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On characteristic p multizeta values

By

Chieh-Yu Chang ∗

Abstract

In this article, we consider the characteristic p multizeta values introduced by Thakur.

We report some recent progress on the analogue of Goncharov’s conjecture and a criterion of

Eulerian multizeta values. Methods and key ingredients of the proofs are also discussed.

§ 1. Introduction

§ 1.1. Multiple zeta values

Classical multiple zeta values (abbreviated as MZVs) are generalizations of the

special values of the Riemann zeta function at positive integers. Precisely, they are

defined by

ζ(s1, . . . , sr) :=
∑

n1>···>nr≥1

1

ns11 · · ·n
sr
r
,

where s1, . . . , sr are positive integers with s1 ≥ 2. Here r is called the depth and
∑r
i=1 si

is called the weight of the MZV ζ(s1, . . . , sr). These values can be expressed as Chen

integrals. Studying the algebraic relations among the MZVs is one of the main themes

in this topic. To explain the motivation for the surveyed contents, we first mention two

famous conjectures concerning the MZVs.

Let Zw be the Q-vector space spanned by all the weight w MZVs, and let Z be

the Q-vector space spanned by 1 and all MZVs. One can see from the defining series
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that the product of two MZVs can be expressed as a Z-linear combination of MZVs and

hence Z has a Q-algebra structure. More precisely, one has

ZwZw′ ⊆ Zw+w′ .

There are two famous conjectures on MZVs: one is Zagier’s dimension conjecture, and

the other is Goncharov’s direct sum conjecture.

Conjecture 1.1. (Zagier) Set d0 = 1, d1 = 0, d2 = 1 and let dw be defined by

the recursive relation

dw = dw−2 + dw−3 for w ≥ 3.

Then

dw = dimQZw for w ≥ 2.

Note that Terasoma [27] and Goncharov [22] showed that dimQZw ≤ dw for each

w ≥ 2.

Conjecture 1.2. (Goncharov [21]) Z is a graded algebra over Q, i.e.,

Z = Q⊕
⊕
w≥2

Zw.

In other words, the Q-linear relations among the MZVs are coming from the Q-

linear relations among the same weight MZVs. The following conjecture (folklore) is a

stronger form of Goncharov’s conjecture.

Conjecture 1.3. Let Z be the Q-vector space spanned by 1 and all MZVs, and

Zw be the Q-vector space spanned by all the weight w MZVs. Then we have that

Z = Q⊕w≥2 Zw

and Z is defined over Q in the sense that the canonical map Z ⊗Q Q→ Z is bijective.

That is, conjecturally all Q-polynomial relations among MZVs are Q-homogeneous.

There is one more interesting open problem concerning MZVs. Euler showed that

for any n ∈ N,

ζ(2n)/(2π
√
−1)2n ∈ Q.

Therefore, we shall call a MZV Z Eulerian if we have

Z/(2π
√
−1)w ∈ Q,

where the w is the weight of Z. Since Z is a real number, it follows that if Z/(2π
√
−1)w ∈

Q, then w must be even. Therefore, in the depth one case we have that for an integer

s ≥ 2, ζ(s)/(2π
√
−1)s ∈ Q if and only if s is even. However, according to the present

literatures there is no expected criterion to determine when a given MZV of depth ≥ 2

is Eulerian.
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Question 1.4. Does one have a criterion which can determine when a given

MZV of depth ≥ 2 is Eulerian?

Recently, the author of the present article proved a function field analogue of Con-

jecture 1.3 (cf. [12]). Moreover, the authors of [19] establish a criterion of characteristic

p Eulerian MZVs. The present paper is a survey on the results mentioned above as well

as the strategy of proofs.

§ 1.2. Overview

In § 2, we first review the known results for the depth one MZVs in positive charac-

teristic, the so-called Carlitz zeta values. We then introduce the characteristic p MZVs

defined by Thakur and state the result on the analogous question of Conjecture 1.3 (cf.

Theorem 2.4).

The aim of § 3 is to state the criterion of Eulerian MZVs. We first introduce the

category of z-modules (Frobenius modules), and then introduce the works of Anderson-

Thakur [3, 4] in order to set up the necessary foundation. The criterion of characteristic

p Eulerian MZVs is stated as Theorem 3.5.

In § 4 we introduce the recent developments and tools in the transcendence theory

in positive characteristic. We also review some classical theories for comparison. The

materials contain

• Wüstholz’s analytic subgroup theorem [33, 34].

• Yu’s sub-t-module theorem [36].

• Classical Siegel-Shidlovskii theory [6].

• ABP criterion [2].

• Papanikolas’ difference Galois theory [24].

In the final section, we sketch the ideas how to prove Theorems 2.4 and 3.5.

Acknowledgements

The author thanks the referee for carefully reading the paper and for many sugges-

tions which improve the paper.

§ 2. Linear independence of multizeta values

This is the theory of multizeta values in characteristic p. The arithmetic here

comes from the polynomial ring A = Fq[θ], where Fq is the finite field of q elements
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with characteristic p and θ is a variable. Here A plays the role of the ring of integers Z
in the classical case. It sits discretely inside the Laurent series field Fq(( 1

θ )) with respect

to the 1
θ -adic topology just as Z is discretely inside the real line R. The fraction field

of A is denoted by k, which plays the role of rational number field Q. Throughout this

paper, we fix an algebraic closure k∞ of k∞, and denote by k̄ a fixed algebraic closure

of k embedded in k∞. Finally, we let C∞ be the completion of k∞ with respect to the

absolute value extending a given one on k∞ associated to the 1
θ -adic topology. Note

that C∞ is an algebraically closed field that plays the role of the complex numbers C.

See [23, 28].

In what follows, without confusion we still use the symbol ζ for zeta in the charac-

teristic p setting.

