ERRATA IN DO CARMO, DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

BJORN POONEN

This is a list of errata in do Carmo, Differential Geometry of Curves and Surfaces, PrenticeHall, 1976 (25th printing). The errata were discovered by Bjorn Poonen and some students in his Math 140 class, Spring 2004: Dmitriy Ivanov, Michael Manapat, Gabriel Pretel, Lauren Tompkins, and Po Yee Wong. Some errata were discovered later by Brent Doyle.

- p. 5 , line 9 , "using properties 3 and 4": Actually, property 2 also is being used, since property 4 gives linearity in the second variable only.
- p. 5 , bottom: The definition of the tangent line is confusing. It is not the line passing through the points $\alpha(t)$ and $\alpha^{\prime}(t)$ but rather the line through $\alpha(t)$ in the direction of $\alpha^{\prime}(t)$, namely $\left\{\alpha(t)+\lambda \alpha^{\prime}(t): \lambda \in \mathbb{R}\right\}$.
- p. 7 , Exercise 3, "On $0 B$ mark off the segment $0 p=C B$." It would be better to say "On $0 B$ mark a point p such that $0 p=C B$."
- p. 8, Figure 1-8: The labelling is wrong: the points p and C should lie on the same half-line r through 0 as B.
- p. 8, Figure 1-8: It might be good to add a point labelled Y on the y-axis.
- p. 8, Figure 1-9: The angle labelled t is in the wrong place. (See problem 4 on p. 7.)
- p. 13, line 4: Change "It follows from property 4 that the vector product $u \wedge v \neq 0$ is normal to a plane generated by u and v." to "It follows from property 4 that if u and v are linearly independent, then $u \wedge v$ is normal to the plane spanned by u and $v . "$ or better yet, "It follows from properties 3 and 4 that if u and v are linearly independent, then $u \wedge v$ is a nonzero vector normal to the plane spanned by u and v."
- p. 13, bottom: Again change "a plane generated by" to "the plane spanned by"
- p. 13, bottom: Change "a parallelogram" to "the parallelogram" (twice). Also it would be better to speak of "the parallelogram formed by u and v " instead of "the parallelogram generated by u and v ".
- p. 14, Exercise 5: change "the equation" to "an equation".
- p. 17, line 1, "Therefore, $\alpha^{\prime \prime}(s)$ and the curvature remain invariant under a change of orientation.": This is not a direct consequence of the previous statement, so replace "Therefore" by "Similarly".
- p. 18, last sentence: It would be better to change "It follows that" to "Similarly,"
- p. 18, last sentence: change "remains" to "remain".
- p. 21: In the right part of Figure 1-16, the labels e_{1} and e_{2} should be reversed.
- pp. 47-48: Exercise 6 is about a convex curve, but the curve in Figure 1-37 is not convex.
- p. 49, Exercise 12: The ratio M_{1} / M_{2} actually equals $1 / 2$. In the solution on p. 480, the inner integral in the definition of M_{1} should go from 0 to $1 / 2$, so $M_{1}=\pi$.

Date: June 9, 2004.

