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Abstract. In the classical theory of multiple zeta values (MZV’s), Furusho proposed a
conjecture asserting that the p-adic MZV’s satisfy the same Q-linear relations that their
corresponding real-valued MZV counterparts satisfy. In this paper, we verify a stronger
version of a function field analogue of Furusho’s conjecture in the sense that we are
able to deal with all linear relations over an algebraic closure of the given rational
function field, not just the rational linear relations. To each tuple of positive integers
s = (s1, ..., sr), we construct a corresponding t-module together with a specific rational
point. The fine resolution (via fiber coproduct) of this construction actually allows us
to obtain nice logarithmic interpretations for both the ∞-adic MZV and v-adic MZV at
s, completely generalizing the work of Anderson-Thakur [AT90] in the case of r = 1.
Furthermore it enables us to apply Yu’s sub-t-module theorem [Yu97], connecting any∞-adic linear relation on MZV’s with a sub-t-module of a corresponding giant t-module.
This makes it possible to arrive at the same linear relation for v-adic MZV’s.

1. Introduction

1.1. A conjecture of Furusho. Let N be the set of positive integers. Recall that the
classical multiple zeta values are defined for s = (s1, . . . , sr) ∈ Nr with s1 ≥ 2,

ζ(s) :=
∑

n1>n2>···>nr≥1

1
n
s1
1 · · ·nsr

r

∈ R×.

The weight and depth of the presentation ζ(s) are defined by wt(s) :=
∑r

i=1 si and
dep(s) := r respectively. In the past two decades, there have been a considerable amount
of interest and vast developments in the topic of MZV’s, which have arisen in various
contexts in number theory and arithmetical algebraic geometry, etc. It is known that
there are many Q-linear relations among the MZV’s produced by the regularized double
shuffle relations in [IKZ06], but their exact structure remains mysterious. We refer the
reader to the books [An04, Zh16, BGF19].

Let p be a prime number. We first briefly review Furusho’s p-adic MZV’s in [F04].
Fix an r-tuple s = (s1, . . . , sr) ∈ Nr with s1 ≥ 2 and note that the MZV ζ(s) is a
specialization at 1 of the one-variable multiple polylogarithm

Li(s1,...,sr)(z) :=
∑

n1>n2>···>nr≥1

zn1

n
s1
1 · · ·nsr

r

,
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which are generalizations of the classical logarithms. Furusho considered the one-
variable p-adic multiple polylogarithm Lis(z)p, which is the same power series as Lis(z),
but treated p-adically. This function converges on the open unit disk centered at 0 of
Cp, where Cp is the p-adic completion of a fixed algebraic closure of Qp. We note that
the open unit disk centered at 0 of Cp and the one centered at 1 of Cp are disjoint, and
so it does not make sense when taking limit z → 1 on Cp. However, Furusho applied
Coleman’s p-adic iterated integration theory [Co82] to make an analytic continuation
of p-adic multiple polylogarithms and then defined the p-adic MZV ζp(s) to be a certain
limit value at 1 of the analytically continued p-adic multiple polylogarithm. The weight
and depth of the presentation of the p-adic MZV ζp(s) are defined by wt(s) and dep(s)
respectively. Note that in the case of depth one, Furusho’s p-adic zeta value ζp(s) is
identical to the Kubota-Leopoldt p-adic zeta value at s up to a scalar multiplication by
(1− p−s)−1.

In [FJ07], it was shown that the p-adic MZV’s satisfy the regularized double shuffle
relations [IKZ06]. One precise connection between real-valued MZV’s and p-adic MZV’s
is conjectured by Furusho: the p-adic MZV’s satisfy the same Q-linear relations that
their corresponding real-valued MZV’s satisfy.

Conjecture 1.1.1 (Furusho). Let p be a prime number. Let n ≥ 2 be an integer and let
Zn be the Q-vector space spanned by all real-valued MZV’s of weight n, and Zn,p be the
Q-vector space spanned by all p-adic MZV’s of weight n. Then we have a well-defined
surjective Q-linear map

Zn ↠ Zn,p
given by

ζ(s) 7→ ζp(s).

The conjecture above is implicit in the two papers [F06, F07]. Considering the graded
algebra Z := Q ⊕⊕

n≥2 Zn (resp. Zp := Q ⊕⊕
n≥2 Zn,p), Furusho [F06, Conj. A] con-

jectured that O(GRT 1) is isomorphic to Z/(π2) and in [F07, Sec. 3.1] he explained that
there is a surjection from O(GRT 1) to Zp. Here GRT 1 is the unipotent part of the
Grothendieck-Teichmüller group GRT , which is a pro-algebraic group over Q. For more
details, see [F06, F07].

Note that the Ihara-Kaneko-Zagier conjecture [IKZ06] asserts that the regularized
double shuffle relations generate all the Q-linear relations among real-valued MZV’s.
However, the IKZ conjecture is a very difficult problem in classical transcendence theory
and it would imply Conjecture 1.1.1 because of the result in [FJ07]. To date, Conjec-
ture 1.1.1 is still open. In this paper, we come up with new ideas through logarithmic
points of view to verify a stronger version of Furusho’s conjecture in the setting of
function fields in positive characteristic.

1.2. The main result. Let A := Fq[θ] be the polynomial ring in the variable θ over
the finite field Fq of q elements with characteristic p. Let k be the fraction field of A

equipped with the normalized absolute value | · |∞ associated with the infinite place ∞
for which |θ|∞ = q. Let k∞ be the completion of k with respect to | · |∞, and let C∞ be
the completion of a fixed algebraic closure of k∞ with respect to the canonical absolute
value extending | · |∞ on k∞. Let k be the algebraic closure of k in C∞.

In what follows, we will review the ∞-adic multiple zeta values initiated by Thakur [T04].
For a finite place v of k, we will define one kind of v-adic multiple zeta values and
abbreviate them as ‘‘v-adic MZV’s ’’. To distinguish between the ∞-adic and v-adic
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settings, throughout this paper we will use ‘‘MZV’s’’ for Thakur’s ∞-adic multiple zeta
values unless we state the contrary. We further mention that Thakur [T04, p. 196] de-
fined v-adic MZV’s using Goss-Kummer congruences but his definition of v-adic MZV’s
is different from ours.

Fixing any r-tuple s = (s1, . . . , sr) ∈ Nr, Thakur [T04] defined the following positive
characteristic MZV’s:

(1.2.1) ζA(s) :=
∑ 1

a
s1
1 · · ·asr

r

∈ k∞.

Here a1, . . . ,ar run over all monic polynomials in A satisfying the strict inequalities:
|a1|∞ > |a2|∞ > · · · > |ar|∞. Note that since our absolute value | · |∞ is non-archimedean,
the series ζA(s) converges ∞-adically in k∞ for all s ∈ Nr. Furthermore, it is shown by
Thakur [T09] that every ζA(s) is non-vanishing. We call wt(s) :=

∑r
i=1 si the weight and

dep(s) := r the depth of the presentation of ζA(s). Depth one MZV’s were introduced
by Carlitz [Ca35] and so are called Carlitz zeta values.

Unlike the simple identity between real-valued MZV’s and the specialization at 1 of
multiple polylogarithms in the classical theory, in the function field setting for any
tuple s ∈ Nr there are some explicit constants bℓ ∈ A, tuples of indices sℓ with wt(sℓ) =
wt(s), dep(sℓ) ≤ dep(s) and integral points uℓ ∈ Adep(sℓ) so that ζA(s) can be expressed
as the following formula (see Theorem 5.2.5):

ζA(s) =
1

Γs1 · · · Γsr

∑
ℓ

bℓ · (−1)dep(sℓ)−1 Li⋆sℓ(uℓ).

Here Γsi stands for the Carlitz factorials in A given in (5.1.2) and Li⋆sℓ is the sℓth Carlitz
multiple star polylogarithm (in several variables), abbreviated as CMSPL and defined
in (4.1.2). Note that this identity was due to Anderson-Thakur [AT90] in the depth
one case, where CMSPL’s are reduced to Carlitz polylogarithms. For more details, see
Sec. 5.1.

Fix a finite place v of k and let kv be the completion of k at v. Let Cv be the v-adic
completion of a fixed algebraic closure of kv. In analogy with Kubota-Leopoldt’s p-
adic zeta function, Goss [Go79] defined a v-adic zeta function that interpolates Carlitz
zeta values at non-positive integers and obtained v-adic zeta values at positive integers,
which are simply called Goss’ v-adic zeta values.

Our definition of v-adic MZV’s is inspired by Furusho’s definition of p-adic MZV’s.
We first note that the CMSPL Li⋆sℓ converges v-adically on the open unit ball centered
at the zero of C

dep(sℓ)
v . In [CM19, Sec. 4], by using twists of certain t-module actions we

showed that Li⋆sℓ can be analytically continued to the closed unit ball centered at the
zero of C

dep(sℓ)
v , and so it can be evaluated v-adically at uℓ and we denote this value

by Li⋆sℓ(uℓ)v. This leads naturally to the definition of v-adic MZV ζA(s)v parallel to
Furusho’s approach in Definition 6.1.1:

ζA(s)v :=
1

Γs1 · · · Γsr

∑
ℓ

bℓ · (−1)dep(sℓ)−1 Li⋆sℓ(uℓ)v ∈ kv.

The weight and depth of this presentation ζA(s)v are defined to be wt(s) and dep(s)
respectively.

Note that here we do not exclude the v-part and so for each s ∈ N, our v-adic zeta
value ζA(s)v is identical to Goss’ v-adic zeta value [Go79] at s multiplied by (1− v−s)−1
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(see [AT90, Theorem 3.8.3. (II)]). This phenomenon is surprisingly parallel to the p-
adic case mentioned above. The main theorem of this paper stated as Theorem 6.4.1
is to establish a stronger version of a function field analogue of Conjecture 1.1.1 in the
following result as it holds over algebraic coefficients.

Theorem 1.2.2 (Theorem 6.4.1). Let v be a finite place of k and fix an embedding k ↪→ Cv.
Let n be a positive integer and let Z n be the k-vector space spanned by all ∞-adic MZV’s
of weight n, and Z n,v be the k-vector space spanned by all v-adic MZV’s of weight n.
Then we have a well-defined surjective k-linear map

Z n ↠ Z n,v

given by
ζA(s) 7→ ζA(s)v

and its kernel contains the one-dimensional vector space k · ζA(n) when n is divisible by
q− 1.

Since by [Go79] we have ζA(n)v = 0 when n is divisible by q − 1, an interesting
consequence of the theorem above is that if ζA(s) is ‘‘Eulerian’’, ie., ζA(s) is a k-
multiple of the wt(s)th power of the Carltiz period, then ζA(s)v = 0. We mention
that for fixed weight, the spirit of the result above is that v-adic MZV’s satisfy the
same k-linear relations as their corresponding ∞-adic MZV’s satisfy. For example,
Thakur [T09b, Thm. 5] showed that ζA(m,m(q− 1)) = ζA(mq)/(θ− θq)m for m ≤ q,
and so by Theorem 1.2.2 we have ζA(m,m(q− 1))v = ζA(mq)v/(θ− θq)m. Note that
in [C14], we have that all k-linear relations among MZV’s are generated by k-linear
relations among MZV’s of the same weight. This is Baker’s phenomenon for MZV’s
over function fields and it is out of reach for the classical MZV’s as it is still very
difficult to prove transcendence results in the classical case.

Finally, we mention that Thakur [T10] showed that ∞-adic MZV’s form a k-algebra.
From numerical evidence using Sage, it seems that our v-adic MZV’s form a k-algebra
and the map from the space of MZV’s to the space of v-adic MZV’s is a k-algebra
homomorphism. These questions are listed at the end of this paper and we plan to
tackle them in a future project.

Remark 1.2.3. Let s = (s1, . . . , sr) ∈ Nr and suppose that ζA(s) is ‘‘Eulerian’’. By [CPY19,
Cor. 4.2.3], we have that each si is divisible by q− 1 for i = 1, . . . , r, and that each of
the MZV’s

ζA(s2, . . . , sr), ζA(s3, . . . , sr) . . . , ζA(sr)
is ‘‘Eulerian’’. Therefore, under the assumption that ζA(s) is ‘‘Eulerian’’ we have the
simultaneous vanishing of the v-adic MZV’s

ζA(s1, . . . , sr)v = ζA(s2, . . . , sr)v = · · · = ζA(sr)v = 0

by Theorem 1.2.2, but we do not know whether the reverse direction is valid. This
phenomenon matches with one direction of the criterion [CM19, Cor. 5.1.3] for when
Carlitz multiple polylogarithms at algebraic points are ‘’Eulerian’’.

1.3. Strategy of proof. In this section, we describe our strategy in proving Theo-
rem 6.4.1. We first recall Wüstholz’s analytic subgroup theorem in classical transcen-
dence theory.
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Theorem 1.3.1 (Wüstholz [W89]). Let G be a connected commutative algebraic group
defined over Q. Let expG be the exponential map of G when regarding G(C) as a Lie group.
Let u ∈ LieG(C) satisfy expG(u) ∈ G(Q), and put Tu to be the smallest linear subspace
of LieG(C) that is defined over Q and that contains the vector u. Then Tu = LieH for
some algebraic subgroup H of G that is defined over Q.

Note that Wüstholz’s theorem is one of the most powerful tools in classical tran-
scendence theory when tackling transcendence question about generalized logarithms.
The spirit of the theorem above is to assert that the Q-linear relations among the co-
ordinates of the generalized logarithm u of an algebraic point arise from the defining
equations of LieH over Q. One can derive Baker’s celebrated theorem on linear forms
in logarithms of algebraic numbers as well as its elliptic analogue using this analytic
subgroup theorem of Wüstholz. See [BW07].

In the function field setting, we have an analogue of Wüstholz’s theorem, called Yu’s
sub-t-module theorem (see Sec. 6.3 for related definitions).
Theorem 1.3.2 ([Yu97, Thm. 0.1]). Let G be a regular t-module defined over k. Let Z
be a vector in LieG(C∞) such that expG(Z) ∈ G(k). Then the smallest linear subspace
in LieG(C∞) defined over k, which is invariant under ∂[t] and contains Z, is the tangent
space at the origin of a sub-t-module H of G over k.

