Homework Assignment 13
 Due on Friday 01/03

Programming Problems:

1. Write a Matlab code that solves

$$
y(a)=\alpha, \quad y^{\prime}(t)=f(t, y) \quad \forall t \in[a, b]
$$

by using classical RK4 method. Your code should take a, b, h, f, α as inputs and return w_{i} as outputs, where h is the step size and w_{i} is an approximation for y_{i}. Your code should also work for system, i.e., $y(t)$ and α can be vectors.
2. (Bonus Problem. Add one point in final grade.) Write a Matlab code that simulates three-body problem with any given masses, initial positions and velocities. Also give a set of data that generates an interesting orbit. Save your codes as M-file and submit it to ccchu@math.nthu.edu.tw

Writing Problems:

Do the following exercise problems in the text book by Bradie,
Sec 7.4: $3^{*}, 4(\mathrm{a}), 5(\mathrm{~b}), 8(\mathrm{c})^{*}, 10(\mathrm{a}), 12(\mathrm{~d}), 13(\mathrm{e}), 14(\mathrm{~b})^{*}, 18^{*}$
Sec 7.5: $2^{*}, 3^{*}, 4,5(\mathrm{~d}), 9(\mathrm{~d}, \mathrm{f})^{*}$
Sec 7.8: 1(b), 2(a)*, 7(a, c, f)*, 8(a, b, c)*, 11(a), 12(b), 17*
Just turn in problems with *.