§ 2.1. Carlitz theory

Let A+ be the set of all monic polynomials in A, which plays the role of the set of

positive integers N. In [9], Carlitz considered the following series: for n ∈ N,

ζ(n) :=
∑
a∈A+

1

an
∈ k∞.

Notice that since we are in the setting of non-archimedean analysis, the series above

also converges at n = 1 and one observes that ζ(n) is non-vanishing. In the classical

case, by the work of Euler, the special value of the Riemann zeta function at an even

positive integer 2m can be expressed in terms of (2π
√
−1)2m and the Bernoulli number

B2m. Note that 2π
√
−1 is the period of the exponential function for the multiplicative

group Gm:

0→ Z · 2π
√
−1→ C � Gm(C) = C× → 1.

Let Ga be the additive group over A. The Carlitz module C is defined to be the

group scheme Ga equipped with a nontrivial A-module structure given by

θ ∗C x = θx+ xq and ξ ∗C x = ξx for x ∈ Ga(C∞) = C∞, ξ ∈ Fq.

One has the Carlitz exponential function

expC(z) =
∞∑
i=0

zq
i

Di
,

where D0 := 1 and Di :=
∏i−1
j=0

(
θq

i − θqj
)

. From non-archimedean analysis, it is not

hard to see that expC converges on whole C∞ and therefore is surjective onto C∞.

Carlitz showed that

expC(az) = a ∗C expC(z) for all a ∈ A.
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In other words, the Carlitz exponential

expC : C∞ � C(C∞) = C∞

is an analytic A-module homomorphism. The kernel ΛC := Ker (expC) is shown to be

a discrete A-module of rank one in C∞, and its generator (unique up to scalar multiple

by F×q ) can be expressed as

(2.1) π̃ = (−θ)
q

q−1

∞∏
i=1

(
1− θ

θqi

)−1

,

where (−θ)
1

q−1 is a fixed (q − 1)-st root of (−θ) throughout this paper. In the function

field situation, C plays the role of Gm and π̃ plays the role of 2π
√
−1.

Denote by A× the unit group of A and note that the cardinality of A× is q − 1.

For positive integers n divisible by q− 1, we shall call them “even”in this function field

setting. Carlitz established an analogue of the classical Euler’s formula on the special

values of the Riemann zeta function at even positive integers: for n ∈ N “even”, one

has

(2.2) ζ(n) =
Bn

Γn+1
π̃n,

where

(2.3) Γn+1 :=

∞∏
i=0

Dni
i ∈ A

for n =
∑
niq

i with 0 ≤ i ≤ q − 1 and Bn ∈ k is defined by

z

expC(z)
=
∞∑
n=0

Bn
Γn+1

zn.

§ 2.2. Transcendence theory for Carlitz zeta values

As an analogue of the transcendence of 2π
√
−1, Wade [32] showed that π̃ is tran-

scendental over k and hence by (2.2) each ζ(n) for n ∈ N “even”is also transcendental

over k. The breakthrough on the transcendence of all Carlitz zeta values, particularly

the ζ(n) for n “odd”(i.e. (q − 1) - n), was due to Jing Yu.

Theorem 2.1. (Yu [35]) For each n ∈ N, ζ(n) is transcendental over k.

Later on, Yu used his far-reaching result which is the so-called sub-t-module theo-

rem to obtain the following k̄-linear independence result.
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Theorem 2.2. (Yu [36]) Given any positive integers m and n, we have

dimk̄ k̄-Span {1, π̃, · · · , π̃m, ζ(1), · · · , ζ(n)} = 1 +m+ n− bmin {m,n}
q − 1

c.

In other words, the k̄-linear relations among the set {1, π̃, · · · , π̃m, ζ(1), · · · , ζ(n)} are

coming from the Euler-Carlitz relations (2.2).

Since our field is of characteristic p, there are also natural relations valid there:

(2.4) ζ(pn) = ζ(n)p for any n ∈ N.

The algebraic relations (2.4) among the Carlitz zeta values are called Frobenius p-th

power relations. Using the powerful tools developed by Papanikolas [24], Chang and Yu

completely determined all the algebraic relations among the Carlitz zeta values.

Theorem 2.3. (Chang-Yu [20]) All the algebraic relations among the Carlitz

zeta values are those coming from the Euler-Carlitz relations (2.2) and Frobenius p-th

power relations (2.4). In particular, for n ∈ N we have

tr.degk k (π̃, ζ(1), · · · , ζ(n)) = 1 + n− b n

q − 1
c − bn

p
c+ b n

p(q − 1)
c.

Remark. In the classical case, conjecturally the Euler relations account for all

algebraic relations among the special values of the Riemann zeta function at positive

integers (≥ 2). In other words, for an integer n ≥ 2 conjecturally one has

tr.degQ Q
(
2π
√
−1, ζ(2), . . . , ζ(n)

)
= n− bn

2
c.

§ 2.3. Transcendence theory for multizeta values

Let A+ be the set of all monic polynomials in A. It plays the role of the set of

positive integers. In [28], Thakur defined the characteristic p multizeta values: for any

r-tuple of positive integers (s1, · · · , sr) ∈ Nr,

ζ(s1, . . . , sr) :=
∑ 1

as11 · · · a
sr
r
∈ k∞,

where the sum is over (a1, . . . , ar) ∈ Ar+ with deg a1 > · · · > deg ar. (Here deg means

the degree of a given polynomial in the variable θ). We call this MZV having depth r

and weight
∑r
i=1 si. In the case of r = 1, the values above are the Carlitz zeta values

at positive integers.

Note that there are no natural orders on A+ and thus the following two results

due to Thakur [29, 31] are nontrivial although the classical counterparts are immediate

consequence of the defining series.
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(a) Each MZV ζ(s1, · · · , sr) is nonzero.

(b) The product of a weight w1 MZV and a weight w2 MZV can be expressed as an

Fp-linear combination of weight w1 + w2 MZVs.

