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Periods, logarithms and multiple zeta values

Chieh-Yu Chang

Abstract. This is a survey article discussing classical periods, loga-
rithms and multiple zeta values and some connections between them.
We also report the recent progress of the parallel theories and problems
in the setting of function fields in positive characteristic.

1. Classical logartihms

1.1. Logarithms of algebraic numbers. Let Q be the field of alge-
braic numbers. Let ez :=

∑∞
n=0

zn

n! be the usual exponential function. This
is the exponential map of the commutative algebraic group Gm, and one has
the short exact sequence

0 → Z · 2π
√
−1 → C � C× = Gm(C) → 1.

Given any nonzero complex number z, Hermite and Lindemann showed
in the late 19th century that one at least of z, ez is transcendental over Q.
As a consequence, one derives the transcendence of λ with 0 �= λ ∈ C for
which eλ ∈ Q. Such an λ is called a logarithm of algebraic number.

In the beginning of the twentieth century, Hilbert raised a famous list
of 23 problems, part of which was devoted to number theory and Diophan-
tine geometry, and there have been some wonderful developments since then.
Hilbert’s seventh problem, which is referred to the seventh among the list
mentioned above, is about the linear independence of two logarithms of alge-
braic numbers. More precisely, Hilbert asked about the transcendence of αβ

for α �= 0, 1 an algebraic number, and an irrational algebraic number β. It
was believed by Hilbert that the proof of this transcendence question would
be very difficult and that the solution of this question would lead valuable
approaches.
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Surprisingly, it turns out that Hilbert’s seventh problem was solved by
Gelfond and Schneider independently in 1934. The theorem of Gelfond and
Schneider asserts that given two nonzero algebraic numbers α1, α2 so that
logα1 and logα2 are linearly independent over the rational numbers, then
we have

β1 logα1 + β2 logα2 �= 0

for arbitrary nonzero algebraic numbers β1, β2. Baker’s celebrated theo-
rem on linear forms in logarithms fully generalizes the work of Gelfond-
Schneider: if the given nonzero algebraic numbers α1, . . . , αn satisfy that
logα1, . . . , logαn are linearly independent over Q, then 1, logα1, . . . , logαn

are linearly independent over Q. It is well known that Baker’s theorem has
many applications in number theory. One typical example is the solution of
Gauss’ class number one problem using Baker’s theorem. Concerning alge-
braic relations over Q among the logarithms of algebraic numbers, Gelfond’s
conjecture asserts that logα1, . . . , logαn are algebraically independent over
Q under the hypothesis that logα1, . . . , logαn are linearly independent over
Q. However, Gelfond’s conjecture is still open in the classical transcendence
theory. For more details, we refer the reader to the book [BW07] and the
survey articles [W02, Wa08].

1.2. Periods of elliptic curves and logarithms. Let Λ be a lattice
of C with two generators λ1, λ2. We assume that

g2 := g2(Λ) :=
1

60

∑
0�=λ∈Λ

1

λ4
, g3 := g3(Λ) :=

1

140

∑
0�=λ∈Λ

1

λ6

are algebraic numbers. We let ℘Λ be the Weierstrass ℘-function associated
to Λ, and one knows that ℘Λ(z), ℘′

Λ(z) parametrize the elliptic curve

EΛ : y2 = 4x3 − g2x− g3

defined over Q. Elements of Λ are called periods of the elliptic curve EΛ and
they can be expressed as ∫

γ

dx

y

for some cycle γ ∈ H1(Eλ(C),Z). Note that dx
y is a differential form of the

first kind, and so elements of Λ are also called periods of the first kind of EΛ.
The transcendence of nonzero periods of the first kind of the elliptic curve
EΛ was first proved by Siegel in the case of complex multiplication, and by
Schneider in the general case.

We consider xdx
y , which is a differential form of the second kind and the

period integral ∫
γ

xdx

y

is called period of the second kind or quasi-period of EΛ. These quasi-periods
can be expressed in terms of the Weierstrass ζ-function ζΛ of the lattice Λ,
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which satisfies the differential equation

ζ ′Λ = −℘Λ.

The function ζΛ is quasi-periodic in the sense that for λ ∈ Λ, we have

ζΛ(z + λ) = ζΛ(z) + η(λ) for some η(λ) ∈ C.

We pick cycles γ1, γ2 ∈ H1(EΛ(C),Z) for which∫
γi

dx

y
= λi

and so we have ∫
γi

xdx

y
= η(λi) for i = 1, 2.

Note that nonzero quasi-periods of the elliptic curve EΛ are known to be
transcendental numbers by the work of Schneider. The following

PΛ :=

(
λ1 η(λ1)
λ2 η(λ2)

)
is called the period matrix of the elliptic curve EΛ. The Legendre relation
asserts that detPΛ = ±2π

√
−1, which implies the comparison isomorphism

between deRham and Betti cohomologies:

H1
dR(EΛ)⊗Q C ∼= H1

B(EΛ)⊗Q C.

The periods conjecture in this case asserts that

tr. degQ Q(λ1, λ2, η(λ1), η(λ2)) =

{
2 if EΛ has complex multiplication,
4 otherwise.

This conjecture was proved by Chudnovsky in the case when EΛ has complex
multiplication (CM), but it is still open in the non-CM case, in which case
Masser showed the Q-linear independence of 1, 2π

√
−1, λ1, λ2, η(λ1), η(λ2).

Along the direction of Baker’s theorem on linear independence of loga-
rithms, one can also consider the elliptic logarithms and quasi-logarithms.
Let u1, . . . , um ∈ C\Λ satisfy expEΛ

(ui) ∈ EΛ(Q), and note that each ζΛ(ui)
is well-defined as ui /∈ Λ. Wüstholz showed that if u1, . . . , um are linearly
independent over End(EΛ), then the following 2 + 2m values

1, 2π
√
−1, u1, . . . , um, ζΛ(u1), . . . , ζΛ(um)

are linearly independent over Q. We mention that the elliptic analogue of
Gelfond’s conjecture asserts that the 2m values

u1, . . . , um, ζΛ(u1), . . . , ζΛ(um)

are algebraically independent over Q under the hypothesis above.
Wüstholz’s result generalizes the previous works on linear independence

of elliptic logarithms due to Masser in the CM case, and Bertrand-Masser
in the non-CM case. The linear independence result above is a consequence
of the powerful machinery when dealing with generalized logarithms at al-
gebraic points, the so-called Wüstholz’s analytic subgroup theorem.
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Theorem 1.2.1 (Wüstholz [W89]). Let G be a commutative algebraic
group defined over Q, and let expG : LieG(C) → G(C) be the exponential
map when regarding G(C) as a Lie group. Let u ∈ LieG(C) satisfy expG(u) ∈
G(Q), and let Vu ⊂ LieG(C) be the smallest linear subspace that contains u
and that is defined over Q. Then we have

Vu = LieH(C)

for some algebraic subgroup H of G defined over Q.