- p. 57, Figure 2-5: The angle ϕ should be φ to be consistent with the text.
- p. 59, proof of Proposition 2: change "axis" to "axes".
- p. 59, proof of Proposition 2: change "in \mathbb{R}^{3} where F takes its values" to "in the image of F ".
- p. 61, before Example 3: The notion of "connected" given here is usually called "path connected". (But the definitions are equivalent in the case of regular surfaces, so no harm is done.)
- p. 61, 8th line from bottom: change "by contradiction" to "for sake of obtaining a contradiction".
- p. 70, Proposition 1: There's no need to mention p.
- p. 71, middle, before third display: change "axis" to "axes".
- p. 72, Definition 1: This requires the notion " V is open in S ", which is not defined until the appendix to Chapter 5. The definition of that notion should appear earlier in the book.
- p. 72 , third line after Definition 1: $p \in \mathbf{x}(V)$ should be $p \in \mathbf{y}(V)$.
- p. 76, Example 4: The definition of regular curve does not force C to be connected, so the assumption that C does not meet the z-axis needs to be replaced by the assumption that C is contained in the open right half of the $x z$-plane.
- p. 76, Example 4, first display: It is confusing to include the last inequality $f(v)>0$ here, since it is not part of the parametrization, but rather a hypothesis on f.
- p. 81: Exercise 10 is poorly stated. It is not clear whether p and q are in C. As defined, regular curves are not supposed to have "endpoints". But if p and q are not part of C, and C is contained in the open right half-plane, then we get a regular surface of revolution automatically.
- p. 82: Exercise 15 b is wrong as stated, even if one assumes $t_{0}=h\left(\tau_{0}\right)$. For instance, if C is a circle, then the left and right hand sides could be the lengths of the major and minor arcs connecting two points, respectively. In other words, h might not be defined on the whole interval $\left[\tau_{0}, \tau\right]$, in which case one cannot perform the substitution to transform one integral into the other.
- p. 85, Figure 2-24: change ϕ to φ (twice).
- p. 88, Exercise 3: "Tangent plane" means two different things in the two parts of this problem. In the first part, it is a plane passing through p_{0}. In the second part, it is a subspace of \mathbb{R}^{3}, that is, a plane passing through the origin.
- p. 94, Example 3: In the parametrization, there is no need to restrict u to the interval ($0,2 \pi$).
- p. 97, definition of domain: It is not clear whether the boundary is the boundary as a subset of \mathbb{R}^{3} or the boundary as a subset of S. Either way, we run into trouble.

If it is the boundary in \mathbb{R}^{3}, then a region in S need not be contained in S ! For instance, if we slice an infinite cylinder in two (with a circular cross section), S could be one of the open halves, so its boundary is the circle, and its closure is a region in S !

If it is the boundary in S, then just below Figure 2-28 the assumption that R is bounded does not imply that $Q=\mathbf{x}^{-1}(R)$ is bounded, and the integral defining the area could diverge.

Perhaps one should require in the definition of domain that its closure in S be compact?

- p. 99, Exercise 2: Add a comma between φ and θ.
- p. 100, Exercise 8: change "quadratic" to "fundamental".
- p. 109, Exercise 1: One must assume that V_{1} and V_{2} are connected.
- p. 118, definition of "neighborhood": It is more common to define a neighborhood of p to be any set (open or not) that contains an open set containing p.
- p. 120 , sentence after the second display beginning "In other words,": This sentence is incorrect and should be deleted.
- pp. 121-122, proof of Proposition 1: The notation $S_{\delta}(p)$ should be replaced by $B_{\delta}(p)$, which was used earlier to denote balls. (This appears in three places.)
- p. 122, end of Example 4: \mathbb{R}^{n} should be \mathbb{R}^{m}.
- p. 123, definition of "continuous in A ": It is more common to define this to mean that for all $a \in A$ and all $\epsilon>0$, there exists $\delta>0$ such that the conditions $x \in A$ and $|x-a|<\delta$ imply $\mid F(x)-F(a)<\epsilon$. This definition agrees with continuity with respect to the subspace topology on A, whereas do Carmo's definition does not. (To see that the definitions do not agree, consider $A=\mathbb{R}-\{1 / n: n \geq 1\}$, and define $F: A \rightarrow \mathbb{R}$ so that $F(x)=1 / n$ if $x \in(1 /(n+1), 1 / n)$ for some integer $n \geq 1$, and $F(x)=0$ otherwise. This should be continuous on A, but is not by do Carmo's definition.)
- p. 124, Proposition 5: The statement should begin "Let $f:[a, b] \rightarrow \mathbb{R}$ ".
- p. 124, Proposition 6 (Heine-Borel): The set I has not been defined. Also, the I_{α} need to be open as subsets in $[a, b]$, not open intervals in \mathbb{R} that are contained in $[a, b]$. Since this appendix has not defined the notion of one set being open in another, it would be best to restate the result as follows:

Let $[a, b]$ be a closed interval, and let $I_{\alpha}, \alpha \in A$, be a collection of open intervals such that $[a, b] \subseteq \bigcup_{\alpha} I_{\alpha}$. Then it is possible to choose a finite number $I_{k_{1}}, \ldots, I_{k_{n}}$ of I_{α} such that $[a, b] \subseteq \bigcup_{i=1}^{n} I_{k_{i}}$.