Let Zi be a MZV of weight wi for i = 1, · · · , n. For positive integers m1, · · · ,mn,

we define the total weight of the monomial Zm1
1 · · ·Zmn

n to be
∑n
i=1miwi. For a positive

integer w, we let Zw (resp. Zw) be the k-vector space (resp. k̄-vector space) spanned

by the weight w MZVs. Let Z (resp. Z) be the k-vector space (resp. k̄-vector space)

spanned by 1 and all MZVs. The property (b) implies that Z (resp. Z) is a k-algebra

(resp. k̄-algebra). In [12], the author of the present paper proved a characteristic p

analogue of Conjecture 1.3.

Theorem 2.4. Let w1, . . . , w` be ` distinct positive integers. Let Vi be a finite

set consisting of some monomials of multizeta values of total weight wi for i = 1, . . . , `.

If Vi is a linearly independent set over k for i = 1, . . . , `, then the set

{1} ∪
⋃̀
i=1

Vi

is linearly independent over k̄. In particular, we have that

Z = k̄ ⊕
⊕
w∈N
Zw

and Z is defined over k in the sense that the canonical map

Z ⊗k k̄ → Z is bijective.

§ 2.4. Remark on algebraic relations among MZVs

Let Zw be the k-vector space spanned by the monomials of MZVs of total weight w.

By the property (b) in the previous subsection we see that Zw = Zw. The main goal of

transcendence theory for MZVs is to understand and determine all the k̄-algebraic rela-

tions among the MZVs. Note that k̄-algebraic relations among MZVs can be regarded

as k̄-linear relations among the monomials of MZVs. So Theorem 2.4 implies that all

the k̄-algebraic relations among the MZVs are coming from the k-linear relations among

the same weight MZVs. That is, the whole program of transcendence theory for MZVs

boils down to the following question, which is still open.

Question 2.5. What is the dimension dimk Zw for each w ∈ N?

Remark. Unlike the classical case such as Conjecture 1.1, one does not know

what the expected answer of Question 2.5 should be.
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The following result is a consequence of Theorem 2.4.

Corollary 2.6. Let Z1 and Z2 be two multizeta values of the same weight. Then

either the ratio Z1/Z2 is in k or Z1 and Z2 are algebraically independent over k.

Proof. Suppose that Z1/Z2 /∈ k. By Theorem 2.4 the ratio Z1/Z2 is transcendental

over k. Suppose on the contrary that Z1 and Z2 are algebraically dependent over k.

Then by Theorem 2.4 there exists a homogenous polynomial F (X,Y ) ∈ k[X,Y ] of

positive degree so that F (Z1, Z2) = 0. Let d be the total degree of F . Then dividing

the equation F (Z1, Z2) = 0 by Zd2 we see that the ratio Z1/Z2 satisfies a nontrivial

polynomial over k, whence a contradiction.

For a MZV Z of weight w, we call Z “Eulerian”if Z/π̃w ∈ k. Note that because of

(2.1) we have that π̃w /∈ k∞ if and only if w is “odd”. It follows that if Z is Eulerian,

then w must be “even”. The following result is an interesting phenomenon called Euler

dichotomy ([12, Cor. 2.3.3]).

Theorem 2.7. Every multizeta value is either Eulerian or is algebraically in-

dependent from π̃. In particular, every multizeta value of “odd”weight is algebraically

independent from π̃.

Question 2.8. One can ask if the classical MZVs have the analogous Euler di-

chotomy as above.

§ 3. Criterion of Eulerian multizeta values

In what follows, we will state an algebraic criterion that determines when a given

multizeta value is Eulerian (cf. [19]).

§ 3.1. Rationality and algebraicity of Z/π̃w

Concerning the Eulerian MZVs, Carlitz gave a clear description in the depth one

case (see (2.2)):

Theorem 3.1. (Carlitz [9]) Let s be a positive integer. Then ζ(s) is Eulerian if

and only if s is “even”.

In [35], Yu proved that the algebraicity of ζ(s)/π̃s implies the rationality.

Theorem 3.2. (Yu [35]) Let s be a positive integer. Then we have that

ζ(s)/π̃s ∈ k if and only if ζ(s)/π̃s ∈ k̄.
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The following result, which is a consequence of Theorem 2.7, is a generalization of

Yu’s theorem above for any MZV of arbitrary depth.

Theorem 3.3. Let Z be a MZV of weight w. Then we have that

Z/π̃w ∈ k if and only if Z/π̃w ∈ k̄.

Remark. For the classical MZVs, conjecturally one expects that

ζ(s1, · · · , sr)/(2π
√
−1)s1+···+sr ∈ Q if and only if ζ(s1, · · · , sr)/(2π

√
−1)s1+···+sr ∈ Q.

§ 3.2. Frobenius modules

Let t be a new variable independent from θ. We consider the Laurent series field

C∞((t)) and equip it with a Frobenius twisting automorphism:

σ : C∞((t))→C∞((t))

f :=
∑
i ait

i 7→ σ(f) :=
∑
i ai

1
q ti.

For convenience we write f (−n) := σn(f) for an integer n. We then extend such twisting

to the matrices with entries in C∞((t)) by entrywise twisting. The Frobenius twisting

operation stabilizes several subrings and subfields such as k[t], the Tate algebra T of

power series over C∞ convergent on the closed unit disk, k(t) and the fraction field of

T denoted by L. For their invariants under σ, we note:

k[t]σ = Fq[t], Tσ = Fq[t], k(t)σ = Fq(t), Lσ = Fq(t).

Definition 3.4. An z-module is a pair (M,z) equipped with the following two

properties:

• M is a free left k[t]-module of finite rank;

• z : M → M is a σ-semilinear map, i.e., z is additive and satisfies z(am) =

a(−1)z(m) for a ∈ k[t], m ∈M .

A morphism of z-modules is a left k[t]–module homomorphism that is compatible with

the zs. We denote by F the category consisting of all z-modules.

