Homework Assignment 7 Due on Friday 11/22

Programming Problems:

1. Write a Matlab code that evaluates $P(x)$ in the Newton form for give x. Your code should take $x,\left\{x_{i}, a_{i}\right\}$ as input data, where $a_{i}=f\left[x_{0}, x_{1}, \ldots, x_{i}\right]$, and output $P_{n}(x)$. Here x should be assigned as an array and output an array $P(x)$. Use the algorithm listed on page 364 to compute $P(x)$.
2. Write two Matlab code that computes the coefficients of cubic spline interpolation $s(x)$ with not-a-knot boundary conditions and with clamped boundary conditions. Your code should take $\left\{x_{i}, f_{i}\right\}$ as input data and output $a_{i}, b_{i}, c_{i}, d_{i}$ four arrays for not-a-knot boundary conditions. For clamped boundary conditions, your code should take $\left\{x_{i}, f_{i}\right\}$ and $f^{\prime}(a), f^{\prime}(b)$ as input data and output $a_{i}, b_{i}, c_{i}, d_{i}$ four arrays.

Writing Problems:

Do the following exercise problems in the text book by Bradie,
Sec 5.4: $1,2^{*}, 3^{*}, 4^{*}, 9,11,13^{*}$
Sec 5.5: 2, 3, 11*
Sec 5.6: $5,11^{*}, 14^{*}, 19^{*}$
Just turn in problems with*.

Bonus Problem:

Let $x_{i}=\frac{b-a}{2} \cos \left(\frac{2 i+1}{2(n+1)} \pi\right)+\frac{a+b}{2}$ and $w(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)$. Prove that

$$
\frac{1}{2^{n}}\left(\frac{b-a}{2}\right)^{n+1}=\max _{x \in[a, b]}|w(x)| \leq \max _{x \in[a, b]}\left|p_{n+1}(x)\right|
$$

for any $p_{n+1} \in \tilde{\Pi}_{n+1}$