The spirit of Wüstholz’s analytic subgroup theorem is that the Q-linear
relations among the coordinates of u are explained by the defining equations
of LieH. To see more applications of Theorem 1.2.1 we refer the reader
to the book of Baker-Wüstholz [BW07], where one also sees the historical
developments.

2. Multiple zeta values

2.1. Real-valued MZV’s. Classical real-valued multiple zeta values
(abbreviated as MZV’s) are generalizations of the special values of Riemann
ζ-function at positive integers at least 2. We refer the reader to the pio-
neering paper of Zagier [Za94]. An index is an r-tuple of positive integers
s = (s1, . . . , sr), and we call s ‘admissible’if s1 ≥ 2. The MZV at s is defined
by the following multiple zeries

ζ(s) :=
∑

n1>···>nr≥1

1

ns1
1 · · ·nsr

r
∈ R×

We call wt(s) :=
∑r

i=1 si and dep(s) := r the weight and depth of the
presentation ζ(s) respectively. When r = 1, these values are special Riemann
zeta values. MZV’s have many interesting connections. For example, we have
the following.

• MZV’s are periods of mixed Tate motives by Terasoma [Te02] and
Goncharov [Gon02].

• Double zeta values (MZV’s of depth two) have connections with
modular forms by Gangl-Kaneko-Zagier [GKZ06].

• MZV’s have connections in arithmetic geometry (see [Br14]).
For relevant references on this topic, we refer the reader to the following
books [An04, Zh16, BGF18].

2.2. Regularized double shuffle relations. In the classical theory,
there are many Q-linear relations among the same weight MZV’s produced
by the machinery of regularized double shuffle relations. To describe it, we
let H := Q < x, y > be the non-commutative algebra generated by the
(non-commutative) variables x, y over Q. We then consider the following
two subalgebras

H0 := Q+ xHy ⊂ H1 := Q+ Hy ⊂ H.
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There are two new products (multiplication laws), called stuffle product (de-
noted by 
) and shuffle product (denoted by X) on H1 for which H1 be-
comes a commutative Q-algebra under • = 
,X (see [Ho97]). For any
admissible index s = (s1, . . . , sr), we have the corresponding admissible
word xs1−1yxs2−1y · · ·xsr−1y, and one has the following evaluation map: for
• = 
 or X,

Z• :=
(
xs1−1yxs2−1y · · ·xsr−1y 
→ ζ(s1, . . . , sr)

)
: H0 → R,

and defines the map on whole H0 by linearity. In fact, the map above is
a Q-algebra homomorphism deriving that the Q-vector space spanned by
MZV’s have two Q-algebra structures. The classical theory of double shuffle
relations asserts that for any two admissible words w1,w2 ∈ H0, we have

Z�(w1 
w2) = ZX(w1Xw2).

The identity above produces some non-trivial Q-linear relations among
MZV’s of the same weight. The algebra homomorphism Z• comes from the
series presentation of MZV’s for • = 
, and from integral presentation for
• = X.

The regularized double shuffle relations were developed by Racinet [Ra02]
and Ihara-Kaneko-Zagier [IKZ06] and we briefly describe the machinery as
follows. First, for • = 
 or • = X we denote by H1

• the associated Q-algebra
under the product • which contains H0

• as subalgebra. By [Ho97, Re93] one
knows that H1

• is freely generated by y over H0
• for • = 
,X. That is, any

element g of H1
• can be uniquely written as

g = g0 + g1 • y + · · ·+ gr • y•r

for some g0, . . . , gr ∈ H0
• with gr �= 0. Let T be an indeterminate. We then

extend the algebra homomorphism Z• : H0
• → R to

Ẑ• : H
1
• → R[T ]

by putting Ẑ•(y) := T and Ẑ•|H0•
= Z•. Precisely, for the expansion of g ∈ H1

•
above we have

Ẑ•(g) = g0 + Z•(g1)T + · · ·+ Z•(gr)T
r.

Define

A(u) := exp

( ∞∑
n=2

(−1)n

n
ζ(n)un

)

and define the R-linear map ρ : R[T ] → R[T ] by

ρ(exp(Tu)) = A(u)(exp(Tu)).

The regularized double shuffle relations for MZV’s are the following identity
on H1:

ẐX = ρ ◦ Ẑ�.

We mention that Goncharov [Gon97] predicted that there are no non-
trivial Q-linear relations among different weight MZV’s.
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Conjecture 2.2.1 (Goncharov). For any integer n ≥ 2, we let Zn be
the Q-vector space spanned by the MZV’s of weight n, and let Z :=

∑
n≥2 Zn

be the Q-vector space spanned by all MZV’s. Then Z forms a graded algebra
in the sense that

Z =
⊕
n≥2

Zn.

The regularized double shuffle relations can produce many Q-linear rela-
tions among the same weight MZV’s, and conjecturally they account for all
Q-linear relations.

Conjecture 2.2.2 (Ihara-Kaneko-Zagier [IKZ06]). The regularized
double shuffle relations generate all the Q-linear relations among the same
weight MZV’s.

As we have Zn1 · Zn2 ⊂ Zn1+n2 , according to the Ihara-Kaneko-Zagier
conjecture above, understanding the Q-algebraic relations among MZV’s is
theoretically reduced to understanding the Q-linear relations among the same
weight MZV’s. This is why the following Zagier’s dimension conjecture is the
core problem in the theory of MZV’s.

Conjecture 2.2.3 (Zagier). Let d0 := 1, d1 := 0, d2 := 1 and dn :=
dn−2 + dn−3 for integers n ≥ 3. Then for each integer n ≥ 2, we have

dimQ Zn = dn.

The best known result is that dimQ Zn ≤ dn for all integers n ≥ 2 by the
works of Terasoma [Te02] and Goncharov [Gon02].

2.3. p-adic MZV’s. In what follows, we fix a prime number p and let
Qp be the field of p-adic numbers. Let Cp be the p-adic completion of a fixed
algebraic closure of Qp. Fix an admissible index s = (s1, . . . , sr) ∈ Nr and
consider the one-variable multiple polylogarithm

Lis(z) :=
∑

n1>···>nr≥1

zn1

ns1
1 · · ·nsr

r
∈ Q[[z]]

and notice that the specialization of Lis(z) at z = 1 gives the MZV ζ(s).
Denote by Lis(z)p the same series as Lis(z) but we regard it as in Cp[[z]] and
consider its p-adic convergence.