We mention that our z-modules here are slightly different from the terminology in

[26], but their concepts are the same. The notion of such z-modules originated from the

theory of t-motives initiated by Anderson [1]. The simplest example of an z-module is

the trivial object denoted by 1, where the underlying space of 1 is k[t], and the action

of z on 1 is given as

z(f) := f (−1) for f ∈ k[t].
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Another example is the n-th tensor power of the Carlitz motive denoted by C⊗n. Here n

is a positive integer, and the underlying space of C⊗n is k[t] equipped with the z-action

given by

z(f) := (t− θ)nf (−1) for f ∈ C⊗n.

Let M be an z-module. We fix a k[t]-basis {m1, . . . ,mr} of M . Then the action

of z on this basis is represented as

z


m1

...

mr

 = Φ


m1

...

mr


for some matrix Φ ∈ Matr(k[t]). Conversely, a matrix Φ ∈ Matr(k[t]) determines an

object M in F, where M is free of rank r over k[t] and the action of z on certain k[t]-

basis of M is represented by the matrix Φ. In this case, we shall say that M is defined

by Φ.

§ 3.3. The criterion

3.3.1. Anderson-Thakur polynomials Hn In what follows, we briefly review the

theory of Anderson-Thakur [3, 4]. For n = 0, 1, 2, ..., we recall that Γn+1 is defined in

(2.3) and now we define the sequence of Anderson-Thakur polynomials Hn ∈ A[t] by

the generating function identity

∞∑
n=0

Hn

Γn+1|θ=t
xn :=

1−
∞∑
i=0

i∏
j=1

(tq
i − θqj )

(tqi − tqj−1)
xq

i

−1

.

Note that for 0 ≤ n ≤ q − 1 we have Hn = 1. We shall mention that we make change

of notation by t← T in [4, (2)] in order to match the notation in [12].

Put

Ω(t) := (−θ)
−q
q−1

∞∏
i=1

(
1− t

θqi

)
∈ C∞[[t]]

and note that it is entire on C∞ and satisfies the functional equation

Ω(−1) = (t− θ)Ω.

We further note that π̃ = 1/Ω(θ).

The important identity developed in [3] is that for each positive integer n, the

polynomial Hn(t) ∈ A[t] satisfies

(3.1) (Hs−1Ωs)(d)(θ) =
ΓsSd(s)

π̃s
for any s, d ∈ N,
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where

Sd(s) :=
∑

a ∈ A+
deg a = d

1

as
∈ k.

It follows that the specialization of the following series∑
i1>···>ir≥0

(ΩsrHsr−1)
(ir) · · · (Ωs1Hs1−1)

(i1)

at t = θ gives

Γs1 · · ·Γsrζ(s1, . . . , sr)/π̃
s1+···+sr .

3.3.2. The Ext1-group Fix an r-tuple s = (s1, · · · , sr) ∈ Nr. We define the following

matrix:

(3.2)

Φs :=



(t− θ)s1+···+sr 0 0 · · · 0

H
(−1)
s1−1(t− θ)s1+···+sr (t− θ)s2+···+sr 0 · · · 0

0 H
(−1)
s2−1(t− θ)s2+···+sr . . .

...
...

. . . (t− θ)sr 0

0 · · · 0 H
(−1)
sr−1(t− θ)sr 1


∈ Matr+1(k[t]).

Let Φs′ be the square matrix of size r cut from the upper left square of Φs:

(3.3)

Φs′ :=


(t− θ)s1+···+sr

H
(−1)
s1−1(t− θ)s1+···+sr (t− θ)s2+···+sr

. . .
. . .

H
(−1)
sr−1−1(t− θ)sr−1+sr (t− θ)sr

 ∈ Matr(k[t]).

Denote by Ms and Ms′ the objects in F defined by the matrices Φs and Φs′ respec-

tively. Note that the Ms fits into the short exact sequence

0→Ms′ →Ms � 1→ 0.

and so Ms belongs to Ext1
F(1,Ms). We note that the group Ext1

F(1,Ms) has a natural

Fq[t]-module structure coming from the Baer sum and pushout of morphisms of Ms′ .

More precisely, if M1 and M2 are two objects in Ext1
F(1,Ms′) defined by the following

two matrices respectively:

Φ1 :=

(
Φs′ 0

v1 1

)
, Φ2 :=

(
Φs′ 0

v2 1

)
.
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Then the Baer sum M1 +B M2 is the object in F defined by the matrix:(
Φs′ 0

v1 + v2 1

)
.

Furthermore, for any a ∈ Fq[t] the action of a on M1 is the object a ∗M1 ∈ F defined

by the matrix: (
Φs′ 0

av1 1

)
.

In [19], a criterion of characteristic p Eulerian multizeta values is established. The

result is stated as follows.

Theorem 3.5. ζ(s1, · · · , sr) is Eulerian if and only if Ms is a torsion element

in the Fq[t]-module Ext1
F(1,Ms′).

Corollary 3.6. If ζ(s1, . . . , sr) is Eulerian, then

ζ(s2, . . . , sr), ζ(s3, . . . , sr), · · · , ζ(sr)

are simultaneously Eulerian and so si is “even”for all i = 1, . . . , r.

Proof. The proof can be seen in the proof of Theorem 3.5.

§ 4. Current developments on methods of transcendence theory

In this section, we will introduce the current methods of transcendence theory over

function fields in positive characteristic. The first systematic development is Yu’s the-

orem, the so-called sub-t-module theorem. It is a function field analogue of Wüstholz’s

analytic subgroup theorem. So we first introduce Wüstholz’s theory in order to motivate

Yu’s theorem. We list the order of the introductions of this section as follows.

• Wüstholz’s analytic subgroup theorem [33, 34].

• Yu’s sub-t-module theorem [36].

• Siegel-Shidlovskii theory [6].

• ABP criterion [2].

