
 and we have u (p) = max�
 u (call this value M) for some
p 2 
. Since 
 is an open set, one can �nd an open disc Ba (p) �� 
 for some a > 0: By the mean
value inequality, we have

0 = u (p)�M � 1

�a2

ZZ
Ba(p)

(u (x)�M) dx � 0; where u (x)�M � 0 on Ba (p) ; (184)

which implies u (x) �M on Ba (p) : Therefore, the nonempty set

D = fx 2 
 : u (x) =Mg � 
; p 2 D

is open in 
: We claim that D � 
 is also closed in 
: Let qn 2 D be a sequence in D with
limn!1 qn = q� 2 
 (i.e. the sequence qn 2 D has a limit point q� 2 
). We claim that q� 2 D: To
see this, since u 2 C0

�
�

�
; we have

M = lim
n!1

u (qn) = u
�
lim
n!1

qn

�
= u (q�) ; q� 2 
;

which implies that q� 2 D: Therefore, by de�nition, this means that D � 
 is also closed in 
: As

 is connected, the only set which is both open and closed in 
 is either the empty set ? or
the whole set 
: Since D is not empty (because p 2 D), we must have D = 
: That is, u � M on
all of 
:
The proof for the superharmonic case is similar since one can apply the above argument to

the subharmonic function �u: The proof is done. �

1.19 Application of the weak maximum/minimum principle.

The following result is important and easy to prove using the weak maximum/minimum principle.

Lemma 1.90 Let 
 � Rn be a bounded domain and u 2 C2 (
)
T
C0
�
�

�
satisfy

4u = f in 
; u = g on @
; (185)

where f and g are continuous function on 
 and @
 respectively. Let BR (x0) be a ball centered at
some x0 2 
 such that 
 � BR (x0) : Then we have the estimate

max
�

juj � max

@

jgj+ R2

2n
sup


jf j : (186)

Remark 1.91 We will use the weak maximum/minimum principle to prove the above lemma. The
weak maximum/minimum principle is actually valid on a bounded domain 
 in Rn for any n 2 N:

Remark 1.92 Since we assume u 2 C2 (
)
T
C0
�
�

�
; the function f 2 C0 (
) is de�ned only on


 and, in general, may not be continuous up to �
: Therefore, max�
 jf j may not exist in general. In
case f is continuous on �
; we replace sup
 jf j in (186) by max�
 jf j :

Remark 1.93 To make the estimate (186) as best as possible, one may choose x0 2 
 with R > 0 as
smallest as possible.

Remark 1.94 From (186) we see that the diameter R of 
 comes into play. For example, take

 = (�a; a) to be an interval in R; and solve

4u = 1 in 
; u = 0 on @
:

The unique solution is u (x) = (x2 � a2) =2 with

max
�

juj = a2

2
; max

@

jgj+ a2

2n
sup


jf j = a2

2
; n = 1

and see the diameter comes into play. In this example, we actually have equality in (186).
This is because we choose x0 = 0 and the radius for the ball BR (x0) is smallest, i.e. R = a:
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Proof. Let A = max@
 jgj ; B = sup
 jf j : We may assume A; B <1: De�ne

w (x) =

�
A+

B

2n

�
R2 � jx� x0j2

��
� u (x) ; x 2 �
 = 


[
@
; (187)

then
(1) : w � 0 on @


(2) : 4 w = �B �4u � 0 on 


(3) : w 2 C2 (
)
T
C0
�
�

�
:

(188)

Maximum principle implies that w � 0 in 
 and so

ju (x)j � A+
B

2n

�
R2 � jx� x0j2

�
� A+

B

2n
R2 = max

@

jgj+ R2

2n
sup


jf j ; 8 x 2 
:

The proof is done. �

Another application of the weak maximum/minimum principle is the following:

Theorem 1.95 (Removable singularity of harmonic functions.) Assume n � 2: Let BR �
Rn be the open ball centered at x = 0 with radius R > 0: Suppose u is harmonic in BRn f0g and
satis�es

u (x) =

(
o (log jxj) ; n = 2

o
�
jxj2�n

�
; n � 3

as jxj ! 0; (189)

which means that 8>>><>>>:
limr!0

�
max@Br juj
log r

�
= 0; n = 2

limr!0

�
max@Br juj

r2�n

�
= 0; n � 3;

(190)

then u can be de�ned at x = 0 such that it is C2 and harmonic in BR:

Remark 1.96 (Important.) The above says that any harmonic function with a singu-
larity growing slower than the fundamental solution is in fact removable !

