## Homework Assignment 1 Due on Tuesday 3/11

## Writing Problems:

The textbook Numerical Linear Algebra has an electronic version which can be found on the library website.

You can also download onestep_domain.m and multistep_domain.m for your reference for plotting the stability domain.

1. Do the following exercise problems in the text book by Bradie,

Sec 7.9: 3(a), 5, 7, 8(d), 11
2. Do the following exercise problems in the text book by Trefethen and Bau,

Exercise 2: 2.1, 2.5, 2.6
Exercise 3: 3.2, 3.3, 3.4, 3.6
3. Write down the condition of the region of absolute stability for the second and third order of backward differentiation formulas. Use Matlab to plot the regions.
4. (a) Let $\mathbf{A}$ be a nonsingular matrix. Prove that the solution of $\mathbf{y}^{\prime}=\mathbf{A y}+\mathbf{b}, \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}$ is

$$
\mathbf{y}(t)=e^{\left(t-t_{0}\right) \mathbf{A}} \mathbf{y}_{0}+\mathbf{A}^{-1}\left(e^{\left(t-t_{0}\right) \mathbf{A}}-\mathbf{I}\right) \mathbf{b}
$$

Deduce that if all eigenvalues of $\mathbf{A}$ have negative real part, then $\lim _{t \rightarrow \infty} \mathbf{y}(t)=-\mathbf{A}^{-1} \mathbf{b}$
(b) Let $\mathbf{A}=\left[\begin{array}{ll}7991 & -11988 \\ 5994 & -8992\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{y}_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Use Euler method and trapezoidal method to solve

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}+\mathbf{b} \quad \mathbf{y}(0)=\mathbf{y}_{0} .
$$

Use time steps $h=0.01,0.001,0.0001,0.00001$ to solve the solution until $t=10$. Plot the error for different time steps. Which time step can Euler generate good numerical solution? Is trapezoidal method better for this problem? Why?