• Papanikolas’ difference Galois theory [24].
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In [2], Anderson, Brownawell and Papanikolas developed a linear independence

criterion, the so-called ABP criterion. The authors of [2] mentioned that they came

up with the criterion in the process of searching for a t-motivic translation of Yu’s

sub-t-module theorem, and they are inclined to believe that at the end of the day the

ABP criterion and Yu’s sub-t-module theorem differ insignificantly in terms of ability

to detect k̄-linear independence. We mention that ABP criterion can be regarded as

a special case (with restricted conditions) of the function field analogue of the Siegel-

Shidlovskii criterion on E-functions. A refined version of the ABP criterion which

relaxes the conditions is given in [10].

In the final part of this section, we will introduce Papanikolas’ theory, which can

be regarded as a function field analogue of Grothendieck’s periods conjecture. Some

applications on algebraic independence results will be also mentioned.

§ 4.1. Wüstholz’s analytic subgroup theorem

Let G be a commutative algebraic group defined over a number field K. The set

of C-valued points of G, denoted by G(C), can be viewed as a complex manifold for

a given embedding of K into C. It follows that one can view G(C) as a complex Lie

group as the “multiplication”and inverse maps are holomorphic. Denote by g the Lie

algebra of the group variety G. Then the Lie algebra of the complex Lie group G(C) is

the complex vector space g ⊗K C. Both the Lie group and its Lie algebra are related

by the exponential map

expG : g⊗K C→ G(C),

which is defined using one-parameter subgroups.

The celebrated analytic subgroup theorem of Wüstholz is stated as follows.

Theorem 4.1. (Wüstholz [33, 34]) Let u ∈ g⊗KC satisfy expG(u) ∈ G(Q). Let

Tu ⊂ g⊗K C be the smallest vector subspace of g⊗K C defined over Q and containing

u. Then Tu is the tangent space at the identity of an algebraic subgroup of G×K Q that

is defined over Q.

Wüstholz’s theorem above has many important applications. For example, one can

give proofs of the following Q-linear independence results:

• Baker’s theorem on linear forms of logarithms of algebraic numbers.

• Q-linear independence of elliptic logarithms at algebraic points.

• Q-linear independence of the periods of the first, second and third kinds for elliptic

curves over Q.
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For more details, we refer the reader to [5].

§ 4.2. Yu’s sub-t-module theorem

We first review the theory of t-modules introduced by Anderson [1]. Let Ga be the

additive group over k, and K be a field extension of k. By a t-module of dimension n

over K, we mean a t-action given by a ring homomorphism

φ : Fq[t]→ End(Gna/K)

satisfying the following conditions:

• For constants ξ ∈ Fq, φξ is the scalar multiplication by ξ.

• (dφt − θId)
N

Lie(Gna) = 0 for some integer N > 0.

These t-modules G = (Gna/K , φ) have exponential maps

expG : LieG(C∞) = Cn∞ → Cn∞ = G(C∞).

These are entire Fq-linear maps defined on Cn∞ and satisfying

expG(dφa(z)) = φa (expG(z)) for all a ∈ Fq[t], z ∈ Cn∞.

To each t-module G, there is a unique exponential map expG which depends functorially

on G. We shall note that in general expG is not surjective. If it is surjective, then the

t-module in question is called uniformizable.

A t-module G = (Gn
a/k̄

, φ) defined over k̄ is called regular if there is an integer r

such that for all a ∈ Fq[t] the kernel of φa in G(k̄) is a free A/(a)-module of rank r.

We shall mention that most t-modules interesting to us are regular. For instance, the

Drinfeld Fq[t]-modules (of generic characteristic), which are one-dimensional nontrivial

t-modules defined over k, are regular.

A connected algebraic subgroup of Gna invariant under φa for all a ∈ A, will be

called a sub-t-module of (Gna , φ). Yu’s sub-t-module theorem is stated as follows:

Theorem 4.2. (Yu [36]) Let G = (Gna , φ) be a regular t-module of dimension n

defined over k̄. Let u be a point in LieG(C∞) such that expG(u) ∈ G(k̄) . Then the

smallest vector subspace in LieG(C∞) defined over k̄ which is invariant under dφt and

contains u is the tangent space at the origin of a sub-t-module of G that is defined over

k̄.

Yu’s theorem has many applications. For example, one can use it to show:

• k-linear independence of Drinfeld logarithms at algebraic points [36].
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• k-linear independence of Carlitz zeta values [36].

• k-linear independence of periods and quasi-periods of Drinfeld modules [7].

• k-linear independence of special gamma values [8].

§ 4.3. Siegel-Shidlovskii theory

For an algebraic number α we denote by α̂ the maximal complex absolute value of

the conjugates of α. An entire function f(z) on C given by the power series

f(z) =
∞∑
n=0

an
n!
zn

with an ∈ Q for all n, is called an E-function if

• f satisfies a linear differential equation with coefficients in Q(z);

• both ân and the common denominator den(a0, a1, . . . , an) are bounded by Cn, where

C is a positive number depending only on f .

The typical example is the exponential function ez =
∑∞
n=0

zn

n! . The following

celebrated theorem is a refined version of the classical Sigel-Shidlovskii criterion.

Theorem 4.3. (Beukers [6]) Let f1, . . . , fn be a set of E-functions which satisfy

the system of first-order differential equations

d

dz


f1

...

fn

 = B


f1

...

fn

 ,
where B is an n×n matrix with entries in Q(z). Denote by T (z) the common denomina-

tor of the entries of B. Then for any ξ ∈ Q× such that T (ξ) 6= 0, any Q-linear relation

among the values f1(ξ), . . . , fn(ξ) is the specialization of a linear relation among the

functions f1, . . . , fn over Q(z).

§ 4.4. ABP-criterion

The first instance of a function field analogue of the Siegel-Shidlovskii criterion was

invented by Anderson-Brownawell-Papanikolas [2] and so we call it the ABP criterion.