- p. 125 , line -2 : the word "performed" should perhaps be changed to "taken".
- p. 127, Definition 1, "we associate a linear map": It is not proved to be linear until the next Proposition 7. So perhaps it is better to call it just a "map" at this point.
- p. 132, line -3: The second left hand side should have $(0,1)$ instead of $(1,0)$.
- p. 136, Definition 1: Delete the \mid after the semicolon in the display.
- p. 146, 4 lines from the bottom, "any of the sides of the tangent plane": it would better to replace "any" with "either".
- p. 147, just after Definition 8: It would make more sense to refer to Example 5 instead of "the method of Example 6".
- p. 153 , second line from the bottom: "parametrization" should be "parametrizations".
- p. 154, line 4, "all functions to appear below denote their values at the point p ": Strictly speaking, some of the functions are functions of t and should be evaluated at $t=0$.
- p. 154, near the bottom: "coefficientes" should be "coefficients".
- p. 155: It may be preferable to write equation (3) in the form

$$
-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

(the transpose of the current version of the equation), so that the matrix $\left(a_{i j}\right)$ that appears in it is exactly the matrix of $d N_{p}$, instead of its transpose.

- p. 155 , middle, just before the formula for a_{11} : Each x in $\left\{x_{u}, x_{v}\right\}$ should be bold.
- p. 161, line 2 of Example 4: change "changed" to "replaced".
- p. 162, middle, "If a parametrization of a regular surface is such that $F=f=0$, then the principal curvatures are given by e / E and g / G." A more enlightening explanation of this is given by the equation following equation (3) on page 155.
- p. 214, first display: Some indices are backwards (the $i j$-th entry of a matrix is traditionally the entry in the i-th row and j-th column, and in fact this convention is followed on page 154). Change this line to the following:

$$
\alpha_{i j}=\left\langle A e_{j}, e_{i}\right\rangle=\left\langle e_{j}, A e_{i}\right\rangle=\left\langle A e_{i}, e_{j}\right\rangle=\alpha_{j i} ;
$$

