Homework Assignment 13 Due on Friday 01/03

Programming Problems:

1. Write a Matlab code that solves

$$y(a) = \alpha, \quad y'(t) = f(t, y) \quad \forall t \in [a, b]$$

by using classical RK4 method. Your code should take a, b, h, f, α as inputs and return w_i as outputs, where h is the step size and w_i is an approximation for y_i . Your code should also work for system, i.e., y(t) and α can be vectors.

2. (Bonus Problem. Add one point in final grade.) Write a Matlab code that simulates three-body problem with any given masses, initial positions and velocities. Also give a set of data that generates an interesting orbit. Save your codes as M-file and submit it to ccchu@math.nthu.edu.tw

Writing Problems:

Do the following exercise problems in the text book by Bradie, Sec 7.4: 3^* , 4(a), 5(b), $8(c)^*$, 10(a), 12(d), 13(e), $14(b)^*$, 18^* Sec 7.5: 2^* , 3^* , 4, 5(d), $9(d, f)^*$ Sec 7.8: 1(b), $2(a)^*$, $7(a, c, f)^*$, $8(a, b, c)^*$, 11(a), 12(b), 17^* Just turn in problems with *.