To define p-adic MZV’s, Furusho first adapted Coleman’s p-adic inte-
gration theory [Co82] to show that Lis(z)p can be analytically continued
to Cp \ {1}, and showed that the limit value lim′

z→1 Lis(z)p exists and is
independent of the branch choices of the p-adic logarithm when applying
Coleman’s theory. Here the notation lim′

z→1 is referred to take any sequence
{z1, . . . , zn, . . .} ⊂ Qp converging to 1 and satisfying that the ramification
indexes {e(Qp(z1, . . . , zn)/Qp)}∞n=1 is bounded. Furusho’s p-adic MZV’s are
defined to be

ζp(s) :=
′

lim
z→1

Lis(z)p
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for admissible indexes s. The weight and the depth of the presentation ζp(s)
are defined to be wt(s) and dep(s) respectively.

We mention that in the depth one case, Furusho’s p-adic single zeta value
ζp(s) and the Kubota-Leopoldt p-adic zeta value at s just differ by a rational
multiple. In [FJ07], Furusho and Jafari proved that p-adic MZV’s satisfy
the regularized double shuffle relations. As Conjecture 2.2.2 asserts that the
regularized double shuffle relations generate all the Q-linear relations among
MZV’s, it leads to the following formulation creating a route from the world
of real-valued MZV’s to the world of p-adic MZV’s.

Conjecture 2.3.1. For any integer n ≥ 2, we let Zn,p be the Q-vector
space spanned by the p-adic MZV’s of weight n. Then the following

φp := (ζ(s) 
→ ζp(s)) : Zn → Zn,p

is a well-defined Q-linear map.

In the following contexts, we will report the state of the art results in
the setting of function fields in positive characteristic.

3. Abelian logarithms in positive characteristic

We let A := Fq[θ] be the polynomial ring in the variable θ over the finite
field Fq of q elements with characteristic p, and let k be the quotient field
of A. Let | · |∞ be the non-archimedean absolute value corresponding to the
infinite place ∞ for which |θ|∞ = q. We let k∞ be the completion of k with
respect to | · |∞, and note that | · |∞ can be uniquely extended to a fixed
algebraic closure k∞ of k∞. For convenience, we still denote by | · |∞ the
extended absolute value on k∞. We let C∞ be the completion of k∞ with
respect to | · |∞, and it turns out that C∞ is a complete and algebraically
closed field. Finally we denote by k̄ the elements of C∞ that are algebraic
over k. Therefore we have the following analogies:

Z ↔ A, Q ↔ k, R ↔ k∞, C ↔ C∞, Q ↔ k̄.

3.1. Anderson’s t-modules. In the positive characteristic world, the
t-modules introduced by Anderson [A86] are generalizations of Drinfeld
modules [Dr74] that play the analogous role of commutative algebraic groups
in the characteristic zero world. To distinguish the different roles, we denote
by t a new variable independent from the field C∞ and will use Fq[t] for the
role of operators on additive groups.

In what follows, we introduce the notion of Anderson’s t-modules, but
for most interest to us, we work over the field of definition inside k. For any
A-algebra A ⊂ R ⊂ k, we denote by Ga/R the additive group scheme over R.
By a d-dimensional t-module defined over R, we mean a pair E = (Gd

a/R, ρ),
where ρ is an Fq-linear ring homomorphism

ρ : Fq[t] → EndFq

(
Gd

a/R

)
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for which ∂ρt − θId is a nilpotent matrix. Here EndFq

(
Gd

a/R

)
is referred to

the non-commutative ring of all Fq-linear endomorphisms of the algebraic
group scheme Gd

a/R, and for a ∈ Fq[t], ∂ρa is the induced homomorphism of
ρa on the Lie algebra of Gd

a/R. Therefore, for any R-algebra K the K-valued
points E(K) has an Fq[t]-module structure via ρ.

Fix such a d-dimensional t-module E over R as above. Anderson [A86]
showed that there is an exponential function of the t-module E. Precisely, it
is the unique vector-valued power series in the variable z1, . . . , zd of the form

expE(z) =
∞∑
i=0

eiz
(i),

where e0 = Id, ei ∈ Matd(k̄) for all i, and z(i) := (zq
i

1 , . . . , zq
i

d )tr, satisfying
the identity

expE ◦∂ρa = ρa ◦ expE for all a ∈ Fq[t].

Anderson further showed that expE : LieE(C∞) → E(C∞) is an entire Fq[t]-
linear map and its kernel ΛE := Ker expE , called the period lattice of the
t-module E, is a discrete, finitely generated Fq[t]-submodule of LieE(C∞).
We mention that in [A86], Anderson gave an example of a t-module for
which its exponential map is not surjective. If expE is surjective, then we
call the t-module E uniformizable and in this case we have E(C∞) ∼= Cd

∞/ΛE

as Fq[t]-modules.
The logarithm of E is defined to be the vector-valued power series logE

which is the formal inverse of expE . That is,

expE ◦ logE = identity = logE ◦ expE .

Note that logE can be expressed as

logE(z) =

∞∑
i=0

�iz
(i),

where �0 = Id and �i ∈ Matd(k̄) for all i. We further mention that as a
function, the convergence domain of logE may not be the whole LieE(C∞)
in general.

The t-module E is called trivial if ρa = a(θ)Id for any a ∈ Fq[t] in the
sense that the Fq[t]-module structure on E(K) just arises from the scalar
multiplication of A on Kd when replacing t by θ. Now let us discuss the
case of one-dimensional non-trivial t-modules. In fact, these t-modules are
called Drinfeld modules nowadays, which were introduced by Drinfeld and
he called them elliptic modules in his seminal paper [Dr74].