- p. 215, Lemma: The letter "a" of the word "at" should be italicized.
- p. 221, top right of Figure 4-2: $d \phi_{p}(W)$ should be $d \phi_{p}(w)$.
- pp. 224-225: The function F is being confused with $F \circ \overline{\mathbf{x}}$ (which appears on page 225). For F to be a function from U to \mathbb{R}^{3}, it should be defined as a function of x and y. For $F \circ \overline{\mathbf{x}}$ to make sense, F should be a function of x, y, z. But F was defined as a function of ρ and θ !
- p. 226, display in Definition 3: Since the subscript p is used on the inner product on the right, it would make sense to use the subscript $\varphi(p)$ on the left.
- p. 226, second to last display: The range for θ should be $0 \leq \theta \leq \pi$.
- p. 227, sentence after Proposition 2: With the given definition of local conformality, it seems to be very difficult to prove that it is a symmetric relation, unless one accepts the unproven theorem on page 227. Also, the sentence as written misleadingly suggests that transitivity is the only property required for an equivalence relation.
- p. 232, end first paragraph: Italicize the first appearance of "Christoffel symbols" instead of the second.
- p. 234, sentence after Theorema Egregium: Presumably the codomain of φ was supposed to be a possibly different surface \bar{S}. In this case, the S near the end of this sentence also should be \bar{S}.
- p. 238, sentence before Definition 1: Start this sentence with "The vector field" (to avoid starting it with the mathematical symbol w), and change "for every $p \in U$ " to "at every $p \in U$ ".
- p. 239, middle: "Sec. 4-1" should be "Sec. 4-3".
- p. 239: In (1), the functions a and b depend on the curve α, so it should be explained that the values of a^{\prime} and b^{\prime} depend on α only through its tangent vector.
- p. 243, Figure 4-12: ϕ should be φ.
- p. 245, Figure 4-14: ϕ should be φ (4 times).
- p. 245, last line of Definition 8: "for all $t \in I$ " should be "at all $t \in I$ " (to match the previous part of Definition 8).
- p. 246, Example 3:"there exists exactly one geodesic $C \subset S$ passing through p and tangent to this direction". Strictly speaking, any connected open neighborhood of
p in C will be another geodesic, so strictly speaking it is not quite unique. This sloppiness persists throughout the section. For instance:
- p. 246, end of Example 3: Great circles are not the only geodesics on the sphere: arcs of great circles (including the empty arc!) are also geodesics.
- p. 247, last paragraph, first sentence: lines are not the only geodesics of the plane (open intervals in lines are also geodesics)
- p. 260, Exercise 3: Same comment.
- p. 248, Definition 10: change "contained on" to "contained in".
- p. 248, last sentence of Definition 10: " $\left[D \alpha^{\prime}(s) / d s\right]=k_{g}$ " should follow "algebraic value", not "covariant derivative".
- p. 249, Figure 4-18: change ϕ to φ in two places.
- p. 249, Figure 4-18: The formula for $\left|k_{g}\right|$ can be simplified to $\left|k_{g}\right|=|\operatorname{cotan} \varphi|$. (No need for the 1!)
- p. 249, middle: There is no need to mention k_{n}; Figure 4-18 shows directly that

$$
\left|k_{g}\right|=|k \cos \varphi|=\left|\frac{1}{\sin \varphi} \sin (\pi / 2-\varphi)\right|=|\operatorname{cotan} \varphi| .
$$

- p. 249, last line: change "relatively to any" to "relative to either".
- p. 251, middle, "and observing that $\langle v, \bar{v}\rangle=0,\left\langle v, v^{\prime}\right\rangle=0$ ": After these two equations, " $\left\langle\bar{v}, \bar{v}^{\prime}\right\rangle=0$ " should be inserted, since it also is being used.
- p. 253, Proposition 4: change "the angle that \mathbf{x}_{u} makes with $\alpha^{\prime}(s)$ " to "the angle from \mathbf{x}_{u} to $\alpha^{\prime}(s)$ ".
- p. 255 , Proposition 5: The uniqueness statement should be as follows: For each $\epsilon>0$ for which there exists a parametrized geodesic $\gamma:(-\epsilon, \epsilon) \rightarrow S$ with $\gamma(0)=p$ and $\gamma^{\prime}(0)=w$, such a parametrized geodesic is unique. Maybe it would be better to state a result for an arbitrary interval (a, b) with $a<0<b$. The parametrized geodesic with minimal a and maximal b (and $\gamma(0)=p$ and $\gamma^{\prime}(0)=w$) is truly unique, and all others (with $\gamma(0)=p$ and $\gamma^{\prime}(0)=w$) are restrictions of this one to subintervals of (a, b) containing 0 .
- p. 260, Exercise 1b: "nonrectilinear" is not defined. For this exercise (and for the application of this exercise to Exercise 8), I suggest changing this hypothesis to " C does not contain an open segment of a straight line".
- p. 261, Exercise 7(a): The conclusion is false if $\theta=\pi / 2$.
- p. 261, Exercise 7(b): It's not clear what "at the points where C meets their axes" is referring to. I suggest changing it to "at the endpoints of the major and minor axes of the ellipse" (and adding the assumption $0<\theta<\pi / 2$ so that this makes sense).
- p. 261, Exercise 10: Since the geodesic curvature could have a sign, it should be made clear that "the curvature of the plane curve" refers to the signed curvature defined on page 21, using the orientation of $T_{p}(S)$ coming from the orientation of S that is implicitly used in defining the geodesic curvature. Or else the problem should discuss only the absolute value of the geodesic curvature.
- p. 262, Exercise 17: The first conclusion is false: It can happen that for all $\epsilon>0$, the set $\mathbf{x}(I \times(-\epsilon, \epsilon))$ fails to be a regular surface. (Consider a curve $\alpha:(0,1) \rightarrow \mathbb{R}^{3}$ such that $\alpha(s)$ approaches $(0,0,0)$ from the same direction as $s \rightarrow 0^{+}$or $s \rightarrow 1^{-}$, and such that the part of α near $s=0$ is contained in a plane, and the part of α near $s=1$ is contained in a different plane.)
- p. 265, Figure 4-23: Change ϕ to φ (3 times).
- p. 266, paragraph beginning "Assume now...": One should allow the possibility $\left|\theta_{i}\right|=0$, which is possible even if α fails to be differentiable $\left(C^{\infty}\right)$ at t_{i}.
- p. 266, last sentence: This is false; ϵ^{\prime} need not exist. For example, consider the piecewise regular curve in \mathbb{R}^{2} given by