The key ideas in proving Theorem 1.2.2 arise from the following observation. Suppose
that we have G,Z,H given in Theorem 1.3.2. We put v := expG(Z) ∈ H(k̄) and assume
that logG converges v-adically at v denoted by logG(v)v and suppose further that logG(v)v
lies in LieH(Cv). Regarding LieH as a linear subvariety of AdimG over k, we see that
the coordinates of Z and logG(v)v satisfy the defining equations of LieH over k since
Z ∈ LieH(C∞) and logG(v)v ∈ LieH(Cv). Therefore, to prove Theorem 1.2.2 our aim
is to create suitable G,Z,v,H as above and then relate the MZV’s (resp. v-adic MZV’s)
in question to ‘suitable’ coordinates of Z (resp. corresponding coordinates of logG(v)v).
This novel method fully illustrates the spirit of the result in Theorem 1.2.2 through
logarithms in a robust way, which simultaneously deals with both ∞-adic and v-adic
special values and which is completely different from the point of view in the theory
of classical MZV’s. We believe that this kind of strategy via LieH will explain more
fundamental phenomena in a broader context.

1.4. Logarithmic interpretations for MZV’s. In the seminal paper [AT90], Anderson
and Thakur gave logarithmic interpretations for Carlitz zeta values and v-adic Goss
zeta values, where v is a finite place of k. For each Carlitz zeta value ζA(s), we
consider the sth tensor power of the Carlitz module denoted by (C⊗s, [·]s) in (2.2.7).
Anderson and Thakur explicitly constructed a special point vs ∈ C⊗s(k) and a vector
Zs ∈ LieC⊗s(C∞) so that up to an explicit multiple Γs in A, ζA(s) occurs as the sth
coordinate of Zs and expC⊗s(Zs) = vs, where expC⊗s is the exponential map of C⊗s (see
Sec. 2.2). It is further shown that the logarithm of C⊗s converges v-adically at [a]svs
for some nonzero a ∈ Fq[t] and the last coordinate of this v-adic logarithmic vector
gives a(θ)ΓsζA(s)v.

Around that time, Yu [Yu91] developed a transcendence theory for the last coordi-
nate of the logarithm of C⊗s at algebraic points. As an important consequence, Yu
combined his work with that of Anderon-Thakur to derive the transcendence of all
Carlitz zeta values as well as transcendence of ζA(s)v for positive integers s not divis-
ible by q− 1. Yu’s transcendence results surpass the classical situation. Later on, Yu
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extensively generalized the ∞-adic transcendence theory in [Yu91] to the most general
setting stated as Theorem 1.3.2. The transcendence of arbitrary MZV was obtained by
the first author of the present paper [C14] using the current t-motivic transcendence
theory, in particular the so-called ABP criterion, developed by Anderson, Brownawell
and Papanikolas [ABP04].

In [C16, Thm. 4.1.1], the first author of the present paper gave a logarithmic interpreta-
tion for those MZV’s ζA(s1, . . . , sr) which have the property that ζA(s2, . . . , sr) is Euler-
ian. The following two theorems are complete generalizations of Anderson-Thakur’s
work described above to arbitrary ∞-adic MZV’s and v-adic MZV’s (see Sec. 2.2 for the
related definitions).

Theorem 1.4.1 (Theorem 5.1.3). Given any r-tuple s = (s1, . . . , sr) ∈ Nr, we put n :=
wt(s). We explicitly construct a uniformizable t-module Gs that is defined over k, a special
point vs ∈ Gs(k) and a vector Zs ∈ LieGs(C∞) so that

(a) Γs1 · · · ΓsrζA(s) occurs as the nth coordinate of Zs.
(b) expGs

(Zs) = vs.

Theorem 1.4.2 (Theorem 6.2.4). Fix a finite place v of k and let notation be given in
Theorem 1.4.1. We take a nonzero a ∈ Fq[t] for which |[a]vs|v < 1. Then the nth
coordinate of logGs

([a]vs)v is given by a(θ)ΓsζA(s)v.

With the two theorems above, one is naturally lead to the naive question whether
classical MZV’s can be interpreted via generalized logarithms at algebraic points fitting
into Wuestholz’s analytic subgroup theorem. However, the category of mixed Tate
motives in characteristic zero is certainly much more subtle than our category of t-
motives in positive characteristic. Therefore the dream of connecting classical MZV’s
with p-adic MZV’s is currently far beyond reach.

As mentioned above, the result of Theorem 1.4.1 for the depth one case was established
by Anderson-Thakur [AT90]. However, we have not been able to find an easier way
to generalize their methods to the higher depth case. In [AT90], there are two crucial
points in the scheme of their proof:

(1) Interpolation of power sums (see [AT90, (3.7.4)]).
(2) Formulas for the right lower corner of coefficient matrices of the logarithm of

C⊗s (see [AT90, Prop. 2.1.5]).
Property (1) enables one to connect ζA(s) with a k-linear combination of the sth Carlitz
polylogarithm at certain integral points, and (2) allows one to express the last coordinate
of the logarithm of C⊗s at a specific special point as an evaluation of the sth Carlitz
polylogarithm. Note that the interpolation property (1) was used by the first author
of the present paper to express each MZV ζA(s) as a k-linear combination of the sth
Carlitz multiple polylogartihm at integral points [C14].

Inspired by the period interpretation of MZV’s in [AT09], for each MZV ζA(s) the
authors of [CPY19] constructed a t-module E ′

s defined over A and a special point vs ∈
E ′
s(A) to establish a criterion in terms of (E ′

s,vs) for determining when ζA(s) is a
k-rational multiple of ζA(wt(s)). It is natural to ask or predict whether ζA(s) can be
connected to the logarithm of E ′

s. The difficulty along this direction is that in general the
t-module E ′

s is complicated, and so far we do not know how to spell out a rule of writing
it down explicitly except case by case (see [CPY19, Sec. 6.1.1]). Therefore, it is difficult
to compute the coefficient matrices of the logarithm of E ′

s following Anderson-Thakur’s
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methods, which involve recursive matrix calculations. For other instances involving
calculations of the logarithm of a higher dimensional t-module, see [CM19, G17].

To circumvent the difficulty mentioned above, we introduce new techniques based on
fiber coproducts of Anderson dual t-motives and we sketch the ideas to prove Theo-
rem 1.4.1 below. Fix an r-tuple s = (s1, . . . , sr) ∈ Nr with n := wt(s).

(I). Based on the formula [C14, Thm. 5.5.2] we further express Γs1 · · · ΓsrζA(s) as an
explicit A-linear combination of CMSPL’s at some integral points. See Theo-
rem 5.2.5.

(II). For each triple (bℓ, sℓ,uℓ) occurring in the right hand side of the identity in
Theorem 5.2.5, following [CM19] we explicitly construct a uniformizable t-module
Gℓ defined over k and a special point vℓ ∈ Gℓ(k) and show that the logarithm
logGℓ

of Gℓ converges at the special point vℓ, and that the nth coordinate of
logGℓ

(vℓ) gives (−1)dep(sℓ)−1 Li⋆sℓ(uℓ). See Theorem 4.2.3.
(III). We mention that Gℓ comes from a rigid analytically trivial Anderson dual t-

motive M ′
ℓ with C⊗n as a sub-t-motive, where C⊗n is the nth tensor power

of the Carlitz t-motive (see Remark 4.1.10). We then define M to be the fiber
coproduct of those M ′

ℓ over C⊗n and show that it is rigid analytically trivial
in Proposition 2.5.3. Such M corresponds to a uniformizable t-module Gs and
one has a natural morphism π : ⊕ℓGℓ → Gs defined over k (see Lemma 3.2.3).
We then define Zℓ := logGℓ

(vℓ), Zs := ∂π ((∂[bℓ(t)]Zℓ)ℓ) ∈ LieGs(C∞), and vs :=
π (([bℓ(t)]vℓ)ℓ) ∈ Gs(k), where bℓ ∈ A are given in Theorem 5.2.5 and ∂[·] is given
in (2.2.1).

(IV). In Lemma 3.3.2, we show that the nth coordinate of Zs is exactly the summation
of the nth coordinate of ∂[bℓ(t)]Zℓ. Then by the formula in Theorem 5.2.5 the
desired result follows.

1.5. Organization of this paper. We mention that one of our goals in writing this
paper has been to introduce our techniques in as general and robust a form as possible.
Therefore we do not organize this paper in order matching the steps from (I) to (IV)
above. We first review the related theory of Anderson t-modules and Anderson dual
t-motives in Section 2, and then consider the fiber coproducts of Anderson dual t-
motives in a setting as general as possible. The purpose of Section 3 is to establish the
key result in Lemma 3.3.2 for handling tractable coordinates of logarithmic vectors with
respect to the fiber coproduct in question. Then step (IV) above becomes a consequence
of Lemma 3.3.2. Section 4 is devoted to verify Step (II) above. In Section 5 we set
the stage for our MZV’s: to any given MZV we associate a fiber coproduct family
of Anderson dual t-motives satisfying the hypothesis of Lemma 3.3.2; furthermore an
explicit integral point is picked up on the t-module associated to each of the t-motives
in this coproduct family. This set up then enables us to prove Theorem 1.4.1.

Finally, we define v-adic MZV’s in Section 6 and prove Theorem 1.4.2. We then
use these logarithmic interpretations for ∞-adic and v-adic MZV’s (Theorems 1.4.1 and
6.2.4) as well as Yu’s sub-t-module theorem [Yu97] to prove Theorem 1.2.2. At the
end we list three natural and interesting questions in Remark 6.4.4, which we will
investigate in a future project.

Acknowledgements. The first author thanks D. Zagier for helpful discussions that
highly motived the formulation of Theorem 1.2.2. We are grateful to F. Brown, D. Brow-
nawell, H. Furusho, M. Papanikolas, D. Thakur, S. Yasuda and J. Yu for many helpful
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second author visited NCTS and we would like to thank NCTS for their kind support.
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2. Fiber coproduct of Anderson dual t-motives

Throughout this paper, we will call Anderson dual t-motives for those called dual
t-motives in [ABP04] and called Anderson t-motives in [P08].

2.1. Anderson dual t-motives. Let C∞((t)) be the field of Laurent series in the variable
t over C∞. For an integer i, we define the ith fold twisting automorphism on C∞((t))

given by f 7→ f(i), where f(i) :=
∑

a
qi

j tj for f =
∑

ajt
j ∈ C∞((t)). We extend the ith fold

twisting to an operator on matrices with entries in C∞((t)) by entry-wise action.
We define the twisted polynomial ring k[t,σ] generated by the two variables t and σ

subject to the relations
σf = f(−1)σ for f ∈ k[t].

Definition 2.1.1. An Anderson dual t-motive is a left k[t,σ]-module M satisfying that
(1) M is a free left k[t]-module of finite rank.
(2) M is a free left k[σ]-module of finite rank.
(3) (t− θ)sM ⊂ σM for all sufficiently large integers s.

We note that the above notion of Anderson dual t-motives can be defined over any
perfect field L containing k, but for our purpose from the point of view of transcendence
theory the field k is the most suitable. For an Anderson dual t-motive M of rank r

over k[t] and of rank d over k[σ], we call the vector x = (x1, . . . , xr) ∈ Mat1×r(M ) (resp.
ν = (ν1, . . . ,νd) ∈ Mat1×d(M )) a k[t]-basis (resp. a k[σ]-basis) for M if x1, . . . , xr (resp.
ν1, . . . ,νd) form a k[t]-basis (resp. k[σ]-basis) of M . Fixing a k[t]-basis x for M , then
there exists a unique matrix Φ ∈ Matr(k[t])∩GLr(k(t)) satisfying that

σxtr = Φxtr,

where σxtr is defined via entry-wise action. We say that the matrix Φ represents
multiplication by σ on M with respect to x (cf. [P08, Sec. 3.2.3]).

A typical example is the nth tensor power of the Carlitz t-motive denoted by C⊗n for
a positive integer n. The underlying module of C⊗n is k[t], on which σ acts by

σf := (t− θ)nf(−1) for f ∈ k[t].

It is not hard to check that C⊗n is an Anderson dual t-motive with a k[σ]-basis given
by (

(t− θ)n−1, . . . , (t− θ), 1
)
.

As a left Fq[t]-module the quotient C⊗n/(σ− 1)C⊗n gives the k-valued points of the
nth tensor power C⊗n of the Carlitz module defined in (2.2.7). This fact was known by
Anderson, and the reader can consult [T04] and [CPY19, Sec. 5.2].
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2.2. Anderson t-modules. We quickly review the theory of t-modules developed by
Anderson in [A86]. For any field extension L/k, we let τ : L → L be the Frobenius qth
power operator, and one naturally extends it to an operator on Ls by entry-wise action.
Let L[τ] be the twisted polynomial ring generated by τ over L subject to the relation:

τα = αqτ for α ∈ L.

Given a d-dimensional additive algebraic group Gd
a/L over L, we denote by EndFq

(
Gd

a/L
)

the ring of endomorphisms of Gd
a/L that are Fq-linear and defined over L, and we nat-

urally identify EndFq

(
Gd

a/L
)
with the matrix ring Matd(L[τ]).

A d-dimensional t-module defined over L is a pair G = (Gd
a/L, ρ), where Gd

a/L is
the d-dimensional additive group Gd

a that is defined over L and ρ is an Fq-linear ring
homomorphism

ρ : Fq[t] → EndFq

(
Gd

a/L

)
so that ∂ρt− θId is a nilpotent matrix, where ∂ρt is defined to be the induced morphism
of ρt at the identity on the Lie algebra LieGd

a/L of Gd
a/L. For a nonzero polynomial

a ∈ Fq[t], we write ρa =
∑m

i=0 aiτ
i with ai ∈ Matd(L), where we understand that the

symbols ai and m depend on a. Then the differential of ρa at the identity is explicitly
expressed as

(2.2.1) ∂ρa = a0.