We fix a Drinfeld Fq[t]-module E = (Ga/k, ρ) defined over k. Since ρt
is an Fq-linear endomorphism of the algebraic group Ga/k, as a polynomial
map it can be written as

(3.1.1) ρt(X) = θX + a1X
q + · · ·+ arX

qr
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for all ai ∈ k and ar �= 0 for some positive integer r, since E is a non-trivial
Fq[t]-module. In terms of (3.1.1), we say that the Drinfeld Fq[t]-module is
of rank r. In this situation, Drinfeld showed that the period lattice ΛE is
a discrete, free A-submodule of rank r inside C∞. Note that in this one-
dimensional case, for a ∈ Fq[t], the operator ∂ρa is equal to the scalar multi-
plication by a(θ) on LieE(C∞) = C∞. In this case, the exponential function
expE has the infinite product expansion as follows:

expE(z) = z
∏

0�=λ∈ΛE

(
1− z

λ

)
,

We mention that in the case of r = 1 and a1 = 1, the Drinfeld mod-
ule above is called the Carlitz module C introduced by Carlitz [Ca35]. Its
exponential and logarithm can be written explicitly as:

(3.1.2) expC(z) =

∞∑
i=0

zq
i

Di
, and logC(z) =

∞∑
i=0

zq
i

Li
,

where D0 = 1, L0 := 1, and Di :=
∏i−1

j=0(θ
qi − θq

j
), Li :=

∏i
j=1(θ − θq

j
) for

i = 1, 2, . . .. As mentioned above, the period lattice of C is a free A-module
of rank one, and its generator, which is denoted by π̃ unique to a multiple
in F×

q , can be expressed as the following infinite product:

(3.1.3) π̃ = (−θ)
q

q−1

∞∏
i=1

(
1− θ

θqi

)−1

∈ k∞,

where (−θ)
1

q−1 is any fixed choice of (q − 1)th root of −θ throughout this
article. Note that in the function field setting, C plays the analogue of Gm

and π̃ is analogous to 2π
√
−1. Such as the classical result on the transcen-

dence of 2π
√
−1, π̃ is known to be transcendental over k by Wade [Wad41].

For more details, we refer the reader to [Go96, T04].

3.2. Drinfeld logarithms. In what follows, we fix a Drinfeld Fq[t]-
module E = (Ga/k, ρ) defined over k. In [Yu86], Yu developed an analogous
theory of Schneider-Lang on what he called Eq functions. As a consequence,
he showed that nonzero periods of the Drinfeld module E are transcendental
over k. Let End(E) := {α ∈ C∞|αΛE ⊂ ΛE}, which can be identified with
the ring of endomorphisms of E over k and which can be shown to be a free
A-module of rank dividing r (see [Go96, T04]). In [Yu97], Yu established
an analogue of Baker’s theorem on linear forms in logarithms for Drinfeld
modules.

Theorem 3.2.1 (Yu [Yu97]). Let λ1, . . . , λm ∈ C∞ satisfy that
expE(λi) ∈ k for all i and that λ1, . . . , λm are linearly independent over
End(E). Then 1, λ1, . . . , λm are linearly independent over k.

The theorem above is a consequence of the following Yu’s sub-t-module
theorem, which plays the analogue of Wüstholz’s analytic subgroup theorem.



10 C.-Y. CHANG

Theorem 3.2.2 ([Yu97, Thm. 0.1]). Let (G,φ) be a regular t-module
defined over k. Let Z be a vector in LieG(C∞) such that expG(Z) ∈ G(k).
Then the smallest linear subspace in LieG(C∞) defined over k, which is
invariant under ∂φt and contains Z, is the tangent space at the origin of a
sub-t-module of G over k.

Here the notion of ‘regular’for G means that there exists a positive integer
n so that the a-torsion submodule of G(k) is free of rank n over Fq[t]/(a) for
any nonzero a ∈ Fq[t]. By a sub-t-module of G over k, we mean a connected
algebraic subgroup of G defined over k which is invariant under the action
of φa for all a ∈ Fq[t].

The breakthrough from linear independence to algebraic independence
for Drinfeld logarithms was first achieved by Papanikolas in the rank one
case.

Theorem 3.2.3 (Papanikolas [P08]). Let C be the Carlitz Fq[t]-module
and let λ1, . . . , λm ∈ C∞ satisfy that expC(λi) ∈ k for all i. If λ1, . . . , λm are
linearly independent over k, then λ1, . . . , λm are algebraically independent
over k.

Along this direction for Drinfeld modules of higher rank, it was first
generalized by Papanikolas and the present author in [CP11], where they
showed the algebraic independence result for logarithms at algebraic points in
the case of rank two Drinfeld Fq[t]-modules without complex multiplication
under the assumption that the characteristic of k is odd. Later on they
successfully employed the theory of Galois representations on t-adic Tate
module of the Drinfeld module in question, and connected its image to the
t-motivic Galois group in question. Using Pink’s result [Pin97] on the size of
Galois image and Papanikolas’ theory [P08] they established the analogue
of Gelfond’s conjecture for Drinfeld modules of arbitrary rank.

Theorem 3.2.4 (Chang-Papanikolas [CP12]). Let E be a Drinfeld Fq[t]-
module of rank r defined over k. Let λ1, . . . , λm ∈ C∞ satisfy that expE(λi) ∈
k for all i. If λ1, . . . , λm are linearly independent over End(E), then they are
algebraically independent over k.

3.3. Quasi-logarithms. For any A-algebra R, we denote by τ := (x 
→
xq) : R → R the Frobenius qth power operator. We let R[τ ] be the non-
commutative algebra generated by τ over R subject to the relation:

τα = αqτ for α ∈ R.

Fix a Drinfeld Fq[t]-module E = (Ga/k, ρ) of rank r ≥ 2 that is defined
over k. In what follows, we describe the theory of de Rham group for E
developed by Anderson, Deligne, Gekeler and Yu in the 1980’s. We consider
C∞[τ ] as Fq[t]-bimodule with left action as scalar multiplication by a(θ), and
right action given by ρa for a ∈ Fq[t]. A biderivation is an Fq-linear map

δ : Fq[t] → C∞[τ ]τ
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satisfying the identity:

δab = a(θ)δb + δaρb for all a, b ∈ Fq[t].

We observe that by the definition each biderivation δ is uniquely determined
by δt. The set of all biderivations is denoted by D(ρ), and we say that
δ ∈ D(ρ) is defined over k if the image of δ lies in k[τ ]τ . In analogy with
the Weierstrass ζ-function ζΛ satisfying the algebraic differential equation
ζ ′Λ = −℘Λ, for a biderivation δ we consider the following algebraic difference
equations

• F (θz)− θF (z) = δt(expE(z)),
• F (z) ≡ 0 (mod deg q),

and one can solve these equations to obtain a unique function Fδ(z) satisfying
above. One then easily shows that Fδ(z) satisfies the follwoing: for all a ∈
Fq[t],

• F (a(θ)z)− a(θ)F (z) = δa(expE(z)).
• F (z) ≡ 0 (mod deg q).