Solution:

We �rst look at the case n � 3: By (189), we have

lim
r!0

�
max@Br juj
log r

�
= 0; n = 2; lim

r!0

�
max@Br juj

r2�n

�
= 0; n � 3: (191)

Without loss of generality, we may assume u is continuous on 0 < jxj � R; i.e. continuous up to
@BR (otherwise we can look at u on 0 < jxj � R� " for some small " > 0).
Let v solve the equation (

4v = 0 in BR

v = u on @BR:

We will prove u = v on BRn f0g (with this, u can be de�ned at x = 0 such that it is C2 and
harmonic in BR).
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Set w = v � u in BRn f0g and Mr = max@Br jwj ; 0 < r < R: Clearly we have w is harmonic
in the region 
r = BRn f0g � Brn f0g. The function jxj2�n =r2�n is also harmonic in 
r: By the
maximum principle, we have (note that w � 0 on @BR)

jw (x)j �Mr
jxj2�n

r2�n
on 
r: (192)

On the other hand, we have (note that v is harmonic on BR; continuous up to @BR)

Mr = max
@Br
jv � uj � max

@Br
jvj| {z }+max@Br

juj � max
@BR
jvj| {z }+max@Br

juj = max
@BR
juj+max

@Br
juj :

From (192) we get

jw (x)j �
�
max
@BR
juj+max

@Br
juj
�
jxj2�n

r2�n
; 8 x 2 
r: (193)

By the assumption, we know that limr!0 (max@Br juj) =r2�n = 0; hence if we let r ! 0 in (193), we
get

w (x) � 0 in BRn f0g :
The proof is done.
For n = 2; we may assume R < 1 and u is continuous on 0 < jxj � R: Now we replace (192) by

jw (x)j �Mr
log jxj
log r

on 
r; (194)

where the harmonic function log jxj = log r has value 1 on @Br and has positive value logR= log r on @BR
(note that w � 0 on @BR). Therefore, we conclude

jw (x)j �
�
max
@BR
juj+max

@Br
juj
�
log jxj
log r

; 8 x 2 
r (195)

and if we let r ! 0 in the above, we get

w (x) � 0 in BRn f0g :

The proof is done. �

Corollary 1.97 Assume n � 2 and 
 � Rn is an open set and p1; :::; pk; k 2 N; are �nite
distinct points in 
: If u 2 C2 (
n fp1; :::; pkg)

T
C0 (
) and is harmonic on 
n fp1; :::; pkg ; then

u 2 C2 (
) and is harmonic on 
:

Remark 1.98 (Important.) The above result is not correct in the case n = 1. For example, take
u (x) = jxj ; x 2 
 = (�1;1) :

Example 1.99 The function

u (x; y) =
x

x2 + y2
(or

y

x2 + y2
), (x; y) 6= (0; 0) 2 R2

is harmonic on R2n f(0; 0)g and has a singularity at (0; 0) : Along each line y = mx; m 2
(�1;1) ; we have

lim
x!0

u (x;mx) = lim
x!0

x

(1 +m2)x2
=

1

1 +m2
lim
x!0

1

x
= �1:

It is impossible to de�ne u (x; y) at (0; 0) so that it becomes harmonic on the whole plane R2: One
can also see that the condition (190) cannot be satis�ed, i.e.

lim
r!0

�
max@Br juj
log r

�
= lim

r!0

 
max�2[0;2�]

�� r cos �
r2

��
log r

!
= lim

r!0

�
1

r � log r

�
= �1 6= 0: (196)
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This is the end of elliptic equations.

The above will be the coverage of the �nal exam on 2022/6/13
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