Note that G(F) = Gd
a(F) has a left Fq[t]-module structure via the map ρ for any field

extension F/L.
Given such a d-dimensional t-module G over L, Anderson [A86] showed the existence

of a d-variable power series expG with coefficients in L for which
(a) expG(z) ≡ z (mod deg q);
(b) for any a ∈ Fq[t], the following identity holds:

(2.2.2) ρa ◦ expG = expG ◦∂ρa.

We mention that when we work over the field C∞, expG : LieG(C∞) → G(C∞) is entire.
Such as the classical terminology for Lie groups, we call expG the exponential map of
the t-module G. The formal inverse of the power series expG is called the logarithm of
G denoted by logG and it satisfies:

(2.2.3) expG ◦ logG(z) = z = logG ◦ expG(z) (as power series identities).

(2.2.4) logG ◦ρa = ∂ρa ◦ logG for every a ∈ Fq[t].

Note that logG is the power series expansion around the origin of the multi-valued
inverse map to expG.

In fact, the exponential map expG is functorial in G in the following sense. Let G

and G ′ be two t-modules defined over L. By a morphism from G to G ′ over L, we mean
a morphism as algebraic groups ϕ : G → G ′ that is defined over L and that commutes
with Fq[t]-actions. The functoriality property [A86, p. 473] means that we have the
following functional equation:

(2.2.5) ϕ ◦ expG = expG ′ ◦∂ϕ,
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where ∂ϕ is the differential of the morphism ϕ at the identity. The functional equation
for exponential maps and (2.2.3) imply the following functional equation for logarithms:

(2.2.6) logG ′ ◦ϕ = ∂ϕ ◦ logG .

An example of a t-module is the sth tensor power of the Calitz module denoted by
C⊗s = (Gs

a/k, [−]s) for any positive integer s. The underlying space of C⊗s is Gs
a/k

equipped with the Fq[t]-module structure given (and so uniquely determined) by

(2.2.7) [t]s =


θ 1 0 · · · 0

θ 1 . . . ...
. . . . . . 0

. . . 1
τ θ

 ∈ Mats(k[τ]).

We call a t-module G over k uniformizable if its exponential map expG : LieG(C∞) →
G(C∞) is surjective. We mention that there are examples of t-modules which are not
uniformizable, see [A86, Sec. 2.2]. Note that C⊗s is uniformizable for each s ∈ N,
see [Go96, Cor. 5.9.38].

2.3. From Anderson dual t-motives to t-modules. Here we review how one con-
structs a t-module from an Anderson dual t-motive following Anderson’s approach (see
[CPY19, Sec. 5.2], [BP16, Sec. 4.4] and [HJ16, Sec. 5.2]). Let M be an Anderson dual
t-motive with a k[t]-basis (x1, . . . , xr), and a k[σ]-basis (ν1, . . . ,νd). For any y ∈ M , we
express y =

∑d
i=1 giνi with gi ∈ k[σ] and then define the map ∆ : M → Matd×1(k) by

(2.3.1) ∆(y) := (δ(g1), . . . , δ(gd))tr ∈ Matd×1(k),

where for g =
∑

j ajσ
j(=

∑
j σ

ja
qj

j ) ∈ k[σ], δ : k[σ] → k is defined by

δ(g) :=
∑
j

a
qj

j .

It is clear that ∆ is Fq-linear and surjective. One further checks that Ker∆ = (σ− 1)M ,
and therefore we have the induced isomorphism

∆ : M /(σ− 1)M ∼= Matd×1(k).

As Fq[t] is contained in the center of k[t,σ], M /(σ − 1)M has a left Fq[t]-module
structure, which allows us to induce an Fq[t]-module structure on Matd×1(k) from the
isomorphism above. One thereby has a unique Fq-linear ring homomorphism

ρ : Fq[t] → Matd(k[τ]),

whence defining a t-module G = (Gd
a/k, ρ) associated to the Anderson dual t-motive M

since the group of k-valued points is Zariski dense in Gd
a/k.

2.4. The fiber coproduct. In this section, we will construct a fiber coproduct of certain
Anderson dual t-motives, which will play the key role when proving Theorem 1.4.1.
Here, we deal with the situation as general as possible, and expect it to have wide
applications for the related issues.
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2.4.1. The set up. Let N be an Anderson dual t-motive of rank r over k[t], and we
fix a k[t]-basis x = (x1, . . . , xr) ∈ Mat1×r(N ) as well as a k[σ]-basis α = (α1, . . . ,αn) ∈
Mat1×n(N ) for N . Let B := BN ∈ Matr(k[t]) ∩ GLr(k(t)) be the matrix presenting
multiplication by σ on N with respect to x, ie.,

σxtr = Bxtr.

Suppose that
{
M ′

ℓ

}T
ℓ=1 is a family of Anderson dual t-motives equipped with the

property that M ′
ℓ contains N as k[t,σ]-submodule for which either

(2.4.1) M ′
ℓ = N

or

(2.4.2) M ′
ℓ fits into the short exact sequence of left k[t,σ]-modules

0 → N → M ′
ℓ → M ′′

ℓ → 0,
where M ′′

ℓ is an Anderson dual t-motive of rank mℓ ≥ 1 over k[t]. We let T = {1, . . . , T }
and decompose it as the disjoint union

T = T1 ∪T2,

where T1 consists of those indexes ℓ for which M ′
ℓ satisfies (2.4.1) and T2 consists of

those indexes ℓ for which M ′
ℓ satisfies (2.4.2). We let s := |T1|, and for convenience we

rearrange the indexes so that

T1 = {1, . . . , s} and T2 = {s+ 1, . . . , T } .

It is allowed to be the case that s = 0, ie., T1 = ∅ and T2 = T , or the case that s = T ,
ie., T1 = T and T2 = ∅. In the latter case when s = T , it means that M ′

ℓ is isomorphic
to N for all ℓ. In the former case when s = 0, every M ′

ℓ is an extension of M ′′
ℓ by N

in (2.4.2).
For convenience we put mℓ = 0 for 1 ≤ ℓ ≤ s. For each 1 ≤ ℓ ≤ T , we denote

by xℓ = (xℓ1, . . . , xℓr) ∈ Mat1×r(M
′
ℓ ) the image of the k[t]-basis x = (x1, . . . , xr) for N

under the map N ↪→ M ′
ℓ . Since M ′′

ℓ is free of rank mℓ over k[t], there exist vectors
yℓ = (yℓ1, . . . ,yℓmℓ

) ∈ Mat1×mℓ
(M ′

ℓ ), where yℓ = ∅ for 1 ≤ ℓ ≤ s, so that (xℓ,yℓ) is a
k[t]-basis for M ′

ℓ . For the k[t]-basis (xℓ,yℓ), the action of σ is given by the form

σ

(
xtrℓ
ytrℓ

)
=

(
B 0
Dℓ Φ ′′

ℓ

)(
xtrℓ
ytrℓ

)
.

Here Φ ′′
ℓ ∈ Matmℓ

(k[t]) ∩GLmℓ
(k(t)) is the matrix representing multiplication by σ on

M ′′
ℓ with respect to the k[t]-basis as the image of yℓ in M ′′

ℓ .
For each 1 ≤ ℓ ≤ T , we denote by α̃ℓ := (αℓ1, . . . ,αℓn) ∈ Mat1×n(M

′
ℓ ) the image of the

k[σ]-basis α = (α1, . . . ,αn) for N under the map N ↪→ M ′
ℓ . We understand that for

1 ≤ ℓ ≤ s, α̃ℓ is a k[σ]-basis for M ′
ℓ since N ∼= M ′

ℓ , and since M ′′
ℓ is free of finite

rank over k[σ] for s+ 1 ≤ ℓ ≤ T , α̃ℓ can be extended to a k[σ]-basis (α̃ℓ,βℓ) for M ′
ℓ for

some βℓ ∈ Mat1×hℓ
(M ′

ℓ ) with hℓ := rankk[σ] M
′′
ℓ . Note that the image of βℓ under the

quotient map M ′
ℓ ↠ M ′′

ℓ forms a k[σ]-basis for M ′′
ℓ . By convenience, for 1 ≤ ℓ ≤ s we

put hℓ = 0 and βℓ = ∅.
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We note that to prove Theorem 1.4.1, we will take N to be the nth tensor power of the
Carlitz t-motive and take

{
M ′

ℓ

}
to be the Anderson dual t-motives constructed in [C14,

CPY19], whose periods involve Carlitz multiple polylogarithms at specific integral points.
Related details are given in Sec. 5.3.

2.4.2. The definition. We continue with the notation and set up as above. We define
M to be the fiber coproduct of all M ′

ℓ over N denoted by

M := M ′
1 tN M ′

2 tN · · · tN M ′
T .

More precisely, as a left k[t]-module, M is defined by the quotient:

(2.4.3) M :=
(
⊕T

ℓ=1M
′
ℓ

) / (
Spank[t]

{
xℓi − xℓ ′i|1 ≤ ℓ, ℓ ′ ≤ T , 1 ≤ i ≤ r

})
.

Without confusion, we denote by xi the image of xℓi in the quotient module M for any
ℓ, and 1 ≤ i ≤ r. This is well defined from the description of M above, and it makes
sense to use the notation as one has the natural embedding N ↪→ M . We still denote
by yℓj the image of yℓj in the quotient module M for s+ 1 ≤ ℓ ≤ T , and 1 ≤ j ≤ mℓ, as
it is well-defined due to (2.4.3). Under such notation, it is clear to see that M is a free
k[t]-module and
(2.4.4) m := (x,ys+1, . . . ,yT )

is a k[t]-basis for M .

Proposition 2.4.5. The left k[t]-module M defined above is an Anderson dual t-motive.

Proof. We first claim that the k[t]-submodule Spank[t] {xℓi − xℓ ′i|1 ≤ ℓ, ℓ ′ ≤ T , 1 ≤ i ≤ r}

is stable under the σ-action, whence a left k[t,σ]-submodule of ⊕T
ℓ=1M

′
ℓ . To show this,

we note that xℓi − xℓ ′i is the ith component of (xℓ − xℓ ′)tr. By definition, σ(xℓ − xℓ ′)tr is
the vector

B · (xℓ − xℓ ′)tr.
By expanding the above vector we see that

σ(xℓi − xℓ ′i) ∈ Spank[t]
{
xℓi − xℓ ′i|1 ≤ ℓ, ℓ ′ ≤ T , 1 ≤ i ≤ r

}
.

To show that M is free of finite rank over k[σ], we first note that the following matrix

(2.4.6) Φ :=


B

Ds+1 Φ ′′
s+1... . . .

DT Φ ′′
T


is the matrix representing the action of σ on M with respect to the k[t]-basis m given
in (2.4.4). It follows that we have the following short exact sequence of Anderson dual
t-motives:

0 → N → M → ⊕T
ℓ=s+1M

′′
ℓ → 0.

By hypothesis, each M ′′
ℓ is an Anderson dual t-motive, so is ⊕T

ℓ=s+1M
′′
ℓ . Since N

and ⊕T
ℓ=s+1M

′′
ℓ are Anderson dual t-motives, M is a finitely generated k[σ]-module.

By [ABP04, Prop. 4.3.4], we know that k[t]-torsion submodule of M is as same as the
k[σ]-torsion submodule of M , and hence M is free over k[σ] since M is a free left
k[t]-module.
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Finally, one directly checks that (t − θ)iM ⊂ σM for sufficiently large integers i,
whence M is an Anderson dual t-motive. □

Remark 2.4.7. Note that we can write down the ranks of M over k[t] and over k[σ]
respectively. Precisely, we have

rankk[t] M = rankk[t] N +

T∑
ℓ=s+1

(
rankk[t] M

′
ℓ − rankk[t] N

)
and

rankk[σ] M = rankk[σ] N +

T∑
ℓ=s+1

(
rankk[σ] M

′
ℓ − rankk[σ] N

)
.

2.5. Rigid analytic trivialization. Let T ⊂ C∞((t)) be the subring consisting of power
series that are convergent on the closed unit disk centered at the zero of C∞. More
precisely, every element f in T is of the form f =

∑∞
i=0 ait

i with the property that
|ai|∞ → 0 as i → ∞. We follow [ABP04, P08] to introduce the following terminology
(cf. [A86]).

Definition 2.5.1. Let M be an Anderson dual t-motive of rank r over k[t]. Let Φ ∈
Matr(k[t])∩GLr(k(t)) be the matrix representing multiplication by σ on certain k[t]-basis
for M. We say that M is rigid analytically trivial if there exists a matrix Ψ ∈ GLr(T) so
that

Ψ(−1) = ΦΨ.

Such a Ψ is called a rigid analytic trivialization of Φ.

Remark 2.5.2. If an Anderson dual t-motive is rigid analytically trivial, then its associ-
ated t-module is uniformizable. See [BP16, Sec. 4.5] and [HJ16, Thm. 5.2.8].

Proposition 2.5.3. Let N ,
{
M ′

ℓ

}T
ℓ=1 be the Anderson dual t-motives given in Sec. 2.4.1

and suppose that all of them are rigid analytically trivial. Then so is the fiber coproduct
M of

{
M ′

ℓ

}T
ℓ=1 over N .

Proof. We continue with the above notation that B is the matrix representing multipli-
cation by σ on x for N , and for each s+ 1 ≤ ℓ ≤ T ,(

B

Dℓ Φ ′′
ℓ

)
is the matrix representing multiplication by σ on (xℓ,yℓ) for M ′

ℓ .
Since N and M ′

ℓ are rigid analytically trivial, there exist rigid analytic trivializations
Q and (

Q

Rℓ Ψ ′′
ℓ

)
for which Q(−1) = BQ and(

Q

Rℓ Ψ ′′
ℓ

)(−1)
=

(
B

Dℓ Φ ′′
ℓ

)(
Q

Rℓ Ψ ′′
ℓ

)
.
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Since Φ given in (2.4.6) is the matrix representing multiplication by σ on m for M , we
put

Ψ :=


Q

Rs+1 Ψ ′′
s+1... . . .