Furthermore, Fδ(z) can be shown to be an entire function on C∞. We call
Fδ the quasi-periodic function of E associated to δ as when we restrict to
ΛE , Fδ|ΛE

: ΛE → C∞ is A-linear. We call the values Fδ(λ), for λ ∈ ΛE ,
quasi-periods of E, and following Anderson we use the integration notation∫

λ
δ := Fδ(λ).

A biderivation δ is said to be inner if there exists m ∈ C∞[τ ] so that δa =
a(θ)m −mρa for all a ∈ Fq[t], in which case we denote this biderivation by
δ(m). As in [Ge89, Yu90, BP02], we put

Dsi(ρ) =
{
δ(m)|m ∈ C∞[τ ]τ

}
(strictly inner),

HdR(ρ) = D(ρ)/Dsi(ρ) (de Rham),

where HdR(ρ) is called the de Rham group of E. We observe that δ(1) : a 
→
a(θ)− ρa is a biderivation and its associated quasi-periodic function is given
by

Fδ(1)(z) = z − expE(z),

and hence ∫
λ
δ(1) = λ for λ ∈ ΛE .

So we shall view δ(1) as the differential form of the first kind for E. We
further mention that for δ ∈ Dsi(ρ), one can show that

∫
λ δ = Fδ(λ) = 0,

whence having the well-defined pairing

HdR(ρ)× ΛE → C∞
(δ, λ) 
→

∫
λ δ.

The deRham isomorphism established by Anderson and Gekeler [Ge89] is
that the above is a perfect paring. It follows that as a C∞-vector space,
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dimC∞ HdR(ρ) = r. Note that we have a standard basis for HdR(ρ) presented
by the classes of biderivations {δ1, . . . , δr}, where we put δ1 := δ(1) and
δi : t 
→ τ i−1 for i = 2, . . . , r. We think of that δ2, . . . , δr are differential forms
of the second kind for E. The fundamental theorem of Yu [Yu86, Yu90]
asserts that nonzero periods and quasi-periods of E are transcendental over
k. Yu’s works are precisely the function field analogue of Siegel-Schneider’s
theorem for elliptic curves.

Fix an A-basis {λ1, . . . , λr} of the period lattice ΛE . The period matrix
of E is referred to the r × r matrix

(3.3.1) PE :=

(∫
λi

δj

)
1≤i,j≤r

,

and by Anderson one has the analogue of Lengdre’s relations for elliptic
curves:

detPE = cE π̃

for some constant cE ∈ k
× (see [Pe07]). Let s be the rank of End(E)

over A, and note that s divides r. Using Yu’s sub-t-module theorem Brow-
nawell [B01] showed that all the k-linear relations among the entries of the
period matrix PE are those induced from the endomorphisms of E; in par-
ticular, the dimension of the k-vector space spanned by the entries of PE is
equal to r2/s. Brownawell-Yu’s periods conjecture for Drinfeld modules as-
serts that all the k-algebraic relations among the periods and quasi-periods
of E arise in the way mentioned above, and it is indeed the case from the
following theorem.

Theorem 3.3.2 (Chang-Papanikolas [CP12]). Let E be a Drinfeld Fq[t]-
module of rank r ≥ 2 defined over k, and let PE be the period matrix defined
in (3.3.1). Let s be the rank of End(E) over A, and k (PE) be the field
generated by the entries of PE over k. Then we have

tr.degkk (PE) =
r2

s
.

In fact, one can take quasi-logarithms into account. That is, we consider
the quasi-periodic functions evaluated at the Drinfeld logarithms of algebraic
points. With the help of Conrad on removing ‘separability’hypothesis for the
multiplication field of the Drinfeld module in question, the authors of [CP12]
showed the algebraic independence result when ruling out the nature linear
relations arising from the endomorphisms of the given Drinfeld module.

Theorem 3.3.3 (Chang-Papanikolas-Conrad [CP12]). Let E be a Drin-
feld Fq[t]-module of rank r defined over k. Let the classes of δ1, . . . , δr repre-
sent a basis of HdR(ρ) defined over k. Let u1, . . . , un ∈ C∞ satisfy expE(ui) ∈
k for i = 1, . . . , n. If u1, . . . , un are linearly independent over End(E), then
the rn quasi-logarithms

∪n
i=1 ∪r

j=1

{
Fδj (ui)

}
are algebraically independent over k.
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4. Positive characteristic MZV’s

4.1. Single zeta values. Let A+ be the set of all monic polynomials
in A. In analogy with the special values of Riemann ζ-function at positive
integers, Carlitz [Ca35] initiated the following positive characteristic zeta
values: for s ∈ N,

ζA(s) :=
∑
a∈A+

1

as
∈ k×∞.

Note that since the absolute value | · |∞ is non-archimedean, ζA(s) converges
for any positive integer s. One interesting theory of Carlitz is to derive an
analogue of Euler’s formula: for any positive integer s divisible by q − 1, we
have

(4.1.1) ζA(s) =
BCs

Γs+1
π̃s

where Γs+1 ∈ A is the Carlitz factorial defined by Γs+1 :=
∏∞

i=0D
si
i for

writing the q-adic expansion s =
∑∞

i=0 siq
i, and BCs ∈ k is the sth Bernoulli-

Carlitz number defined from the generating function:

z

expC(z)
=

∞∑
n=0

BCn

Γn+1
zn.

For an integer i ≥ 0, we denote by Ai,+ the set of monic polynomials of
degree i in A. Note that for any positive integer s, the power sum

∑
a∈Ai,+

as

vanishes for i � 0 by the work of Goss [Go79]. Therefore, the analogue
of Riemann zeta function at non-positive integers is defined as follows: for
integer s ≥ 0,

ζA(−s) :=

∞∑
i=0

⎛
⎝ ∑

a∈Ai,+

as

⎞
⎠ ∈ k.

Moreover, Goss showed a precise analogue of the classical situation for the
vanishing of Riemann zeta function at even negative integers: for any positive
integer s divisible by q − 1, one has ζA(−s) = 0.

Let v be a monic irreducible polynomial of A. Goss [Go79] further carried
out that for non-negative integer s,

ζA(−s)v := (1− vs)ζA(−s)

interpolates to a continuous Av-valued function on Sv := Z/(qdeg v−1)×Zp.
As a consequence, an equivalent definition of Goss’ v-adic zeta values is given
as follows: for any integer s,

ζA(s)v :=

∞∑
i=0

⎛
⎝ ∑

a∈Ai,+,v�a

1

as

⎞
⎠ ∈ Av.