Later on, the author of the present article followed the methods of [2] to give a refined

version which relaxes the conditions of the ABP-criterion in [2]. Notice that the original

version in [2] is to deal with the case of uniformizable t-motives and hence the restrictions

of conditions come up naturally from t-motives.
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Theorem 4.4. (Refined version of ABP criterion [2, 10]) Fix a matrix Φ =

Φ(t) ∈ Mat`(k̄[t]) such that det Φ is a polynomial in t satisfying det Φ(0) 6= 0. Fix a

vector ψ = [ψ1(t), · · · , ψ`(t)]tr ∈ Mat`×1(T) satisfying the functional equation ψ(−1) =

Φψ. Let ξ ∈ k×\Fq
×

satisfy

det Φ(ξ
1

qi ) 6= 0 for all i = 1, 2, 3, · · · .

Then for every vector ρ ∈ Mat1×`(k) such that ρψ(ξ) = 0 there exists a vector P =

P (t) ∈ Mat1×`(k̄[t]) such that

P (ξ) = ρ and Pψ = 0.

Remark. Let Φ and ψ be given as in the theorem above. Then all the entries of

ψ are convergent on whole C∞ by [2, Prop. 3.1.3].

ABP criterion is a powerful tool when working on transcendence problems related

to t-motives. For instance, it is the key ingredient which enables Papanikolas to establish

the analogue of Grothendieck’s periods conjecture (see the next subsection). Moreover,

one can use it to show:

• Function field analogue of Rohrlich-Lang’s conjecture [2].

• Function field analogue of Conjecture 1.3 [12].

• A criterion of Eulerian multizeta values [19].

§ 4.5. Papanikolas’ theory

In what follows, we fix a matrix Φ ∈ Matr(k[t])∩GLr(k(t)) and suppose that there

exists a matrix Ψ ∈ GLr(L) satisfying the systems of Frobenius difference equations

σΨ = Ψ(−1) = ΦΨ.

We let ZΨ be the smallest closed subscheme of GLr /k(t) so that Ψ is an L-points of

ZΨ. Equivalently, the defining ideal of ZΨ is the kernel of the following k(t)-algebra

homomorphism

Xij 7→ Ψij : k(t)[X, 1/ detX]→ L,

where k(t)[X, 1/ detX] is the affine coordinate ring of GLr /k(t) and X = (Xij). Fix

an algebraic closure of L, which is denoted by L. Then we set ΓΨ to be the smallest

closed subscheme of GLr /Fq(t) so that the L-valued points of ΓΨ contain Ψ−1ZΨ(L).

Let k(t)(Ψ) be the field over k(t) generated by all entries of Ψ. Papanikolas developed

a function field analogue of classical Galois theory of linear differential equations [25].
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Theorem 4.5. (Papanikolas [24]) The scheme ΓΨ is a closed Fq(t)-subgroup

scheme of GLr /Fq(t), and the closed k(t)-subscheme ZΨ of GLr /k(t) is stable under

right-multiplication of k(t) ×Fq(t) ΓΨ and is a
(
k(t)×Fq(t) ΓΨ

)
-torsor. Moreover, we

have:

1. The k(t)-scheme ZΨ is smooth and geometrically connected.

2. The Fq(t)-scheme ΓΨ is smooth and geometrically connected.

3. The dimension of ΓΨ over Fq(t) is equal to the transcendence degree of k(t)(Ψ) over

k(t).

§ 4.6. Comparison between t-motivic methods and classical differential

Galois theory

We fix a matrix Φ ∈ Matr(k[t]) ∩ GLr(k(t)) and suppose that there exists Ψ ∈
Matr(T) ∩GLr(L) so that Ψ(−1) = ΦΨ. Fix a ξ ∈ k×\Fq

×
such that (Φ,Ψ, ξ) satisfies

the conditions of Theorem 4.4. We consider the Kronecker n-th tensor product of

Ψ(−1) = ΦΨ, whence obtaining (
Ψ⊗n

)(−1)
= Φ⊗nΨ⊗n.

We further take the direct sum(
⊕nΨ⊗n

)(−1)
=
(
⊕nΦ⊗n

) (
⊕nΨ⊗n

)
and notice that

• (⊕nΦ⊗n,⊕nΨ⊗n, ξ) still satisfies the conditions of the refined ABP-criterion;

• the entries of Ψ⊗n are degree n monomials of the entries of Ψ.

Therefore, according to Theorem 4.4 we see that any k-polynomial relation among the

entries Ψ is a specialization of a k[t]-polynomial relation among the entries of Ψ. By

computing Hilbert series (cf. [24]) we have that

tr.degk k (Ψ(ξ)) = tr.degk(t) k(t) (Ψ) .

It follows that combining Theorem 4.5 we have the following important equality, which

was invented by Papanikolas.

Theorem 4.6. (Papanikolas) Given a matrix Φ ∈ Matr(k[t]) ∩ GLr(k(t)), we

suppose that there exists Ψ ∈ Matr(T) ∩ GLr(L) so that Ψ(−1) = ΦΨ. Fix any ξ ∈
k
×\Fq

×
so that (Φ,Ψ, ξ) satisfies the conditions of Theorem 4.4. Then we have

(4.1) dim ΓΨ = tr.degk k (Ψ(ξ)) .



18 Chieh-Yu Chang

The equality above can be thought of as a function field analogue of Grothendieck’s

periods conjecture. In the case of uniformizable t-motives M , they are some specific ob-

jects in F together with nice difference equations Ψ(−1) = ΦΨ. We mention that in this

case the field k (Ψ(θ)) contains the “periods”of the t-motive M . Thereby, appealing

to the equality above enables one to prove some algebraic independence results con-

cerning certain periods of t-motives. For instance, see [15] for Drinfeld modules which

naturally correspond to certain uniformizable t-motives. The theorem above has many

applications, for example we have:

• Algebraic independence of Carlitz zeta values [20, 18];

• Algebraic independence of Carlitz zeta values and special gamma values [16, 17];

• Algebraic independence of periods and logarithms for Drinfeld modules [14, 15];

• Algebraic independence of arithmetic Drinfeld modular forms at CM points [11];

• Algebraic independence of periods of the first, second and third kinds for rank 2

Drinfeld modules [13].