RT Ψ ′′
T


and find that Ψ is a rigid analytic trivialization of Φ. So the desired result follows. □

3. The key lemma

We continue with the setting and notation given in Sec. 2.4.1 and Sec. 2.4.2. As M is
a quotient of ⊕T

ℓ=1M
′
ℓ , we have the natural projection map µ : ⊕T

ℓ=1M
′
ℓ ↠ M . In fact,

according to the definition of M we can write down the map µ explicitly as

(3.0.1) µ

(

r∑
i=1

fℓi(t)xℓi +

mℓ∑
j=1

fℓj(t)yℓj)ℓ

 =

r∑
i=1

(
T∑
ℓ=1

fℓi(t)

)
xi +

T∑
ℓ=s+1

mℓ∑
j=1

fℓj(t)yℓj.

According to the set up in Sec. 2.4.1 that α is identified with α̃ℓ in M ′
ℓ , it follows that

(3.0.2)
Spank[t]

{
xℓi − xℓ ′i|1 ≤ ℓ, ℓ ′ ≤ T , 1 ≤ i ≤ r

}
= Spank[σ]

{
αℓi −αℓ ′i|1 ≤ ℓ, ℓ ′ ≤ T , 1 ≤ i ≤ n

}
,

hence it is well-defined so that we can denote by αi the image of αℓi for any 1 ≤ ℓ ≤ T

and 1 ≤ i ≤ n. Note that such a fact can be also seen from the definition of fiber
coproduct.

We denote by αi the image of αℓi in M , by α the image of α̃ℓ ∈ Mat1×n(M
′
ℓ ) in

Mat1×n(M ), and by βℓj the image of βℓj ∈ M ′
ℓ in M , which are well-defined by (3.0.2)

and the condition of k[σ]-basis (α̃ℓ,βℓ) for M ′
ℓ . From the setting in Sec. 2.4.1, we see

that (α,βs+1, . . . ,βT ) is a k[σ]-basis for M .

3.1. The setting. For each 1 ≤ ℓ ≤ T , we let Gℓ be the t-module associated to the
Anderson dual t-motive M ′

ℓ , i.e., we have the Fq[t]-module isomorphism

Gℓ(k) ∼= M ′
ℓ /(σ− 1)M ′

ℓ .

To simplify the notation, we denote by [−] the Fq[t]-action on any t-module without
confusions. We denote by H the t-module associated to the Anderson dual t-motive
N . By our hypothesis that N ∼= M ′

ℓ for 1 ≤ ℓ ≤ s and the identification of k[σ]-bases
α and α̃ℓ, H is the t-module associated to M ′

ℓ for 1 ≤ ℓ ≤ s.
By Proposition 2.4.5 we know that M is an Anderson dual t-motive. We let G

be the t-module associated to M , ie., G(k) ∼= M /(σ− 1)M as Fq[t]-modules. Recall
that (α,βs+1, . . . ,βT ) is a k[σ]-basis of M and the rank of M ′

ℓ over k[σ] is n+ hℓ for
s+ 1 ≤ ℓ ≤ T . So the dimension of G is

(3.1.1) dimG = n+ hs+1 + · · ·+ hT .

3.2. The main diagram.
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Definition 3.2.1. Let n be the rank of N over k[σ]. For any integer m ≥ n and any
vector z = (z1, . . . , zm)tr ∈ Cm∞, we put

ẑ :=

z1
...
zn

 and z− :=

zn+1
...
zm


and so z is expressed as

z =
(

ẑ
z−

)
.

Definition 3.2.2. We define a morphism π :
⊕T

ℓ=1Gℓ → G of algebraic groups by

π((ztr1 , . . . , z
tr
T )

tr) = (

T∑
ℓ=1

ẑtrℓ , z
tr
1−, . . . , z

tr
T−)

tr.

Recall that µ : ⊕T
ℓ=1M

′
ℓ → M is the natural quotient map, which is a left k[t,σ]-

module homorphism by (3.0.2). Via µ we find from the following Lemma that π is
indeed a morphism of t-modules.

Lemma 3.2.3. Let notation be given as above. Then the following diagram

⊕T
ℓ=1 M

′
ℓ

∆ //

µ

��

⊕T
ℓ=1Gℓ(k)

π
��

M
∆ // G(k)

commutes. In particular, π is a morphism of t-modules.

Proof. Recall that for each 1 ≤ ℓ ≤ T , (α̃ℓ,βℓ) is a k[σ]-basis for M ′
ℓ . Since the maps

∆,π and µ are additive, it suffices to show the commutativity of the diagram on elements
of the form

(3.2.4) ω = fℓi(σ)αℓi ∈ M ′
ℓ ↪→ ⊕T

ℓ=1M
′
ℓ for 1 ≤ ℓ ≤ T , 1 ≤ i ≤ n

and

(3.2.5) ω = gℓi(σ)βℓi ∈ M ′
ℓ ↪→ ⊕T

ℓ=1M
′
ℓ for s+ 1 ≤ ℓ ≤ T , 1 ≤ i ≤ hℓ.

Let ω = fℓi(σ)αℓi be given in (3.2.4). We write

∆(ω) =



0 

i


n

...
δ (fℓi(σ))

...
0
...

}
hℓ0

∈ Gℓ ↪→ ⊕T
ℓ=1Gℓ.
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Then by the definition of π we have

π (∆(ω)) =



0 

i


n

...
δ (fℓi(σ))

...
0
...

}
hs+1 + · · ·+ hT0

∈ G.

On the other hand, we recall that the image of αℓi under the projection map µ :
⊕T

ℓ=1M
′
ℓ ↠ M is denoted by αi. As µ is a left k[t,σ]-module homomorphism, we

have
µ (fℓi(σ)αℓi) = fℓi(σ)αi.

Recall further that (α1, . . . ,αn,βs+1, . . . ,βT ) is a k[σ]-basis for M . Hence by the defini-
tion of ∆, we see that

∆ (µ (ω)) = ∆ (fℓi(σ)αi)

is equal to

π (∆(ω)) =



0 

i


n

...
δ (fℓi(σ))

...
0
...

}
hs+1 + · · ·+ hT0

∈ G.

Now we consider the case of ω = gℓi(σ)βℓi in (3.2.5). We denote by

zℓ := ∆(ω) =



0 

}
n...

0
i

hℓ

...
δ (gℓi(σ))

...
0

∈ Gℓ ↪→ ⊕T
ℓ=1Gℓ.

Since s+ 1 ≤ ℓ ≤ T and 1 ≤ i ≤ hℓ, by the definition of π we have

π (∆(ω)) =



0 

}
n...

0
}
hs+1 + · · ·+ hℓ−1...

zℓ−
...

}
hℓ+1 + · · ·+ hT0

∈ G.
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Recall that we identify µ(βℓ) with βℓ. Since µ is a left k[t,σ]-module homomorphism,
we have

µ(ω) = gℓi(σ)µ(βℓi) = gℓi(σ)βℓi.
Since (α1, . . . ,αn,βs+1, . . . ,βT ) is a k[σ]-basis for M , via this basis we see that ∆(µ(ω))
is the same as π (∆(ω)).

Since the map µ induces an Fq[t]-module homomorphism
T⊕
ℓ=1

(
M ′

ℓ /(σ− 1)M ′
ℓ

)→ M /(σ− 1)M ,

the diagram above shows that π : ⊕T
ℓ=1Gℓ(k) → G(k) is a left Fq[t]-module homomor-

phism, and hence π is a morphism of t-modules since the group of k-valued points is
Zariski dense inside the algebraic group in question.

□
Corollary 3.2.6. Let notation be given as above. Let ρℓ be the map defining the Fq[t]-
module structure of Gℓ for 1 ≤ ℓ ≤ T , and ρ be the map defining the Fq[t]-module of G.
If ρℓt ∈ MatdimGℓ

(A[τ]) for every 1 ≤ ℓ ≤ T , then ρt ∈ MatdimG(A[τ]).

Proof. It is clear to see that the map π is surjective. Since π is Fq[t]-linear, the result
is derived from Definition 3.2.2. □
3.3. The key lemma. In this section, we give a formula which is a crucial step in the
proof of Theorem 1.4.1. However, we state and prove the formulation in the setting as
general as possible. We follow Brownawell and Papanikolas to introduce the notion of
tractable coordinates, to which Yu’s sub-t-module theorem is most easily applied.

Definition 3.3.1. Let L be a field extension over k and suppose that Ld := Matd×1(L) has
a left Fq[t]-module structure via an Fq-linear ring homomorphism

Fq[t] → EndFq
(Ld).

The ith coordinate of Ld is called tractable if the ith coordinate of a · z is equal to a(θ)zi
for any a ∈ Fq[t] and any z = (z1, . . . , zd)tr ∈ Ld.

Suppose that the affine variety Ad
/L has a left Fq[t]-module structure in the sense that

for every field extension L ′/L, Ad(L ′) has a left Fq[t]-module structure that is functorial
in L ′. We say that the ith coordinate of Ad

/L is tractable if for every field extension L ′/L,
the ith coordinate of Ad(L ′) is tractable.

Typical examples of tractable coordinates arise from the Lie algebras of tensor powers
of the Carlitz module. For any positive integer s, we note that LieC⊗s(L) ∼= Ls has a
left Fq[t]-module structure via ∂[−]s for a field extension L/k. From (2.2.7) we see that
the sth coordinate of LieC⊗s(L) is tractable.

The main result in this section is the following lemma.

Lemma 3.3.2. Let N ,
{
M ′

ℓ

}T
ℓ=1 and M be the Anderson dual t-motives with hypothesis

given in Sec. 2.4. Let H be the n-dimensional t-module associated to N , Gℓ be the
t-module associated to M ′

ℓ for ℓ = 1, . . . , T , and G be the t-module associated to M .
Suppose that the nth coordinate of LieGℓ(C∞) is tractable for all 1 ≤ ℓ ≤ T . Let
Zℓ ∈ LieGℓ(C∞) be a vector with nth coordinate denoted by Lℓn. Let π : ⊕T

ℓ=1Gℓ → G be
the morphism of t-modules given in Definition 3.2.2. For each 1 ≤ ℓ ≤ T , let bℓ ∈ Fq[θ]
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be any polynomial and put vℓ := expGℓ
(Zℓ) ∈ Gℓ(C∞), Z := ∂π ((∂[bℓ(t)]Zℓ)ℓ) ∈ LieG(C∞)

and v := π (([bℓ(t)]vℓ)ℓ) ∈ G(C∞). Then we have
(a) The nth coordinate of Z is equal to

∑T
ℓ=1 bℓLℓn.

(b) expG(Z) is equal to v.

Proof. By the canonical identification Lie (⊕ℓGℓ(C∞)) = ⊕ℓ LieGℓ(C∞), we have the
following commutative diagram according to (2.2.5):

(3.3.3) ⊕T
ℓ=1Gℓ(C∞)

π // G(C∞)

⊕T
ℓ=1 LieGℓ(C∞)

⊕ℓ expGℓ

OO

∂π // LieG(C∞).

expG

OO

Property (b) follows from the diagram above.
To prove (a), we note that the nth coordinate of ∂[bℓ(t)]Zℓ is given by bℓLℓn since

by hypothesis the nth coordinate of LieGℓ(C∞) is tractable. By Definition 3.2.2 the
morphism π has no τ-terms when expressing it as a matrix with entries in k[τ]. So the
induced morphism ∂π has the same form as π (see (2.2.1)), implying the desired property
from the definition of Z. □

Remark 3.3.4. If we take N and all
{
M ′

ℓ

}T
ℓ=1 to be C⊗n, then the fiber coproduct of{

M ′
ℓ

}T
ℓ=1 over N is C⊗n and hence its associated t-module G is C⊗n. In this case,

the morphism π : ⊕T
ℓ=1C

⊗n → C⊗n is the sum of vectors. This special case would help
the reader understand how one uses Lemma 3.3.2 to generalize [AT90, Thm. 3.8.3(I)] to
higher depth MZV’s in Sec. 5.3

4. The convergence of logGℓ
(vℓ)

In this section, we consider the t-module and special point constructed in [CM19], and
the primary goal is to show Theorem 4.2.3 asserting that the logarithm of the t-module
in question converges ∞-adically at the special point, and certain coordinates of the
logarithm give Carlitz multiple star polylogarithms. To prove Theorem 1.4.1, the results
presented in this section are applied in Section 5 to illustrate that all the conditions of
Lemma 3.3.2 are satisfied for our setting.

4.1. The constructions of the t-module and special point. In what follows, we fix
s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . ,ur) ∈ (k

×
)r. We will define a pair (G,v)

associated to s and u, where G is a t-module defined over k and v ∈ G(k).
Put L0 := 1, and Li := (θ − θq) · · · (θ − θq

i
) for i ∈ N. We define the sth Carlitz

multiple polylogarithm, abbreviated as CMPL, as follows (see [C14]):

(4.1.1) Lis(z1, . . . , zr) :=
∑

i1>···>ir≥0

z
qi1
1 · · · zq

ir

r

L
s1
i1
· · · Lsrir

.

To avoid heavy notation on the subscript, we use the same notation Lis in the function
field setting. Since we no longer use the classical multiple polylogarithms in the later
context, there will not be misunderstanding.
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We also define the sth Carlitz multiple star polylogarithm, abbreviated as CMSPL, as
follows (see [CM19]):

(4.1.2) Li⋆s(z1, . . . , zr) :=
∑

i1≥···≥ir≥0

z
qi1
1 · · · zq

ir

r

L
s1
i1
· · · Lsrir

.

Remark 4.1.3. For an r-tuple s = (s1, . . . , sr) ∈ Nr, we put

D ′
s :=

{
(x1, . . . , xr) ∈ Cr∞ : |xi|∞ < q

siq

q−1 for i = 1, . . . , r
}
⊂ D ′′

s ,

where

(4.1.4) D ′′
s :=

{
(x1, . . . , xr) ∈ Cr∞ : |x1|∞ < q

s1q
q−1 and |xi|∞ ≤ q

siq

q−1 for i = 2, . . . , r
}
.