Given a positive integer s, Goss showed that ζA(s)v = 0 if and only if s is
divisible by q − 1.
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In the seminar paper [AT90], Anderson and Thakur gave logarithmic
interpretations both for ∞-adic and v-adic single zeta values. To state their
result, we introduce the notion of tensor powers of Carlitz module in [AT90].
Fix a positive integer s. The sth tensor power of the Carlitz module denoted
by C⊗s = (Gs

a/A, [·]s) is the s-dimensional t-module defined over A given by
the Fq-linear ring homomorphism

[·]s : Fq[t] → Mats(A[τ ])

with
[t]s = θIs +Ns + Esτ,

where

Ns :=

⎛
⎜⎜⎜⎝
0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0

⎞
⎟⎟⎟⎠ , Es :=

⎛
⎜⎜⎜⎝
0 · · · · · · 0
...

...
...

...
1 · · · · · · 0

⎞
⎟⎟⎟⎠ .

We denote by expC⊗s and logC⊗s the exponential and the logarithm of C⊗s

respectively. Note that since logC⊗s is a vector-valued power series with
coefficients in k, it makes sense to consider its v-adic convergence and we
denote by logC⊗s(x)v whenever logC⊗s converges v-adically at the point x.

Theorem 4.1.2 (Anderson-Thakur [AT90, Theorem 3.8.3]). Let s be a
positive integer, and v be a monic irreducible polynomial of A. Then there
exists a special point vs ∈ C⊗s(A) satisfying the following.

(1) There exists a vector Zs ∈ LieC⊗s(C∞) with last coordinate given
by ΓsζA(s) for which expC⊗s(Zs) = vs.

(2) The logarithm of C⊗s converges v-adically at [vs − 1]svs and the
last coordinate of logC⊗s([vs − 1]svs)v gives vsΓsζv(s).

In [Yu91], Yu developed a transcendence theory for the last coordinate
logarithms of C⊗s at algebraic points. Together with Theorem 4.1.2, one
has the following transcendence results which have surpassed the classical
status.

Theorem 4.1.3 (Yu [Yu91]). Let s be a positive integer, and v be a
finite place of k. Then the following hold.

(1) ζA(s) is transcendental over k.
(2) ζv(s) is transcendental over k if and only if s is not divisible by

q − 1.

Using the t-motivic transcendence theory developed by Anderson,
Brownawell and Papanikolas [ABP04] and Papanikolas [P08], Chang and
Yu [CY07] demonstrated that all the k-algebraic relations among the Car-
litz zeta values are those arising from the Euler-Carlitz relations (4.1.1) and
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the Frobenius pth power relations: for s, n ∈ N,

ζA(sp
n) = ζA(s)

pn .

An equivalent formulation is the following identity in terms of transcendence
degree.

Theorem 4.1.4 (Chang-Yu [CY07]). Let s be a positive integer. Then
we have the following:

tr. degk k (π̃, ζA(1), . . . , ζA(s)) = s+ 1−
⌊
s

p

⌋
−
⌊

s

q − 1

⌋
+

⌊
s

p(q − 1)

⌋
.

In the following contexts, we will report the results of [CM17] general-
izing Theorem 4.1.2 and their applications.

4.2. ∞-adic MZV’s. In [T04], Thakur defined the ∞-adic MZV’s that
are generalizations of Carlitz zeta values: for any index s = (s1, . . . , sr) ∈ Nr,

ζA(s) :=
∑ 1

as11 · · · asrr
∈ k∞,

where a1, . . . , ar run over all monic polynomials in A for which |a1|∞ > · · · >
|ar|∞. As same as the terminology in the classical theory, the weight and the
depth of the presentation ζA(s) are defined as wt(s) and dep(s) respectively.
We shall mention that for higher depth MZV’s, it is not straightforward to
see whether they are non-vanishing or not, but Thakur [T09] showed that
every ∞-adic MZV is non-vanishing.

For these ∞-adic MZV’s, we have the following properties that are par-
allel to some of classical real-valued MZV’s:

(1) Periods interpretation. In [AT09], Anderson and Thakur showed
that for every ∞-adic MZV ζA(s), one is able to explicitly construct
a rigid analytically trivial dual t-motive in the sense of [ABP04]
so that up an explicit multiple in A, ζA(s) occurs as certain entry
of the period matrix of the t-motive in question. This result can be
viewed as a function field analogue of the work of Terasoma [Te02]
and Goncharov [Gon02].

(2) Sum shuffle relations. In [T10], Thakur showed that the product of
two ∞-adic MZV’s can be expressed as an Fp-linear combination of
certain MZV’s with the same weight, and Thakur called these sum
shuffle relations. In the special case for the product of two Carlitz
zeta values, the coefficients of the relations mentioned above are
explicitly worked out by Chen [Ch15].

(3) Double Eisenstein series. In [Ch17], for any MZV of depth two,
called double zeta value, Chen explicitly constructed the so-called
double Eisenstein series for which the double zeta value in question
occurs as the constant term of the double Eisenstein series under the
‘t-expansion’. Furthermore, Chen established sum shuffle relations
for the product of two single Eisenstein series in terms of linear
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combinations of some double Eisenstein series of the same weight.
Chen’s lifting result can be regarded as a partial analogue of the
work of Gangl-Kaneko-Zagier [GKZ06].

(4) Dimension conjecture. In [To18], Todd created some linear relations
among the same weight ∞-adic MZV’s and predicted that these
account for all the k-linear relations.

Conjecture 4.2.1 (Todd’s dimension conjecture). Let n be a positive
integer, and let Zn be the k-vector space spanned by all ∞-adic MZV’s of
weight n. Then one has

dimk Zn =

⎧⎪⎨
⎪⎩
2n−1 if 1 ≤ n < q,

2n−1 − 1 if n = q∑q
i=1 dimk Zn−i if n > q.

We let Z :=
∑∞

n=1Zn be the vector space spanned by all ∞-adic MZV’s
over k. According to Thakur’s sum shuffle relations [T10] mentioned above,
we have that Zn1 · Zn2 ⊂ Zn1+n2 and so Z has a k-algebra structure. Using
the work of Anderson-Thakur on periods interpretation for ∞-adic MZV’s
and the linear independence criterion developed by Anderson-Brownawell-
Papanikolas [ABP04], the so-called ABP criterion, we have the following
result as a stronger analogue of Goncharov’s conjecture including the Baker-
Wüstholz-Yu philosophy.

Theorem 4.2.2 (Chang [C14]). The following results hold.