We shall mention that although the theory above provides some hope to work on

algebraic independence of special values in question, there are two general difficulties

occurring in the procedure:

• How does one give a t-motivic interpretation of the special values in question if it

is possible? i.e., how does one create suitable (Φ,Ψ, ξ) which satisfies Theorem 4.4

and the field k (Ψ(ξ)) contains the special values in question?

• Assuming the step above valid, how does one compute the algebraic Galois group

ΓΨ?

In the classical case, for some nice systems of linear differential equations with so-

lution functions as E-functions, one also has the equality such as (4.1). That is, the

dimension of the differential Galois group in question is equal to the transcendence de-

gree over Q of the field generated by the solution functions (E-functions) at an algebraic

number satisfying the conditions of Theorem 4.3. However, the values of E-functions

at algebraic numbers are not “periods”, and so many classical algebraic independence

problems concerning “periods”are still open.

§ 5. Key ingredients of the proofs

In what follows, we sketch the key ingredients of proofs of Theorems 2.4 and 3.5.
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§ 5.1. Key ingredients of proof of Theorem 2.4

The primary tool of proving Theorem 2.4 is to use the ABP-criterion (Theorem 4.4).

Here we list the key steps in [12]:

(I) Abstraction for the values having the MZ properties.

(II) Generalization of Theorem 2.4 for the values having the MZ properties.

(III) MZVs have the MZ properties.

We explain some details of the steps above in the following subsections.

5.1.1. Step I. In [4], Anderson and Thakur gave a t-motivic explanation for MZVs

and the author of the present paper observes that the difference equations associated

the MZV in question have some specific properties, and thereby gives the following

abstraction for simplicity.

Definition 5.1. Let E be the ring of power series in C∞[[t]] that converge on

whole C∞. A nonzero element Z ∈ k×∞ is said to have the MZ (Multizeta) property

with weight w if there exists Φ ∈ Matd(k̄[t]) and ψ ∈ Matd×1(E) with d ≥ 2 so that

(1) ψ(−1) = Φψ and (Φ, ψ, θ) satisfies the conditions of the ABP-criterion;

(2) The last column of Φ is of the form (0, . . . , 1)tr (whose entries are zero except the

last entry being 1);

(3) ψ(θ) is of the form (with specific first and last entries):

ψ(θ) =


1/π̃w

...

cZ/π̃w


for some c ∈ k× ;

(4) for any positive integer N , ψ(θq
N

) is of the form:

ψ(θq
N

) =


0
...

(cZ/π̃w)
qN


(whose entries are zero except the last entry).

Remark. One can see from Theorem 5.3 that any nonzero Z having the MZ

property has a unique weight.
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The abstraction above has some convenience. For example, the MZ property is

invariant under product.

Proposition 5.2. Let Z1, . . . , Zn be nonzero values having the MZ property with

weights w1, . . . , wn respectively. For nonnegative integers m1, . . . ,mn, not all zero, the

monomial

Zm1
1 · · ·Zmn

n

has the MZ property with weight
∑n
i=1miwi.

Proof. We consider the Kronecker product:

Φ := Φ⊗m1
1 ⊗ · · · ⊗ Φ⊗mn

n and ψ := ψ⊗m1
1 ⊗ · · · ⊗ ψ⊗mn

n .

Then one has ψ(−1) = Φψ and the result follows from Definition 5.1.

5.1.2. Step II. The following result is a generalized version of Theorem 2.4.

Theorem 5.3. Let w1, . . . , w` be ` distinct positive integers. Let Vi be a finite

set of some nonzero values having the MZ -property with weight wi, and suppose that Vi

is a linearly independent set over k for i = 1, . . . , `. Then the union

{1} ∪
⋃̀
i=1

Vi

is a linearly independent set over k̄.

Here, we will not give the detailed proof of the theorem above. Instead, we outline

the key steps of the proof. Let the notation and assumptions be as in Theorem 5.3.

Without loss of generality, we may assume that w1 > · · · > w`. Suppose on the contrary

that the set

{1} ∪
⋃̀
i=1

Vi

is linearly dependent over k̄. By induction on the weight, we may further assume that

there are nontrivial k̄-linear relations connecting V1 and {1} ∪
⋃`
i=2 Vi. Under such

hypotheses, the major two steps of the proof are the following.

• Show that V1 is a linearly dependent set over k̄.

• Show that V1 is a linearly dependent set over k, whence a contradiction.

The proofs of the two steps above use techniques of Frobenius difference equations.

For more details, see [12].
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Here we present how to prove the transcendence of a nonzero value Z having the

MZ-property. Let Z be with weight w and (Φ, ψ) be associated with Z given in the

Definition 5.1. Note that ψ(θ) is of the form
1/π̃w

...

cZ/π̃w


for some c ∈ k× and ψ(θq

N

) is of the form
0
...

0

(cZ/π̃w)
qN

 .

If Z ∈ k̄×, then by Theorem 4.4 there exists a vector P = (f1, . . . , fd) ∈ Mat1×d
(
k̄[t]
)

so that Pψ = 0 and f1(θ) = −cZ, fd(θ) = 1 and fi(θ) = 0 for i 6= 1, d. Pick a sufficiently

large integer N so that the polynomial fd is non-vanishing at t = θq
N

. Then using the

specific form of ψ(θq
N

) and specializing the equation Pψ = 0 at t = θq
N

give rise to the

vanishing of Z/π̃w, whence a contradiction.