Since Lis(x) and Li⋆s(x) have the same general terms, by [C14, Rem. 5.1.5] these
two series converge ∞-adically for any x ∈ D ′′

s , and Lis(x) is non-vanishing for any
x ∈ D ′

s ∩ (C×∞)r. We mention that D ′′
s is used in Theorem 4.2.3.

For 1 ≤ ℓ ≤ r, we put dℓ := sℓ+ · · ·+ sr and d := d1+ · · ·+dr. Let B be a d×d-matrix
of the form  B[11] · · · B[1r]

... ...
B[r1] · · · B[rr]

 ,

where B[ℓm] is a dℓ × dm-matrix for each ℓ and m and we call B[ℓm] the (ℓ,m)-th block
sub-matrix of B.

For 1 ≤ ℓ ≤ m ≤ r, we define the following matrices:

Nℓ :=


0 1 0 · · · 0

0 1 . . . ...
. . . . . . 0

. . . 1
0

 ∈ Matdℓ(k),

N :=


N1

N2
. . .

Nr

 ∈ Matd(k),

E[ℓm] :=


0 · · · · · · 0
... . . . ...
0 . . . ...
1 0 · · · 0

 ∈ Matdℓ×dm(k) (if ℓ = m),

E[ℓm] :=


0 · · · · · · 0
... . . . ...
0 . . . ...

(−1)m−ℓ
∏m−1

e=ℓ ue 0 · · · 0

 ∈ Matdℓ×dm(k) (if ℓ < m),
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E :=


E[11] E[12] · · · E[1r]

E[22] . . . ...
. . . E[r− 1, r]

E[rr]

 ∈ Matd(k).

We further define

Em :=

 0 0 0
0 E[mm] 0
0 0 0

 ∈ Matd(k)

to be the d×d-matrix such that the (m,m)-th block sub-matrix is E[mm] and the others
are zero matrices.

We then define the t-module G = Gs,u := (Gd
a, ρ) by

(4.1.5) ρt = θId +N+ Eτ ∈ Matd(k[τ]),

and note that G depends only on u1, . . . ,ur−1. Finally, we define the special point

(4.1.6) v := vs,u :=



0


d1
...
0

(−1)r−1u1 · · ·ur

0
d2

...
0

(−1)r−2u2 · · ·ur
... ...
0

dr

...
0
ur

∈ G(k).

Remark 4.1.7. If u ∈ Ar, then ρt ∈ Matd(A[τ]) and v ∈ G(A).

Remark 4.1.8. The t-module G above is the t-module associated to the Anderson dual
t-motive M ′, where M ′ is free of rank r over k[t] and the representing matrix by σ on
certain k[t]-basis for M ′ is given by
(4.1.9)

Φ ′ :=


(t− θ)s1+···+sr

u
(−1)
1 (t− θ)s1+···+sr (t− θ)s2+···+sr

. . . . . .
u
(−1)
r−1 (t− θ)sr−1+sr (t− θ)sr

 ∈ Matr(k[t]),

where {
(t− θ)s1+···+sr , (t− θ)s2+···+sr , . . . , (t− θ)sr

}
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are the diagonals and{
u
(−1)
1 (t− θ)s1+···+sr , . . . ,u(−1)

r−1 (t− θ)sr−1+sr
}

are displayed below the diagonals. We note that M ′ is an iterated extension of tensor
powers of the Carlitz t-motive.

Remark 4.1.10. The Anderson dual t-motive M ′ contains C⊗n as a saturated sub-
Anderson dual t-motive (see [ABP04, Sec. 4.3.3]). Moreover, M ′ is rigid analytically
trivial since a rigid analytic trivialization Ψ ′ ∈ GLr(T) is given as the upper left square
of Ψ given in [CPY19, (2.3.7)] by changing (Q1, . . . ,Qr) to (u1, . . . ,ur).

4.2. The convergence. To study the ∞-adic convergence issue about logG at v, we
adopt some techniques of [AT90, 2.4.3]. We denote by

logG =
∑
i≥0

Piτ
i

the logarithm of the t-module G, where P0 = Id and Pi ∈ Matd(k) for all i.
For a matrix γ := (γij) with entries in C∞, we put

|γ|∞ := max
i,j

{
|γij|∞}

.

Lemma 4.2.1. Let s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . ,ur) ∈ (k
×
)r. If |uℓ|∞ ≤ q

sℓq

q−1

for each 1 ≤ ℓ < r, then we have

|PiN
dℓ−jEℓ|∞ ≤ q

(dℓ−j)qi−(dℓq
i−d1)

q
q−1

for each i, j, ℓ with i ≥ 0, 1 ≤ ℓ ≤ r, and 1 ≤ j ≤ dℓ.

Proof. Note that the (d1 + · · ·+ dℓ−1 + 1)th column of PiNdℓ−jEℓ is the (d1 + · · ·+ dℓ−1 +
j)th column of Pi, and the other columns are zero vectors. When i = 0, the inequality
holds clearly. Let i ≥ 1 and assume that the inequality holds for i. By [CM19, 3.2.4],
we have

Pi+1N
dℓ−jEℓ = −

2d1−2∑
m=0

1
(θq

i+1
− θ)m+1

m∑
n=0

(−1)n
(
m

n

)
Nm−nPiE

(i)Nn+dℓ−jEℓ.

Note that E(i)Nn+dℓ−jEℓ = 0 for n 6= j− 1, and Nm−n = 0 for m−n ≥ d1. Thus we have

Pi+1N
dℓ−jEℓ =

d1+j−2∑
m=j−1

(−1)j

(θq
i+1

− θ)m+1

(
m

j− 1

)
Nm−j+1PiE

(i)Ndℓ−1Eℓ

=

d1+j−2∑
m=j−1

(−1)j

(θq
i+1

− θ)m+1

(
m

j− 1

)
Nm−j+1

ℓ∑
n=1

(−1)ℓ−nP ′
i,ℓ,n

∏
n≤e≤ℓ−1

uqi

e ,

where P ′
i,ℓ,n is the matrix such that the (d1 + · · ·+ dℓ−1 + 1)th column is the (d1 + · · ·+

dn−1 + dn)th column of Pi, and the other columns are zero vectors.
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By the induction hypothesis, we obtain

∣∣∣P ′
i,ℓ,n

∏
n≤e≤ℓ−1

uqi

e

∣∣∣∞ ≤ q
(dn−dn)q

i−(dnq
i−d1)

q
q−1 ·

∏
n≤e≤ℓ−1

q
seq
q−1 ·q

i

= q
−(dnq

i−d1)
q

q−1 · q(dn−dℓ)
qi+1
q−1

= q
−(dℓq

i−d1)
q

q−1 .

Therefore we have

|Pi+1N
dℓ−jEℓ|∞ ≤ max

j−1≤m≤d1+j−2

{
q−(m+1)qi+1

}
· q−(dℓq

i−d1)
q

q−1

= q−jqi+1 · q−(dℓq
i−d1)

q
q−1

= q
(dℓ−j)qi+1−(dℓq

i+1−d1)
q

q−1 .

□

Proposition 4.2.2. Assume |uℓ|∞ ≤ q
sℓq

q−1 for each 1 ≤ ℓ < r. Take a point x = (xm) ∈
G(C∞) such that

|xd1+···+dℓ−1+j|∞ < q
−(dℓ−j)+

dℓq

q−1

for each j, ℓ with 1 ≤ ℓ ≤ r and 1 ≤ j ≤ dℓ. Then logG(x) converges in LieG(C∞).

Proof. By Lemma 4.2.1, we have

|Pix(i)|∞ ≤ max
j,ℓ

{
q
(dℓ−j)qi−(dℓq

i−d1)
q

q−1 · |xd1+···+dℓ−1+j|
qi∞}

= max
j,ℓ

{
q

d1q
q−1 ·

(
|xd1+···+dℓ−1+j|∞/q

−(dℓ−j)+
dℓq

q−1

)qi
}

→ 0 (i → ∞).

□

Theorem 4.2.3. Given any s = (s1, . . . , sr) ∈ Nr, we put s̃ := (sr, . . . , s1) and let D ′′
s̃

be defined in (4.1.4). Suppose that we have u = (u1, . . . ,ur) ∈ (k
×
)r for which ũ :=

(ur, . . . ,u1) ∈ D ′′
s̃ . Let G and v be defined as above associated to s and u. Then logG
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converges ∞-adically at v and we have the formula

logG(v) =



∗


d1
...
∗

(−1)r−1 Li⋆(sr,...,s1)(ur, . . . ,u1)

∗
d2

...
∗

(−1)r−2 Li⋆(sr,...,s2)(ur, . . . ,u2)
... ...
∗

dr

...
∗

Li⋆sr(ur)

∈ LieG(C∞).

In particular, the (s1 + · · ·+ sr)th coordinate of logG(v) is (−1)dep(s)−1 Li⋆s̃(ũ).

Proof. For each 1 ≤ ℓ ≤ r, the (d1+ · · ·+dℓ−1+dℓ)th component of v is (−1)r−ℓuℓuℓ+1 · · ·ur,
and we have

|(−1)r−ℓuℓuℓ+1 · · ·ur|∞ < q
sℓq

q−1 · q
sℓ+1q
q−1 · · · · · q

srq
q−1 = q

dℓq

q−1 = q
−(dℓ−dℓ)+

dℓq

q−1 .
Thus logG(v) converges ∞-adically by Proposition 4.2.2.

Arguments proving the second assertion are entirely the same as the calculations
in the proof of [CM19, 3.3.3], where we just change the v-adic convergence to ∞-adic
convergence. □
Remark 4.2.4. We mention that all other coordinates of logG(v) can be explicitly written
down in terms of Taylor coefficients of t-motivic CMSPL’s in [CGM19].

5. Proof of Theorem 1.4.1

5.1. Logarithmic interpretation and formulae for MZV’s via CMPL’s. When r = 1
and s = 1 ∈ N, the series (4.1.1) is called the Carlitz logarithm, which is the formal
inverse of the exponential map of the Carlitz module C. For r = 1 and any s ∈ N, the
series Lis in (4.1.1) is called the sth Carlitz polylogarithm studied in [AT90]. Unlike the
classical case where there is a simple identity between ζ(s) and a particular special-
ization of a classical multiple polylogarithm, ζA(s) is in fact a k-linear combination of
Lis at some integral points, which will be reviewed in the following section. It turns
out that such an identity for ζA(s) is a crucial connection that enables us to give a
logarithmic interpretation for ζA(s) in Theorem 1.4.1.
Remark 5.1.1. For recent advances of transcendence theory for CMPL’s, see [CY07, M17].

We now recall the Carlitz factorials. We set D0 := 1, and Di :=
∏i−1

j=0(θ
qi − θq

j
) ∈ A

for i ∈ N. Given a non-negative integer n, we express n as n =
∑

i≥0 niq
i for

0 ≤ ni ≤ q− 1. The Carlitz factorial is defined as

(5.1.2) Γn+1 :=
∏
i

D
ni

i ∈ A.
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The aim of this section is to prove the following theorem.

Theorem 5.1.3. Given any r-tuple s = (s1, . . . , sr) ∈ Nr, we put n := wt(s). We explicitly
construct a uniformizable t-module Gs that is defined over k, a special point vs ∈ Gs(k)
and a vector Zs ∈ LieGs(C∞) so that

(a) Γs1 · · · ΓsrζA(s) occurs as the nth coordinate of Zs.
(b) expGs

(Zs) = vs.

To introduce the formula of ζA(s) in terms of Lis, we need to review the Anderson-
Thakur polynomials [AT90, AT09]. Let t be an independent variable from θ. We put
F0 := 1 and define polynomials Fi ∈ A[t] for i ∈ N by the product

Fi =

i∏
j=1

(
tq

i

− θq
j
)
.

We then define the sequence of Anderson-Thakur polynomials Hn ∈ A[t] (for non-
negative integers n) by the generating function identity(

1−
∞∑
i=0

Fi

Di|θ=t
xq

i

)−1

=

∞∑
n=0

Hn

Γn+1|θ=t
xn,

and note that they satisfy the following important interpolation formula [AT90, (3.7.4)].
For integers d ≥ 0 and s ≥ 1, we have

(5.1.4)
(
Hs−1

(d)
)∣∣∣

t=θ
= Γs · Sd(s) · Lsd,

where Sd(s) is the sum of the following reciprocal polynomials

Sd(s) :=
∑

a∈Ad,+

1
as

∈ k,

where Ad,+ is the set of monic polynomials of degree d in A and Ld is defined in
Sec. 4.1. Define the sup-norm ‖f‖ := maxi {|ai|∞} for polynomials f =

∑
i ait

i ∈ C∞[t],
and note further that the Anderson-Thakur polynomials have the following property

(5.1.5) ‖Hn−1(t)‖ < |θ|
nq
q−1∞

for every n ∈ N.

Remark 5.1.6. The bound above comes from [AT90, (3.7.3)]. However, we shall mention
about the difference of notation. Our Hn(t) is exactly the same as Hn(y, T) in [AT90]
replacing y by θ and replacing T by t. One can compare with [AT09], where their T is
referred to our t and their t is referred to our θ.

In what follows, we fix an r-tuple of positive integers s = (s1, . . . , sr) ∈ Nr. For each
1 ≤ i ≤ r, we expand the Anderson-Thakur polynomial Hsi−1(t) ∈ A[t] as

(5.1.7) Hsi−1(t) =

mi∑
j=0

uijt
j,

where uij ∈ A with uimi
6= 0 and by (5.1.5) it satisfies

(5.1.8) |uij|∞ < q
siq

q−1 for j = 0, . . . ,mi.
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We define
Js := {0, 1, . . . ,m1}× · · · × {0, 1, . . . ,mr} .

For each j = (j1, . . . , jr) ∈ Js, we set

uj := (u1j1 , . . . ,urjr) ∈ Ar,

and
aj := aj(t) := tj1+···+jr .

Note that by (5.1.8), we have uj ∈ D ′
s for every j ∈ Js.

Set Γs := Γs1 · · · Γsr ∈ A. The first author of the present paper established the following
formula that extends the work of Anderson-Thakur [AT90] for r = 1.