$$
\alpha(t):= \begin{cases}(-t, 0), & \text { if } t \leq 0 \\ \left(t, e^{-1 / t}(2+\sin (3 / t))\right), & \text { if } t>0\end{cases}
$$

The y-coordinate of $\alpha^{\prime}(t)$ changes sign infinitely often as $t \rightarrow 0^{+}$.
Instead one should select $\theta=\pi$ or $\theta=-\pi$ as follows. Using a parametrization, reduce to the case where α is contained in \mathbb{R}^{2}, with $\alpha\left(t_{i}\right)=0$, and $\alpha^{\prime}\left(t_{i}-0\right)$ on the negative x-axis (so $\alpha^{\prime}\left(t_{i}+0\right.$) on the positive x-axis). For small enough $\epsilon>0$, the trace of α restricted to $\left(t_{i}-\epsilon, t_{i}\right)$ is the graph of a function $f:\left(0, \epsilon^{\prime}\right) \rightarrow \mathbb{R}$ and the trace of α restricted to $\left(t_{i}, t_{i}+\epsilon\right)$ is the graph of a function $g:\left(0, \epsilon^{\prime \prime}\right) \rightarrow \mathbb{R}$. Because α has no self-crossings, the Intermediate Value Theorem implies that either $f(x)>g(x)$ for all x for which both are defined, or $f(x)<g(x)$ for all x for which both are defined. In the first case, define $\theta=\pi$; in the second, define $\theta=-\pi$.