(1) We have Z =
⊕∞

n=1Zn. That is, Z is a graded k-algebra.
(2) If the given ∞-adic MZV’s u1, . . . , um are linearly independent over

k, then

1, u1, . . . , um

are linearly independent over k.

As a consequence, we have that every ∞-adic MZV is transcendental over
k. One core problem for ∞-adic MZV’s is to understand all the k-algebraic
relations among them. As we have Zn1 ·Zn2 ⊂ Zn1+n2 , the structure theorem
above reduces the study of k-algebraic relations among ∞-adic MZV’s to
the understanding of the k-linear relations among the same weight MZV’s.
In other words, theoretically one is able to understand all the k-algebraic
relations among ∞-adic MZV’s once Conjecture 4.2.1 is true, but it is still far
from Todd’s conjecture at present. However, once we fix weight and restrict to
double zeta values, then there is an effective criterion enabling us to compute
the dimensions.

Theorem 4.2.3 (Chang [C16]). Let n ≥ 2 be a positive integer. Put

V :=
{
(s1, s2) ∈ N2; s1 + s2 = n and (q − 1)|s2

}
.
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(1) For each s ∈ V, we explicitly construct a special point Ξs ∈ C⊗n(A)
so that

dimk Spank {π̃n, ζA(1, n− 1), ζA(2, n− 2), · · · , ζA(n− 1, 1)}

= n−
⌊
n− 1

q − 1

⌋
+ rankFq [t] SpanFq [t] {Ξs}s∈V .

(2) We establish an effective algorithm for computing the rank

rankFq [t] SpanFq[t] {Ξs}s∈V .

We refer the reader to some computational data in [C16, Sec. 6.3]. By
generalizing some methods in [P08, CY07], some algebraic independence
results for ∞-adic MZV’s under certain conditions are obtained by Mishiba
in [M17].

4.3. v-adic MZV’s and state of the art. Let s be a positive integer.
We recall the Carlitz logarithm given in (3.1.2) playing the analogue of the
classical logarithm. In analogy with the classical polylogarithms, Anderson
and Thakur defined the sth Carlitz polylogarithm in [AT09]:

Lis(z) :=

∞∑
i=0

zq
i

Ls
i

.

For convenience, we still use the same symbol Li without confusions with
the classical ones, which will not be used below. Another important inter-
pretation for ζA(s) in Theorem 4.1.2 (1) is that ζA(s) can be expressed as
an explicit k-linear combination of Lis at some integral points in A. This
important formula is the key step for the authors of [CY07] when properly
quoting the theory of Papanikolas [P08].

To generalize Lis to the multi-variable version, the author of the present
article defined the Carlitz multiple polylogarithms (abbreviated as CMPL’s)
in [C14], and one naturally defines their star version in [CM17].

Definition 4.3.1. Let s = (s1, . . . , sr) ∈ Nr. The sth Carlitz multiple
polylogarithm is defined by

Lis(z1, . . . , zr) :=
∑

i1>···>ir≥0

zq
i1

1 · · · zq
ir

r

Ls1
i1
· · ·Lsr

ir

∈ k[[z1, . . . , zr]]

and its star version by

Li�s(z1, . . . , zr) :=
∑

i1≥···≥ir≥0

zq
i1

1 · · · zq
ir

r

Ls1
i1
· · ·Lsr

ir

∈ k[[z1, . . . , zr]].

In [C14], the author used the interpolation formula of Anderson-Thakur
polynomials to generalize Anderson-Thakur’s formula on Carlitz zeta val-
ues to higher depth MZV’s. For any index s ∈ Nr, the MZV ζA(s) can
be expressed as an explicit k-linear combination of Lis at some integral
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points. As power series, Lis can be written as a linear combination of some
Li�s� (see [CM17]). Therefore we can derive the following explicit formula
([CM17, Thm. 5.2.5]): for any index s ∈ Nr, there exist some explicit in-
dexes s� with wt(s�) = wt(s) and dep(s�) ≤ dep(s), coefficients α� ∈ k×, and
integral points u� ∈ Adep(s�) so that

(4.3.2) ζA(s) =
∑
�

α� Li
�
s�
(u�).

In what follows, we fix a monic irreducible polynomial v in A, and let
kv be the completion of k at v. Let Cv be the v-adic completion of a fixed
algebraic closure of kv. We then fix an embedding of k into Cv. For any
vector z = (z1, . . . , zr) ∈ Cr

v, we define

‖z‖v := max
i

{|zi|v} .

Inspired by the definitions of Furusho’s p-adic MZV’s, the authors of
[CM17] prove first about the v-adic analytic continuation of Li�s and then
define the v-adic MZV’s.

Lemma 4.3.3. For any index s ∈ Nr, we define Li�s(z1, . . . , zr)v to be the
same power series as Li�s(z1, . . . , zr) but we regard it as in Cv[[z1, . . . , zr]].
Then the series Li�s(z1, . . . , zr)v can be analytically continued to the closed
unit ball

{
z ∈ Cr

v

∣∣‖z‖v ≤ 1
}
, and we still denote by Li�s(z1, . . . , zr)v the ana-

lytically continued function.

Based on the Lemma above, we have that Li�s�(u�)v is well-defined for
those s� and u� occurring in (4.3.2) as ‖u�‖v ≤ 1. Furusho’s definition of
p-adic MZV’s inspires us to define the following v-adic MZV’s.

Definition 4.3.4. Fix any index s ∈ Nr. We let α�, s�, u� be those given
in (4.3.2). We define the v-adic multiple zeta value ζA(s)v by the following
formula:

ζA(s)v =
∑
�

α� Li
�
s�
(u�)v.

The weight and the depth of the presentation ζA(s)v are defined to be wt(s)
and dep(s) respectively.

We mention that such as the classical p-adic case, in the depth one
case our v-adic single zeta value ζA(s)v and Goss’ v-adic zeta value ζv(s)
(for s ∈ N) just differ by a rational multiple (1 − v−s) ∈ k. See [AT90,
Thm. 3.8.3 (II)]. The primary result of [CM17] is to verify a stronger ver-
sion of the analogue of Conjecture 2.3.1 in the function fields setting.

Theorem 4.3.5 (Chang-Mishiba [CM17]). Let v be a finite place of k
and fix an embedding k ↪→ Cv. For any positive integer n, we let Zn (resp.
Zn,v) be the k-vector space spanned by ∞-adic MZV’s (resp. v-adic MZV’s)
of weight n. Then the following

φv := (ζA(s) 
→ ζA(s)v) : Zn → Zn,v
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is a well-defined k-linear map. Moreover, if n is divisible by q − 1, then the
kernel of φv contains the one-dimensional k-vector subspace k · ζA(n).