Theorem 5.1.9. ([C14, Thm. 5.5.2]) For each s = (s1, . . . , sr) ∈ Nr, let Js, aj and uj be
defined as above. Then the following identity holds.

ΓsζA(s) =
∑
j∈Js

aj(θ)Lis(uj).

Remark 5.1.10. The identity above is based on the interpolation formula (5.1.4). Thakur [T92]
initiated the study of generalizing the power sum Sd(s) to general A, which is the ring
of regular functions on a smooth, projective and geometrically irreducible curve over
Fq regular away from a fixed closed point. We mention that a good analogue of the
Anderson-Thakur polynomials for A satisfying an interpolation formula involving power
sums such as (5.1.4) will be very helpful for the study of MZV’s over A, but so far such
an analogue is not known yet.

In the following section, we have to express the right hand side of the identity in
Theorem 5.1.9 in terms of CMSPL’s since such a formulation plays a crucial role in the
proof of Theorem 1.4.1.

5.2. Formulae for MZV’s via CMSPL’s. To express CMPL in terms of CMSPL’s, one
just needs the inclusion-exclusion principle on the set

{i1 > · · · > ir ≥ 0} .

We take a simple example for r = 2, which would simply allow one to understand what
we do in the more general setting. Since we have

{i1 > i2 ≥ 0} = {i1 ≥ i2 ≥ 0} \ {i1 = i2 ≥ 0} ,

it follows that
Li(s1,s2)(z1, z2) = Li⋆(s1,s2)(z1, z2) −Li⋆s1+s2(z1 + z2).

So one can obtain that Lis can be expressed as a linear combination of CMSPL’s, which
is presented in Proposition 5.2.3.

In what follows, the main target is to express ΓsζA(s) explicitly as an A-linear combi-
nation of some CMSPL’s at certain integral points. The details of the procedure below
are to explain that sℓ, bℓ and uℓ in Theorem 5.2.5 can be written down explicitly, and
that will explain why the constructions of Gs and vs in Theorem 1.4.1 are explicit. So
we suggest the reader to skip ahead to Theorem 5.2.5 unless one needs explicit examples
of Gs and vs.

An index of depth r is defined to be an r-tuple s = (s1, . . . , sr) ∈ Nr.
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Definition 5.2.1. Let s = (s1, . . . , sr) ∈ Nr be an index of depth r > 1. Let S be the set
consisting of the two symbols ’,’ (comma) and ’+’ (addition) and S× be the set consisting
of the two symbols ‘,’ and ‘×’ (multiplication).

(1) We define a map λ :=
(
w 7→ w×) : Sr−1 → S×r−1 by leaving ‘,’ be fixed and changing

‘+’ to ‘×’. That is, if w = (w1, . . . ,wr−1), then w×
i := ‘,’ if wi = ‘,’; otherwise w×

i :=
‘×’.

(2) For any w = (w1, . . . ,wr−1) ∈ Sr−1, we define w(s) := (s1w1s2w2 · · ·wr−1sr). That
is, w(s) is a tuple of positive integers obtained from (s1, . . . , sr) by inserting the
symbol wi between si and si+1 for i = 1, . . . , r− 1.

(3) For any w = (w1, . . . ,wr−1) ∈ Sr−1 and u = (u1, . . . ,ur) ∈ k̄r, we define w×(u) :=
(u1w×

1 u2w×
2 · · ·w×

r−1ur). That is, w×(u) is the tuple of algebraic elements over
k obtained from (u1, . . . ,ur) by inserting the symbol w×

i between ui and ui+1 for
i = 1, . . . , r− 1.

For example, let w = (w1,w2) with w1 = ‘,’ and w2 = ‘+’. Then for s = (s1, s2, s3) ∈
N3, we have

w(s) = (s1, s2 + s3).
Furthermore, for u = (u1,u2,u3) ∈ k

3, we have

w×(u) = (u1,u2u3).
Finally, we define ν(w) to be the number of ‘+’ in w.
Proposition 5.2.2. Fix an index s ∈ Nr with r > 1. Then for any u ∈ D ′

s (resp. u ∈ D ′′
s )

and w ∈ Sr−1, we have that w×(u) ∈ D ′
w(s) (resp. w×(u) ∈ D ′′

w(s)). In particular,
Li⋆w(s)(w

×(u)) converges by Remark 4.1.3.

Proof. The assertion follows immediately from the non-archimedean property of | · |∞.
□

In order to make our formula of MZV’s convenient for use, for r = 1 we simply define
Sr−1 = S0 := {identity}, and denote by P(s) = s, P×(u) = u and ν(P) := 0 for P ∈ S0.

Applying the inclusion-exclusion principle on the set {i1 > · · · > ir ≥ 0}, we have the
following identity.
Proposition 5.2.3. Let r be a positive integer, s ∈ Nr be an index and z1, . . . , zr be r

independent variables. Putting z = (z1, . . . , zr). Then the following identity holds:

Lis(z) =
∑

P∈Sr−1

(−1)ν(P) Li⋆P(s)(P
×(z)).

Remark 5.2.4. The similar statement of Proposition 5.2.3 for classical MZV’s can be seen
in [Ya13].

Recall that the special points uj in Theorem 5.1.9 belong to D ′
s for every j ∈ Js,

and so Li⋆
P(s)(P

×(uℓ)) converges by Proposition 5.2.2. Combining Theorem 5.1.9 and the
proposition above, we have the following expression for ζA(s) in terms of CMSPL’s.
Theorem 5.2.5. For any depth r index s ∈ Nr, there are explicit tuples sℓ ∈ Ndep(sℓ) with
wt(sℓ) = wt(s), dep(sℓ) ≤ r, explicit coefficients bℓ ∈ A and vectors uℓ ∈ Adep(sℓ) so that

ΓsζA(s) =
∑
ℓ

bℓ · (−1)dep(sℓ)−1 Li⋆sℓ(uℓ).
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Remark 5.2.6. Precisely, we have

ΓsζA(s) =
∑
j∈Js

aj(θ)Lis(uj)

=
∑
j∈Js

aj(θ)
∑

P∈Sr−1

(−1)ν(P) Li⋆P(s)(P
×(uj))

=
∑
j∈Js

∑
P∈Sr−1

(−1)r−1aj(θ) · (−1)dep(P(s))−1 Li⋆P(s)(P
×(uj)),

where we use the equality ν(P) + dep(P(s)) = r for each P ∈ Sr−1. Let T be the cardi-
nality of the terms in the right hand side of the identity above. Then for convenience
we renumber the indices ℓ of (bℓ, sℓ,uℓ) for which

(5.2.7) {(bℓ, sℓ,uℓ)|1 ≤ ℓ ≤ T } = {((−1)r−1aj(θ),P(s),P×(uj))|j ∈ Js,P ∈ Sr−1},
and dep(sℓ) = 1 for 1 ≤ ℓ ≤ s, and dep(sℓ) ≥ 2 for s+ 1 ≤ ℓ ≤ T . Note further that when
r = 1, ie., s = s ∈ N, we have Lis = Li⋆s and so the formula above for ΓsζA(s) is the
same as Theorem 5.1.9, which was established previously by Anderson-Thakur [AT90].

Note that the terms (−1)dep(sℓ)−1 Li⋆sℓ(uℓ) in the identity above occur as certain coor-
dinates of the logarithm of the t-module considered in Theorem 4.2.3.

5.3. Proof of Theorem 5.1.3. Let r be a positive integer and fix any index s =
(s1, . . . , sr) ∈ Nr. Let n := wt(s). We identify the set of triples (bℓ, sℓ,uℓ) occurring
in Theorem 5.2.5 as the set

T = {1, . . . , T } ,
where we understand that each element ℓ ∈ T corresponds to a triple (bℓ, sℓ,uℓ). We
further rearrange the indices to decompose the disjoint union

T = T1 ∪T2

so that T1 consists of those indices ℓ for which dep(sℓ) = dep(uℓ) = 1, and T2 consists
of those indices for which dep(sℓ) = dep(uℓ) > 1.

Put s := |T1| and note that due to cancellations of the right hand side of the identity
in Theorem 5.2.5, we allow s to be either zero or T .

For each ℓ ∈ T equipped with (bℓ, sℓ,uℓ), we let Gℓ be the t-module that is defined
in (4.1.5), and vℓ ∈ Gℓ(k) be the special point defined in (4.1.6) that are constructed
using the pair (s̃ℓ, ũℓ), where ·̃ is defined to reverse the order of components (see the
definition in Theorem 4.2.3). Note that Gℓ is the t-module associated to the Anderson
dual t-motive M ′

ℓ that is associated to (s̃ℓ, ũℓ) and is defined in Remark 4.1.8. So by
Remark 4.1.10 M ′

ℓ is rigid analytically trivial for each ℓ ∈ T . Note that wt(sℓ) = wt(s) =
n for every ℓ ∈ T . Therefore, by Theorem 4.2.3 the nth coordinate of logGℓ

(vℓ) is

(−1)dep(s̃ℓ)−1 Li⋆˜̃sℓ
( ˜̃uℓ

)
= (−1)dep(sℓ)−1 Li⋆sℓ (uℓ) .

Put N := C⊗n, the nth tensor power of the Carlitz t-motive, and note that C⊗n is its
corresponding t-module (see [CPY19, Sec. 5.2]). By the definition of C⊗n, we see that
the nth coordinate of LieC⊗n(C∞) is tractable.

Note that for ℓ ∈ T1, M ′
ℓ is isomorphic to N and for ℓ ∈ T2, M ′

ℓ fits into the short
exact sequence of left k[t,σ]-modules

0 → N → M ′
ℓ → M ′′

ℓ → 0,
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where M ′′
ℓ is an Anderson dual t-motive. Let M be the fiber coproduct of

{
M ′

ℓ

}T
ℓ=1

over N and so by Proposition 2.5.3 M is rigid analytically trivial. Let Gs be the
t-module associated to M , ie., Gs(k) ∼= M /(σ− 1)M as Fq[t]-modules. Hence Gs is
uniformizable by Remark 2.5.2.

Recall that every uj belongs to D ′
s for j ∈ Js, and hence we have that for every ℓ ∈ T ,

uℓ belongs to D ′
sℓ

and hence ũℓ ∈ D ′
s̃ℓ
. Since (Gℓ,vℓ) are constructed using (s̃ℓ, ũℓ),

which satisfy the conditions of Theorem 4.2.3, logGℓ
(vℓ) converges ∞-adically for every

ℓ ∈ T .
Note that since all uℓ are integral points (see (5.2.7)), by Remark 4.1.7 the t-modules

{Gℓ}
T
ℓ=1 are defined over k and hence Gs is also defined over k by Corollary 3.2.6.

Now we let π : ⊕T
ℓ=1Gℓ → Gs be the morphism of t-modules over k given in Defini-

tion 3.2.2. Recall that to simplify notation, we use [a] for the action of a ∈ Fq[t] on
any t-module without confusion. For each ℓ ∈ T , we define

(5.3.1) Zℓ := logGℓ
(vℓ) ∈ LieGℓ(C∞),

and further set

(5.3.2) Zs := ∂π ((∂[bℓ(t)]Zℓ)ℓ) ∈ LieGs(C∞),

and

(5.3.3) vs := π (([bℓ(t)]vℓ)ℓ) ∈ Gs(k),

where bℓ ∈ A are given in Theorem 5.2.5. We note that by the functional equation (2.2.3)
we have

expGℓ
(Zℓ) = vℓ

and therefore by Lemma 3.3.2 we have

expGs
(Zs) = vs.

On the other hand, by Theorem 4.2.3 the nth coordinate of Zℓ is given by (−1)dep(sℓ)−1 Li⋆sℓ(uℓ).
By Lemma 3.3.2 and the formula in Theorem 5.2.5 we see that the nth coordinate of
Zs is ΓsζA(s).

Remark 5.3.4. We mention that all other coordinates of Zs can be explicitly written down
in terms of Taylor coefficients of t-motivic MZV’s and t-motivic CMSPL’s in [CGM19].
As the formulae of the coordinates are not used here, we refer the reader to [CGM19]
in order to save some of length of this paper.

5.4. Examples.

Example 5.4.1. Take q to be a power of any prime number p and let s = (1, 1, 2). In
this case, we have Γ1 = Γ2 = 1, H1−1 = H2−1 = 1, J(1,1,2) = {(0, 0, 0)}, u(0,0,0) = (1, 1, 1),
a(0,0,0) = 1. Thus we have

ζA(1, 1, 2) = Li(1,1,2)(1, 1, 1) = Li⋆(1,1,2)(1, 1, 1) −Li⋆(2,2)(1, 1) −Li⋆(1,3)(1, 1) +Li⋆4(1)

= (−1)1−1 Li⋆4(1) + (−1)2−1 Li⋆(1,3)(1, 1)

+(−1)2−1 Li⋆(2,2)(1, 1) + (−1)3−1 Li⋆(1,1,2)(1, 1, 1),

and (b1, s1,u1) = (1, 4, 1), (b2, s2,u2) = (1, (1, 3), (1, 1)), (b3, s3,u3) = (1, (2, 2), (1, 1)),
(b4, s4,u4) = (1, (1, 1, 2), (1, 1, 1)).
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For ℓ = 1, we have G1 = C⊗4, and hence its t-action on G4
a is given by

C⊗4
t =


θ 1

θ 1
θ 1

τ θ

 .

We further have v1 = (0, 0, 0, 1)tr ∈ C⊗4(k), and Z1 = (∗, ∗, ∗, Li⋆4(1))tr ∈ LieC⊗4(C∞).
For ℓ = 2, we have G2 = G5

a with the t-action

[t] =


θ 1

θ 1
θ 1

τ θ −τ

θ+ τ

 ,

and
v2 = (0, 0, 0,−1, 1)tr ∈ G2(k),

Z2 = (∗, ∗, ∗,−Li⋆(1,3)(1, 1), Li
⋆
1 (1))

tr ∈ LieG2(C∞).