- p. 267, 7 lines from the bottom: It is claimed that a proof of the Theorem of Turning Tangents is contained in Section 5-7, but there the theorem is proved only in the case where α is a plane curve.
- p. 268, line 3: The I here (the domain of β) is different from the I on the previous page (the domain of α).
- p. 271, Figure 4-28: Change ϕ to φ.
- p. 276, statement of Jordan curve theorem before application 1: Insert the word "closed" before "piecewise regular curve".
- p. 277, application 3: At the end of the first paragraph of the proof, it is claimed that " $\varphi(\Gamma)$ is the boundary of a simple region of P ". This is not necessarily the case, since φ is only a homeomorphism, not a diffeomorphism, and the definition of simple region requires a piecewise C^{∞} boundary.
- p. 277, just below Figure 4-33: The interior of $\varphi\left(\Gamma^{\prime}\right)$ is not homeomorphic to a cylinder as claimed. Instead one should apply the global Gauss-Bonnet theorem to the region R between Γ and Γ^{\prime} in S.
- p. 279, line 9: Even if $K \neq 0$ on T, it is not necessarily the case that $\iint_{T} K d \sigma$ equals the area of $N(T)$, because the sign could be wrong, and because the area of $N(T)$ could be less than expected if N maps different subregions of T onto the same set (in this case, $\iint_{T} K d \sigma$ counts that part of the area of $N(T)$ with multiplicity). The statement should be "If $K \neq 0$ on T and the restriction $\left.N\right|_{T}$ of N to T is injective (or at least these two conditions hold after deleting a subset of measure zero from $T)$, then $\left|\iint_{T} K d \sigma\right|$ equals the area of $N(T)$." Perhaps it would be best to state this for arbitrary regions instead of just triangles, since this is needed to do Exercise 3 on p. 282.
- p. 280, middle of last paragraph: Change "(a ring)" to "(an annulus)".
- p. 282, last sentence before exercises: Maybe it would be nice to mention that the famous theorem regarding the impossibility of combing a hairy sphere has just been proven.
- p. 282, Exercise 1: One must assume in addition that S is connected. (Otherwise a disjoint union of two spheres is a counterexample.)
- p. 282, Exercise 3: One must assume that S has $K>0$ everywhere and that N is injective, so that the area of $N(A)$ can be computed without worrying about sign or multiplicities.
- p. 282, last line (line 2 of Exercise 5): " $p \notin C$ " should be " $p \in C$ ".
- p. 282, Exercise 5: φ is being used to denote two different things in this problem (the colatitude, and the angle between two vector fields along C).
- p. 425 , Definition 1, part 2: There is no need to exclude the case $W=\emptyset$; such an exclusion only clutters the definition. I suggest replacing
"For each pair α, β with $\mathbf{x}_{\alpha}\left(U_{\alpha}\right) \cap \mathbf{x}_{\beta}\left(U_{\beta}\right)=W \neq \phi$, we have that"
with
"For each pair α, β, if we set $W=\mathbf{x}_{\alpha}\left(U_{\alpha}\right) \cap \mathbf{x}_{\beta}\left(U_{\beta}\right)$, then".
Exactly the same comment applies to Definition 1a on p. 438.
- p. 426, top of Figure 5-46: The subscript on the second U should be β, not p.
- p. 426, Remark 1: The statement
"This means that any other family satisfying conditions 1 and 2 is already contained in the family $\left\{U_{\alpha}, \mathbf{x}_{\alpha}\right\}$."
neglects the possibility of distinct differentiable structures on the same set. It should be replaced by
"This means that the family $\left\{U_{\alpha}, \mathbf{x}_{\alpha}\right\}$ is not properly contained in any other family of coordinate charts satisfying conditions 1 and 2 of Definition 1."
- p. 426, Definition 2: This definition is faulty unless one makes the maximality assumption of Remark 1 on this page. (Without this assumption, it might be impossible to find \mathbf{x} satisfying $\mathbf{x}(U) \subset \mathbf{y}(V)$.)
- p. 427, examples 1 and 2: Change ϕ to \emptyset (once in each example). Also, it would be easier to read if $A \circ \mathbf{x}_{\alpha}\left(U_{\alpha}\right)$ were replaced by $A\left(\mathbf{x}_{\alpha}\left(U_{\alpha}\right)\right)$ (once in each example).
- p. 428 , middle of first paragraph: Change
"Thus, we must define what is the tangent vector of a curve on an abstract surface."
to
"Thus, we must define what the tangent vector of a curve on an abstract surface is."
- p. 443, Exercise 3: To make sense of the notion of neighborhood of a point in an abstract surface, one needs a notion of open set. I suggest adding the following definition to the text, perhaps after Remark 1 on p. 426: A subset V of an abstract surface S is open if and only if $\mathbf{x}_{\alpha}^{-1}(V)$ is open in U_{α} (or equivalently, in \mathbb{R}^{2}) for all α.
- p. 444, Exercise 5b: "d $\varphi_{p}=0$ " should be " $d \varphi_{p}$ is not an isomorphism".

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
URL: http://math.berkeley.edu/~poonen