Based on the result above, the following question is natural but impor-
tant.

Question 4.3.6. Is the kernel of φv independent of v?

4.4. Key ideas of the proof of Theorem 4.3.5. In this section, we
sketch how we prove Theorem 4.3.5. There are two key ingredients in the
proof.

(1) Give logarithmic interpretations both for ∞-adic and v-adic MZV’s.
(2) Apply Theorem 3.2.2.

The step (1) above is to generalize Theorem 4.1.2 to higher depth MZV’s.
The precise statement is as follows.

Theorem 4.4.1. Fix an index s = (s1, . . . , sr) ∈ Nr with wt(s) = n
and v a finite place of k. Then one explicitly constructs a uniformizable,
regular t-module Gs defined over A and a special point Ξs ∈ Gs(A) so that
the following hold.

(1) There exists a vector Zs ∈ LieGs(C∞) for which expGs
(Zs) = Ξs

and the nth coordinate of Zs gives cs ·ζA(s) for some explicit nonzero
constant cs in A.

(2) The logarithm of Gs converges v-adically at Ξs and its nth coordi-
nate gives cs · ζA(s)v.

The results above are given in [CM17, Thm. 1.2.2, Thm. 6.2.4] with the
special point Ξs taken to be [a(t)]vs in [CM17, Thm. 6.2.4] and the constant
cs given by a(θ)Γs1 · · ·Γsr . To achieve the desired results above, one goes back
to the formula (4.3.2). There are two parts in the procedure. The first is that
for each pair (s�,u�), one explicitly constructs a uniformizable, regular t-
module G� defined over A and a special point v� ∈ G�(A) so that logG�

(v�)
converges and its nth coordinate is Li�s�(u�). This was carried out in [CM19]
and the v-adic case can be done in the same fashion of computations on
logarithms. The ideas of constructing G� and u� go back to [CPY19] when
considering G�, u� as transforming certain Frobenius modules M′

� and M�.
Terminology of Frobenius modules are referred to [CPY19] and the detailed
transformation and correspondence are referred to [CM17, Sec. 4].

To describe the second part, we first mention that the nth tensor power
of the Carlitz t-motive denoted by C⊗n is a Frobenius submodule of M′

�
for each �. Note that in this setting M′

� and C⊗n are dual t-motives in the
terminology of [ABP04] (dual notion of the t-motives in [A86]), and C⊗n

is the dual t-motive associated to C⊗n (see [BP20]). Then we take M to be
the fiber coproduct of {M′

�}� over C⊗n and note that M is a dual t-motive.
Then Gs is the corresponding t-module of M, and we note that there is a
natural morphism

π :
⊕
�

G� → Gs.



20 C.-Y. CHANG

To simplify the arguments for catching the crucial ideas quickly, we sim-
ply assume that all the coefficients α� are 1 (although it is not valid in
general). The special point vs ∈ Gs(A) is image of the point (v�)� under the
morphism π. The special point Ξs is then taken under suitable Fq[t]-action
on the point vs in the t-module Gs in order to ensure the v-adic convergence
in question. The desired formulas are then derived from the key Lemma 3.3.2
of [CM17], which basically says that the nth coordinate of logGs

is the sum
of the nth coordinate of logG�

.
Now we briefly describe how to prove Theorem 4.3.5 using Theorem 4.4.1

and Theorem 3.2.2. Suppose that we are given a non-trivial k-linear relations∑m
i=1 aiζA(si) = 0 with wt(si) = n for all i. Our goal is to show that

m∑
i=1

aiζA(si)v = 0.

Put bi := ai/csi with csi given in Theorem 4.4.1. So the original identity is
rewritten as

(4.4.2)
m∑
i=1

bicsiζA(si) = 0.

Put E :=
⊕m

i=1Gsi , Ξ := (Ξtr
s1
, . . . ,Ξtr

sm
)tr ∈ E(A) and Z := (Ztr

s1
, . . . ,

Ztr
sm

)tr ∈ LieE(C∞). By Theorem 4.4.1 we know the following.
• We have expE(Z) = Ξ;
• The nth coordinate of each block Zs1 , . . . , Zsm in the vector Z gives
cs1 · ζA(s1), . . . , csm · ζA(sm) respectively.

• The logarithm of E converges v-adic at the special point Ξ, and the
nth coordinate of each block logGs1

(Ξs1)v, . . . , logGsm
(Ξsm)v in the

vector logE(Ξ)v gives cs1 · ζA(s1)v, . . . , csm · ζA(sm)v respectively.
We fix a natural identification LieE = LieGs1 ⊕ · · ·LieGsm . To simplify

the notation, we first fix a coordinate system for each LieGsi for i = 1, . . . ,m
and then let Xi be the nth coordinate of the fixed coordinate system of
LieGsi for each i. It follows that Z satisfies the equation

∑m
i=1 biXi = 0 be-

cause of (4.4.2). We denote by ρ the map defining the Fq[t]-module structure
on E. We then consider the smallest linear subspace in LieE(C∞) so that
it contains Z, and it is invariant under ∂ρt-action, and it is defined over k.
By Theorem 3.2.2 this space is exactly equal to LieH(C∞) for some sub-t-
module H of E defined over k. One shows that the hyperplane defined by∑m

i=1 biXi = 0 is invariant under ∂ρt, and hence

(4.4.3)
m∑
i=1

biXi ∈ (Defining equations of LieH) .

Note that since Z ∈ LieH(C∞), Ξ = expE(Z) ∈ H(C∞) ∩ E(k). One
then shows that logE(Ξ)v is equal to logH(Ξ)v ∈ LieH(Cv) and therefore
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logE(Ξ)v satisfies the defining equations of LieH. By (4.4.3) one has the
identity

∑m
i=1 bicsiζA(si)v = 0, whence deriving

m∑
i=1

aiζA(si)v = 0

as claimed.

Remark 4.4.4. At the end, we point out that the transcendence tool
of proving Theorem 4.3.5 is Yu’s sub-t-module theorem that is parallel to
Wüstholz’s analytic subgroup theorem. As realized from our arguments
above, logarithmic interpretation of MZV’s will provide one possible ap-
proach towards Conjecture 2.3.1. In the classical theory one can ask naively
whether any real-valued MZV (up to a rational multiple) can be related to
certain coordinate of the logarithm of certain commutative algebraic group
defined over Q fitting into Wüstholz’s theory. However, this question is still
unknown.
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