For ℓ = 3, we have G3 = G6
a with the t-action

[t] =


θ 1

θ 1
θ 1

τ θ −τ

θ 1
τ θ

 ,

and points
v3 = (0, 0, 0,−1, 0, 1)tr ∈ G3(k),

Z3 = (∗, ∗, ∗,−Li⋆(2,2)(1, 1), ∗, Li
⋆
2(1))

tr ∈ LieG3(C∞).

For ℓ = 4, we have G4 = G7
a with the t-action

[t] =



θ 1
θ 1

θ 1
τ θ −τ τ

θ 1
τ θ −τ

θ+ τ


,

and
v4 = (0, 0, 0, 1, 0,−1, 1)tr ∈ G4(k),

Z4 = (∗, ∗, ∗, Li⋆(1,1,2)(1, 1, 1), ∗,−Li⋆(1,1)(1, 1), ∗, Li
⋆
1 (1))

tr ∈ LieG4(C∞).
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Therefore we have G(1,1,2) = G10
a with the t-action

[t] =



θ 1
θ 1

θ 1
τ θ −τ −τ −τ τ

θ+ τ

θ 1
τ θ

θ 1
τ θ −τ

θ+ τ


,

and
v(1,1,2) = π(v1,v2,v3,v4) = (0, 0, 0, 0, 1, 0, 1, 0,−1, 1)tr ∈ G(1,1,2)(k),

Z(1,1,2) = (∗, ∗, ∗, ζA(1, 1, 2), Li⋆1 (1), ∗, Li⋆2(1), ∗,−Li⋆(1,1)(1, 1), Li
⋆
1 (1))

tr ∈ LieG(1,1,2)(C∞).

Example 5.4.2. Take q = 2 and s = (1, 3). In this case, we have Γ1 = 1, Γ3 = θ2 + θ,
H1−1 = 1, H3−1 = t+ θ2, J(1,3) = {(0, 0), (0, 1)}, u(0,0) = (1, θ2), u(0,1) = (1, 1), a(0,0) = 1,
a(0,1) = t. Thus we have

(θ2 + θ)ζA(1, 3) = Li(1,3)(1, θ2) + θLi(1,3)(1, 1)

= Li⋆(1,3)(1, θ
2) −Li⋆4(θ

2) + θLi⋆(1,3)(1, 1) − θLi⋆4(1)

= (−1)1−1 Li⋆4(θ
2) + θ · (−1)1−1 Li⋆4(1)

+(−1)2−1 Li⋆(1,3)(1, θ
2) + θ · (−1)2−1 Li⋆(1,3)(1, 1),

and (b1, s1,u1) = (1, 4, θ2), (b2, s2,u2) = (θ, 4, 1), (b3, s3,u3) = (1, (1, 3), (1, θ2)), (b4, s4,u4) =
(θ, (1, 3), (1, 1)).

For ℓ = 1, we have G1 = C⊗4, and points
v1 = (0, 0, 0, θ2)tr ∈ C⊗4(k),

Z1 = (∗, ∗, ∗, Li⋆4(θ2))tr ∈ LieC⊗4(C∞).
For ℓ = 2, we have G2 = C⊗4, and points

v2 = (0, 0, 0, 1)tr ∈ C⊗4(k),

Z2 = (∗, ∗, ∗, Li⋆4(1))tr ∈ LieC⊗4(C∞).
We also have

[t]v2 = (0, 0, 1, θ)tr ∈ C⊗4(k).
For ℓ = 3, we have G3 = G5

a with the t-action

[t] =


θ 1

θ 1
θ 1

τ θ −θ2τ
θ+ τ

 ,

and points
v3 = (0, 0, 0,−θ2, 1)tr ∈ G3(k),

Z3 = (∗, ∗, ∗,−Li⋆(1,3)(1, θ
2), Li⋆1 (1))

tr ∈ LieG3(C∞).
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For ℓ = 4, we have G4 = G5
a with the t-action

[t] =


θ 1

θ 1
θ 1

τ θ −τ

θ+ τ

 ,

and
v4 = (0, 0, 0,−1, 1)tr ∈ G4(k),

Z4 = (∗, ∗, ∗,−Li⋆(1,3)(1, 1), Li
⋆
1 (1))

tr ∈ LieG4(C∞).

We also have
[t]v4 = (0, 0, 1, θ+ 1, θ+ 1)tr ∈ G4(k).

Therefore we have G(1,3) = G6
a with the t-action

[t] =


θ 1

θ 1
θ 1

τ θ −θ2τ −τ

θ+ τ

θ+ τ

 ,

and
v(1,3) = π(v1, [t]v2,v3, [t]v4) = (0, 0, 0, 1, 1, θ+ 1)tr ∈ G(1,3)(k),

Z(1,3) = (∗, ∗, ∗, (θ2 + θ)ζA(1, 3), Li⋆1 (1), θLi
⋆
1 (1))

tr ∈ LieG(1,3)(C∞).

6. v-adic multiple zeta values

Throughout this section, we fix a finite place v of k corresponding to a monic ir-
reducible polynomial of A that is still denoted by v for convenience, and then fix an
embedding k ↪→ Cv. Let | · |v be the normalized v-adic absolute value on Cv. For a
matrix γ = (γij) with entries γij ∈ Cv, we define

|γ|v := max
i,j

{
|γij|v

}
.

In this section, we will define v-adic multiple zeta values inspired by Furusho’s def-
inition of p-adic multiple zeta values in [F04]. The primary goal of this section is to
give a logarithmic interpretation for v-adic MZV’s in Theorem 6.2.4. Together with
Theorem 1.4.1, we apply Yu’s sub-t-module theorem [Yu97] to prove Theorem 1.2.2 .

In what follows, for a t-module G defined over k we denote by logG(x)v the v-adic
convergence value of logG at x ∈ G(Cv) whenever logG(x)v converges, ie., logG converges
v-adically at x.

6.1. Definition of v-adic MZV’s.



32 CHIEH-YU CHANG AND YOSHINORI MISHIBA

6.1.1. The set up. Fix an index s = (s1, . . . , sr) ∈ Nr with n := wt(s). As in Sec. 5.3, we
identify the set of triples (bℓ, sℓ,uℓ) occurring in Theorem 5.2.5 as the set

T = {1, . . . , T } ,
where we understand that each element ℓ ∈ T corresponds to a triple (bℓ, sℓ,uℓ). Recall
that each uℓ is an integral point in Adep(sℓ). We let Gℓ be the t-module defined over k

(Sec. 4.1) and vℓ be the special point in Gℓ(k) constructed using the pair (s̃ℓ, ũℓ). We
then let Gs be the t-module associated to the fiber coproduct M of the Anderson dual
t-motives

{
M ′

ℓ

}T
ℓ=1 over C⊗n. Finally, we define vs := π (([bℓ(t)]vℓ)ℓ) ∈ Gs(k).

Note that Gs has dimension d := ds := n+ hs+1 + · · ·+ hT (see (3.1.1)), where n+ hℓ

is the dimension of Gℓ for s+ 1 ≤ ℓ ≤ T .

6.1.2. v-adic analytic continuation of Li⋆s . For each ℓ ∈ T , we consider the CMSPL Li⋆sℓ
and its v-adic convergence. We note that Li⋆sℓ converges on the open unit ball centered
at the zero of C

dep(sℓ)
v and it is shown in [CM19, Sec. 4.1] that Li⋆sℓ can be analytically

continued to the closed unit ball centered at the zero of C
dep(sℓ)
v . Since uℓ is an integral

point in Adep sℓ , we have |uℓ|v ≤ 1 and hence Li⋆sℓ is defined at uℓ in the sense of v-adic
convergence. We denote by Li⋆sℓ(uℓ)v the v-adic convergence value of Li⋆sℓ at uℓ, where
we add the subscript v to emphasize the v-adic convergence. More precisely, Li⋆sℓ(uℓ)v is
the value (−1)dep(sℓ)−1

a(θ) multiplied by the nth coordinate of logGℓ
([a]vℓ)v for some nonzero

polynomial a ∈ Fq[t] with |[a]vℓ|v < 1. Since the coefficients of logGℓ
are matrices with

entries in k (see [CM19, (3.2.4)]), we have Li⋆sℓ(uℓ)v ∈ kv.

6.1.3. The definition. Now we are ready to define v-adic MZV’s using Li⋆sℓ(uℓ)v.

Definition 6.1.1. For any index s = (s1, . . . , sr) ∈ Nr, let notation be given in Theo-
rem 5.2.5. We define the v-adic MZV ζA(s)v to be the following value:

ζA(s)v :=
1
Γs

∑
ℓ

bℓ · (−1)dep(sℓ)−1 Li⋆sℓ(uℓ)v ∈ kv.

We call wt(s) :=
∑r

i=1 si the weight and dep(s) := r the depth of the presentation ζA(s)v.
We further mention that Thakur [T04, Sec. 5.10] also defined v-adic MZV’s by using

Kummer congruences to interpolate the power sums at non-positive integers, and he
remarked that his interpolated v-adic MZV’s are not the same as ours defined above
but they are expected to be related by certain linear relations.

6.2. Logarithmic interpretation of v-adic MZV’s. The primary goal in this subsec-
tion is to give a logarithmic interpretation for ζA(s)v, where the depth one case was
established in [AT90].

6.2.1. The v-adic convergence of logGs
.

Proposition 6.2.1. Fix any index s ∈ Nr. For any x ∈ Gs(Cv) with |x|v < 1, we have
that logGs

converges v-adically at x in LieGs(Cv).

Proof. We write logC⊗n =
∑∞

i=0 Riτ
i (Ri ∈ Matn(k)) for the logarithm of C⊗n. We

denote the logarithms of Gs and Gℓ by

logGs
=

∑
i≥0

Qiτ
i (Qi ∈ Matd(k)) and logGℓ

=
∑
i≥0

Qℓiτ
i (Qℓi ∈ Matn+hℓ

(k))
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respectively. For each s+ 1 ≤ ℓ ≤ T , we can write

Qℓi =

(
Ri R ′

ℓi
R ′′
ℓi

)
(R ′

ℓi ∈ Matn×hℓ
(k), R ′′

ℓi ∈ Mathℓ
(k)).

Then Qi is expressed as

Qi =


Ri R ′

s+1,i R ′
s+2,i · · · R ′

T ,i
R ′′
s+1,i

R ′′
s+2,i

. . .
R ′′
T ,i


for each i since it forces the functional equation

∂π ◦
(
⊕T

ℓ=1 logGℓ

)
= logGs

◦π.

Let x = (xtr0 ,x
tr
s+1,x

tr
s+2, . . . ,x

tr
T )

tr ∈ Gs(Cv) with x0 ∈ Cn
v , xℓ ∈ C

hℓ
v for s+ 1 ≤ ℓ ≤ T ,

and |x|v < 1. Note that by [CM19, Sec. 3.3] we have{∣∣∣∣∣Qs+1,i

(
x0
xs+1

)(i)
∣∣∣∣∣
v

} → 0 and

{∣∣∣∣∣Qℓi

(
0
xℓ

)(i)
∣∣∣∣∣
v

} → 0 as i → ∞.

It follows that

|Qix(i)|v ≤ max
s+2≤ℓ≤T

{∣∣∣∣∣Qs+1,i

(
x0
xs+1

)(i)
∣∣∣∣∣
v

,

∣∣∣∣∣Qℓi

(
0
xℓ

)(i)
∣∣∣∣∣
v

} → 0 as i → ∞.

□
Proposition 6.2.2. For any index s ∈ Nr, we continue with the notation as above. Then
there is a precise nonzero polynomial a ∈ Fq[t] (depending on s and v) so that |[a]vs|v < 1,
hence logGs

([a]vs)v converges.

Proof. Write sℓ = (sℓ1, . . . , sℓrℓ) and set

aℓ := (v(t)sℓ1+sℓ2+···+sℓrℓ − 1)(v(t)sℓ1+sℓ2+···+sℓ,rℓ−1 − 1) · · · (v(t)sℓ1 − 1) ∈ Fq[t]

and

a :=

T∏
ℓ=1

aℓ ∈ Fq[t],

where v(t) := v|θ=t. Since uℓ ∈ Adep(sℓ) for each ℓ, by Remark 4.1.7 we have that for
each α ∈ Fq[t], the coefficient matrices of τi of [α] are in MatdimGℓ

(A). It follows that
|[a]([bℓ(t)]vℓ)|v = |[bℓ(t)]([a]vℓ)|v ≤ |[a]vℓ|v ≤ |[aℓ]vℓ|v < 1, where the last inequality comes
from the proof of [CM19, Prop. 4.1.1]. So by [CM19, Sec. 3.3] again logGℓ

([a]([bℓ]vℓ))v
converges in LieGℓ(Cv). Therefore we have
(6.2.3) |[a]vs|v = |π (([a][bℓ(t)]vℓ)ℓ) |v ≤ max

ℓ
{|[a]([bℓ(t)]vℓ)|v} < 1,

where the first inequality comes from Definition 3.2.2. It follows that
logGs

([a]vs)v = ∂π((logGℓ
([a]([bℓ(t)]vℓ))v)ℓ)

converges in LieGs(Cv). □
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Theorem 6.2.4. Fix a finite place v of k. Given an index s = (s1, . . . , sr) ∈ Nr, we put
n := wt(s) and let {(bℓ, sℓ,uℓ)}

T
ℓ=1 be the set of triples in (5.2.7). Let Gℓ be the t-module

defined over k and vℓ ∈ Gℓ(k) be the special point which are constructed using the pairs
(s̃ℓ, ũℓ), and Gs be the t-module over k and vs ∈ Gs(k) be constructed as above. We take
a nonzero a ∈ Fq[t] for which |[a]vs|v < 1. Then the nth coordinate of logGs

([a]vs)v is
given by a(θ)ΓsζA(s)v.

Remark 6.2.5. Since the nth coordinate of LieGs(Cv) is tractable, it is enough to show
that the statement of Theorem 6.2.4 holds for some a. Indeed, assume that the statement
holds for a, and let a ′ ∈ Fq[t] be another nonzero polynomial with |[a ′]vs|v < 1. Then
we have

a(θ)× nth coordinate of logGs
([a ′]vs)v = nth coordinate of logGs

([a][a ′]vs)v
= a ′(θ)× nth coordinate of logGs

([a]vs)v
= a(θ)a ′(θ)ΓsζA(s)v.