5.1.3. Step III. It is clear that Theorem 2.4 will be a consequence of Theorem 5.3

if one shows that each MZV has the MZ property. We first fix a multizeta value

ζ(s1, . . . , sr). Put s = (s1, . . . , sr) and let Φs be defined as in (3.2). Define the series:

(5.1)

L2(t) :=
∑∞
i=0 (Ωs1Hs1−1)

(i)

L3(t) :=
∑
i1>i2≥0 (Ωs2Hs2−1)

(i2)
(Ωs1Hs1−1)

(i1)

...

Lr+1(t) :=
∑
i1>···>ir≥0 (ΩsrHsr−1)

(ir)
. . . (Ωs1Hs1−1)

(i1)

By § 3.3.1 one has that for each 1 ≤ j ≤ r,

(5.2) Lj+1(θ) = Γs1 · · ·Γsjζ(s1, . . . , sj)/π̃
s1+···+sj .

Moreover, if we put

ψs :=


Ωs1+···+sr

Ωs2+···+srL2

...

ΩsrLr

Lr+1

 ,
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then we have ψ
(−1)
s = Φsψs. As is checked immediately, the conditions (1)-(3) of

Definition 5.1 are satisfied. We first note that the function Ω has simple zero at t = θq
N

for each positive integer N . Therefore, to check the condition (4) it suffices to show

that for each positive integer N we have

Lj+1(θq
N

) =
(
Γs1 · · ·Γsjζ(s1, . . . , sj)/π̃

s1+···+sj
)qN

for 1 ≤ j ≤ r.
To show the formula above, we express Lj+1 as Lj+1 = L<Nj+1 + L≥Nj+1, where

L<Nj+1(t) :=
∑

i1 > · · · > ij ≥ 0;

ij < N

(
ΩsjHsj−1

)(ij)
. . . (Ωs1Hs1−1)

(i1)

L≥Nj+1(t) :=
∑
i1>···>ij≥N

(
ΩsjHsj−1

)(ij)
. . . (Ωs1Hs1−1)

(i1)
.

Then using the functional equation Ω(−1) = (t− θ)Ω we can interpret L<Nr+1(t) as

L<Nj+1(t) =
∑

i1 > · · · > ij ≥ 0;

ij < N

Ωs1+···+sjH
(ij)
sj−1 . . . H

(i1)
s1−1(

(t− θq) . . . (t− θqij )
)sj

. . .
(
(t− θq) . . . (t− θqi1 )

)s1 .
Then one observes that the vanishing order of general term at t = θq

N

is positive,

whence L<Nj+1(θq
N

) = 0. Therefore, the desired formula follows from the equality

L≥Nj+1(t) = (Lj+1(t))
(N)

.

§ 5.2. Key ingredients of proof of Theorem 3.5

5.2.1. Construction of Ψs We fix an r-tuple s = (s1, . . . , sr) ∈ Nr and follow the

notation above. To prove Theorem 3.5, we need to work out the solution matrix of the

system of difference equations

Ψ(−1)
s = ΦsΨs.

The construction of such Ψs is due to Anderson and Thakur [4] and is reviewed as

follows. For 1 < ` < j ≤ r + 1, we put

Lj`(t) :=
∑

i`>···>ij≥0

(
ΩsjHsj−1

)(ij) · · · (Ωs`Hs`−1)
(i`) ∈ T

and note that

Lj`(θ) = Γs`−1
· · ·Γsj−1

ζ(s`−1, . . . , sj−1)/π̃s`−1+···+sj−1 .
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Put

Ψs :=



Ωs1+···+sr

Ωs2+···+srL21 Ωs2+···+sr

... Ωs3+···+srL32
. . .

...
...

. . .
. . .

ΩsrLr1 ΩsrLr2
. . . Ωsr

L(r+1),1 L(r+1),2 · · · · · · L(r+1),r 1


,

then we have Ψ
(−1)
s = ΦsΨs.

5.2.2. Ideas of the proof of Theorem 3.5 In what follows, we sketch the ideas

of the proof of Theorem 3.5. We fix a column vector m ∈ Mat(r+1)×1(Ms) so that the

entries of m comprise a k[t]-basis of Ms with the property

z (m) = Φsm.

Note that Ms is trivial in Ext1
F (1,Ms′) if and only if there exists γ ∈ GLr+1(k[t]) of

the form

γ =

(
Ir 0

γ1, . . . , γr 1

)
so that

z (γm) =

(
Φs′

1

)
(γm) .

It is equivalent to

γ(−1)Φs =

(
Φs′

1

)
γ.

If the equality above holds, we observe that the matrix γΨs satisfies

(γΨs)
(−1)

=

(
Φs′

1

)
(γΨs) .

Let Ψs′ be the square matrix of size r cut off from the upper left square of Ψs. We

note that Ψs′ satisfies Ψ
(−1)
s′ = Φs′Ψs′ . It follows that(

Ψs′

1

)(−1)

=

(
Φs′

1

)(
Ψs′

1

)
.

Therefore, by [24, § 4.1.6] we have that

γΨs =

(
Ψs′

1

)(
Ir

f1, . . . , fr 1

)
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for some f1, . . . , fr ∈ Fq(t). Specializing the equation above at t = θq
N

will give rise to

ζ(s1, . . . , sr)/π̃
s1+···+sr ∈ k.

The discussion above provides the idea of proving the direction (⇐) of Theorem 3.5,

where the overall proof is just a slight generalization.

The direction (⇒) of the proof of Theorem 3.5 will use the ABP-criterion to create

a matrix γ ∈ GLr+1(k[t]) and an a ∈ Fq[t] satisfying the following equality

γ(−1)

(
Φs′

0, . . . , aH
(−1)
sr−1(t− θ)sr 1

)
=

(
Φs′

1

)
γ.

Since the object a ∗Ms is defined by the matrix(
Φs′

0, . . . , aH
(−1)
sr−1(t− θ)sr 1

)
,

it follows that Ms is an a-torsion element in Ext1
F (1,Ms′). The detailed construction

of γ and a above is referred to [19].
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