Homework Assignment 1 Due on Tuesday 10/1

Writing Problems:

1. Do the following exercise problems in the text book by Bradie,

Sec 1.2: 1(b, c), 2(c, d), 3, 4, 7, 11, 15
Sec 1.3: 1(c), 2, 3, 12
Sec 1.4: 1(a), 7, 13
2. Suppose $f(x)$ has the continuous n-th derivative and $f^{n}(x)$ is uniformly bounded, i.e, $\left|f^{n}(x)\right|<$ M for some positive constant M. State and prove the Taylor's expansion of $f(x)$ at a fixed point a and give an upper bound for the remaining term.
3. Write down the Taylor's expansion of $\arctan (x)$.
4. Search the IEEE standard for floating point number systems. Write a brief introduction of binary32 (single precision) and binary64 (Double precision).

Coding Problems:

I. Write a code to compute the Fibonacci sequence. The Fibonacci sequence is given by

$$
f_{1}=1, f_{2}=1 \quad \text { and } \quad f_{n+2}=f_{n+1}+f_{n} \forall n \in \mathbb{N} .
$$

(i) Find f_{24}, f_{44}.
(ii) Compute the value of $f_{n+2} f_{n}-f_{n+1}^{2}$. What do you observe? Just state the relationship you see. Prove it if you can but not required.
(iii) Compute $\frac{f_{n+1}}{f_{n}}$. What do you observe? Just state the relationship you see. Prove it if you can but not required.
II. Use the fact $\pi=4 \arctan (1)$ to estimate the value of π.
(i) Use 10 terms in Taylor's expansion of $\arctan (1)$ (See 3) to estimate the value of π. What will be the error's bound?
(ii) If you want to achieve 8 significant digits of π, how many terms you need in the Taylor's expansion. What is the approximate number you obtain?