Proof of Theorem 6.2.4. Let T = {1, · · · , T } be given as before in Sec. 6.1.1. We first
take a nonzero polynomial a ∈ Fq[t] so that

• |[a(t)]vs|v < 1.
• |[a(t)]vℓ|v < 1 for all ℓ ∈ T .

Note that the second property can be obtained using the same arguments in (6.2.3). It
follows by Proposition 6.2.1 that logGs

([a]vs)v converges, and by [CM19, Thm. 3.3.3] that
every logGℓ

([a]([bℓ(t)]vℓ))v converges for every ℓ ∈ T . We have seen that

• a(θ)bℓ× (−1)dep(sℓ)−1 Li⋆sℓ(uℓ)v is the nth coordinate of logGℓ
([a]([bℓ(t)]vℓ))v (see [CM19,

Def. 4.1.2]);
• The nth coordinate of LieGℓ is tractable (see (4.1.5)).

Recall by (2.2.6) that we have the following functional equation:

(6.2.6) logGs
◦π = ∂π ◦

(
⊕T

ℓ=1 logGℓ

)
.

Recall by (5.3.3) vs := π (([bℓ(t)]vℓ)ℓ) ∈ Gs(k). Now we consider the specializa-
tion at the point ([a]([bℓ(t)]vℓ))ℓ ∈ ⊕T

ℓ=1Gℓ(Cv) of both sides of (6.2.6) under the
v-adic convergence. The LHS of (6.2.6) evaluated at ([a]([bℓ(t)]vℓ))ℓ is the vector
logGs

([a]vs)v, which is identical to ∂π
(
(logGℓ

([a]([bℓ(t)]vℓ)))ℓ
)
from the RHS of (6.2.6)

evaluated at ([a]([bℓ(t)]vℓ))ℓ. By Definition 3.2.2 we see that the nth coordinate of
∂π
(
(logGℓ

([a]([bℓ(t)]vℓ)))ℓ
)
is given by

T∑
ℓ=1

nth coordinate of logGℓ
([a]([bℓ(t)]vℓ)) ,

which is exactly the value (by [CM19, Def. 4.1.2] and Definition 6.1.1)
T∑
ℓ=1

a(θ)× bℓ(θ) · (−1)dep(sℓ)−1 Li⋆sℓ(uℓ)v = a(θ)ΓsζA(s)v.

6.3. Review of Yu’s sub-t-module theorem. The following notion of regular t-modules
is due to Yu [Yu97, p. 218].
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Definition 6.3.1. Let G be a t-module defined over k. We say that G is regular if there
is a positive integer ν for which the a-torsion submodule of G(k) is free of rank ν over
Fq[t]/(a) for every nonzero polynomial a ∈ Fq[t].

Note that every nth tensor power of Carlitz module C⊗n and Drinfeld modules defined
over k are regular [Yu97, p. 217]. Other examples of regular t-modules arising from
special Γ -values, see [S97, BP02].

Proposition 6.3.2. Given an index s ∈ Nr, we let Gs be the t-module constructed in
Section 6.1.1 . Then Gs is regular.

Proof. Note that Gs is the t-module associated to the rigid analytically trivial Anderson
dual t-motive M . Let ν be the rank of M over k[t]. Since Gs is uniformizable by
Proposition 2.5.3 and Remark 2.5.2, we have the following Fq[t]-module isomorphism
via expGs

:
LieGs(C∞)

/
Λs

∼= Gs(C∞),

where Λs := Ker expGs
⊂ LieGs(C∞) ∼= CdimGs∞ is a discrete free Fq[t]-submodule of

rank ν by [HJ16, Thm. 5.28] (cf. [A86, Thm. 4]). It follows that the a-torsion submodule
of Gs(k) is isomorphic to

∂[a(t)]−1Λs

/
Λs

∼= (Fq[t]/(a))ν

for any nonzero polynomial a ∈ Fq[t]. □

Let G be a t-module defined over k. Note that G is also regarded as a linear algebraic
group over k̄. Any connected linear algebraic subgroup of G that is defined over k and
that is invariant under the Fq[t]-action is called a sub-t-module of G over k. The spirit
of Yu’s sub-t-module theorem stated in Theorem 1.3.2 is that for a given logarithmic
vector Z of an algebraic point on a regular t-module G defined over k, the smallest
∂[t]-invariant vector subspace over k in LieG(C∞) containing that logarithmic vector
must be LieH(C∞) for some sub-t-module H ⊂ G over k.

6.4. The main result. We call a positive integer n ‘‘even’’ if n is divisible by q− 1;
otherwise we call n ‘‘odd’’. As mentioned in the introduction, (1−v−n)ζA(n)v is identical
to Goss’ v-adic zeta value at n, by [Go79] we know that ζA(n)v = 0 for n ‘‘even’’, and
by [Yu91] ζA(n)v is transcendental over k for n ‘‘odd’’. The main result of this section
is as follows.

Theorem 6.4.1. Let v be a finite place of k and fix a positive integer n. Let Z n be the
k-vector space spanned by all ∞-adic MZV’s of weight n, and Z n,v be the k-vector space
spanned by all v-adic MZV’s of weight n. Then we have a well-defined surjective k-linear
map

Z n ↠ Z n,v

given by
ζA(s) 7→ ζA(s)v,

and its kernel contains the one-dimensional vector space k · ζA(n) when n is ‘‘even’’.

In other words, the theorem above shows that the v-adic MZV’s of weight n satisfy
the same k-linear relations that their corresponding ∞-adic MZV’s of weight n satisfy.
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Proof of Theorem 6.4.1. Suppose that we have a non-trivial k-linear relation among
some MZV’s of weight n

c1ζA(s1) + · · ·+ cmζA(sm) = 0,

which we rewrite as

(6.4.2) ϵ1Γs1ζA(s1) + · · ·+ ϵmΓsmζA(sm) = 0,

where
{
ϵi :=

ci
Γsi

}m

i=1
are not all zero. For each index si, let Gsi be the t-module defined

over k, vsi ∈ Gsi(k) be the special point and Zsi ∈ LieGsi(C∞) be the vector given
in Theorem 1.4.1. We identify LieGsi with AdimGsi /k, the affine variety of dimension
gi := dimGsi over k, and let Xi :=

(
Xi1, . . . ,Xigi

)tr be the coordinates of LieGsi . Let
G := Gs1 ⊕ · · · ⊕Gsm be the t-module as direct sum of {Gsi}

m
i=1 and so LieG is identified

with Ag1+···+gm/k with coordinates

X = (Xtr
1 , . . . ,X

tr
m)tr .

Let V be the smallest linear subspace of LieG(C∞) defined over k for which
• V contains the vector Z :=

(
Ztr
s1 , . . . ,Z

tr
sm

)tr ∈ LieG(C∞).
• V is invariant under the ∂[t]-action.

We define the following hyperplane over k

W := {ϵ1X1n + · · ·+ ϵmXmn = 0} ⊂ LieG,

where we simply use LieG for the base change of LieG over k when it is clear from the
contents, and note that Z ∈ W(C∞). We further note that since the nth coordinate of
LieGsi is tractable for each i, W is invariant under ∂[t] and we see that V ⊂ W(C∞).
By Theorem 1.3.2 there exists a sub-t-module H ⊂ G over k for which

V = LieH(C∞).

Let V ⊂ LieG be the linear sub-variety underlying V . That is, V is the variety defined
by the defining equations of V ⊂ LieG(C∞) over k. So we have V (C∞) = V =
LieH(C∞), and hence V = LieH.

For each si, by Proposition 6.2.2 we are able to pick a nonzero ai ∈ Fq[t] for which
|[ai]vsi |v < 1. Put a :=

∏m
i=1 ai. Note that by Corollary 3.2.6 the action [t] on each Gsi

has coefficient matrices with entries in A. Therefore, we have that

|[a]vsi |v ≤ |[ai]vsi |v < 1,

and hence by Proposition 6.2.1 logGsi
([a]vsi)v converges for each 1 ≤ i ≤ m. Define

v :=

 vs1...
vsm

 ∈ G(k).

We claim that for each ϵ > 0, there exists ℓ > 0 such that |[v(t)ℓ]([a]v)|v < ϵ. By the
construction, G is an iterated extension of tensor powers of the Carlitz t-module. More
precisely, let e1, . . . , ed be the standard basis of G = Gd

a (for some d ∈ N). Then there
exists a sequence I0 := ∅ ⊊ I1 ⊊ · · · ⊊ If := {1, . . . ,d} such that if we set Gf := G and
Gi := G

|Ii|
a with basis ej (j ∈ Ii), then Gi forms a quotient t-module of G defined over
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A, and the kernel of the natural projection Gi → Gi−1 is a tensor power of C for each
1 ≤ i ≤ f:

0 → C⊗(|Ii|−|Ii−1|) → Gi → Gi−1 → 0.
We consider the image of [a]v in Gi(A) via the natural projection G → Gi and then

modulo powers of v. Using an inductive argument on i, it suffices to show that for each
s ∈ N and each x ∈ C⊗s(k) with |x|v < 1, there exists ℓ > 0 such that |[v(t)ℓ]sx|v < ϵ.
By [AT90, Proposition 1.6.1], we have [v(t)s]s = τdeg v + vα for some α ∈ Mats(A[τ]).
Therefore, for large ℓ > 0 divisible by s, we have |[v(t)ℓ]sx|v < ϵ.

Since V is invariant under the ∂[t]-action, we have that ∂[a]Z ∈ V (C∞) = LieH(C∞),
whence

expG (∂[a]Z) = [a]v ∈ G(k)∩H(k) ⊂ H(k).
Let ϕ : H ↪→ G be the natural embedding morphism of t-modules. Note that H is a
linear algebraic group and so it is smooth. Since H is smooth, p-torsion, commutative,
affine and connected, by [CGP10, Lemma B.1.10], H is isomorphic to Gh

a for some h over
k. Fix an isomorphism H ∼= Gh

a over k. By using this identification, we write

ϕ =

N∑
j=0

Ajτ
j : Ga

h ∼= H ↪→ G = Ga
g1+···+gm , Aj ∈ Mat(g1+···+gm)×h(k)

and
logH =

∑
i≥0

Biτ
i, Bi ∈ Math(k).

We also write
logG =

∑
i≥0

Ciτ
i, Ci ∈ Matg1+···+gm(k).

By the functional equation (2.2.6), we have

A0 ◦

∑
i≥0

Biτ
i

 =

∑
i≥0

Ciτ
i

 ◦

 N∑
j=0

Ajτ
j

 =
∑
ℓ≥0

 ∑
0≤j≤N,i+j=ℓ

CiA
(i)
j

 τℓ

as formal power series.
We take 0 < ϵ < 1 for which the power series

∑
i≥0Ciτ

i converges on the domain

{x ∈ LieG(Cv)| |x|v < ϵ} .

According to the claim above, we are able to take an ℓ > 0 and then replace a by v(t)ℓa
if necessary so that

max
0≤j≤N

{∣∣Aj([a]v)(j)
∣∣
v

}
< ϵ,

whence ∣∣∣Ci

(
Aj([a]v)(j)

)(i)∣∣∣
v
→ 0 as i → ∞

for every 0 ≤ j ≤ N. Thus, we have the following identity∑
i≥0

Ciτ
i

 ◦

 N∑
j=0

Ajτ
j

 ([a]v) =

∑
i≥0

Ciτ
i

 N∑
j=0

Ajτ
j

 ([a]v)

 .
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Since [a]v is v-adically small enough from the above, and H is invariant under the
[a]-action, we can pull back [a]v via the embedding ϕ, and the above functional equation
among formal power series implies the corresponding equality among vectors over Cv:

(
logGsi

([a]vsi)v
)
i
= logG([a]v)v =

∑
i≥0

Ciτ
i

 N∑
j=0

Ajτ
j([a]v)


=

∑
i≥0

Ciτ
i

 ◦

 N∑
j=0

Ajτ
j

 ([a]v) =

A0 ◦

∑
i≥0

Biτ
i

 ([a]v)

= A0
∑
i≥0

Biτ
i([a]v) = logH([a]v)v ∈ LieH(Cv).

Note that since V (C∞) = V ⊂ W(C∞), we have LieH = V ⊂ W. It follows that the
vector

(
logGsi

([a]vsi)v
)
i
belongs to W(Cv), whence satisfying the k-linear relations

ϵ1X1n + · · ·+ ϵmXmn = 0.

By Theorem 6.2.4 the nth coordinate of logGsi
([a]vsi) is the value a(θ)ΓsiζA(si)v and

hence we obtain the desired identity

c1ζA(s1)v + · · ·+ cmζA(sm)v = 0.

Note that by [Go79] we have ζA(n)v = 0 for n ∈ N ‘‘even’’ as our v-adic zeta value
at n is Goss v-adic zeta value at n multiplied by (1− v−n)−1 (see [AT90, Theorem 3.8.3.
(II)]). Therefore the second assertion follows immediately. □

Corollary 6.4.3. Let v be a finite place of k. Set Z 0 := Z 0,v := k. Let Z :=
∑∞

n=0 Z n

be the k-vector space spanned by all MZV’s, and let Z :=
∑∞

n=0 Z n,v be the k-vector
space spanned by all v-adic MZV’s. Then we have the k-linear map

Z ↠ Z v

given by
ζA(s) 7→ ζA(s)v.

Proof. By [C14, Thm. 2.2.1], we have a natural isomorphism ⊕nZ n
∼= Z of k-algebras.

Thus the k-linear maps Z n ↠ Z n,v in Theorem 6.4.1 imply the k-linear map

Z ∼= ⊕nZ n ↠ ⊕nZ n,v ↠ Z v.

□

Remark 6.4.4. Based on the results above, the following are some natural questions
which need additional work.

(1) Does Z v have an algebra structure?
(2) For each positive integer n, what is the kernel of the above map Z n ↠ Z n,v?
(3) Is the above map Z ↠ Z v an algebra homomorphism? If so, what is its kernel?
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