Midterm Exam 2

1 Let A be the following 4 by 4 matrix.

$$
A=\left[\begin{array}{rrrr}
36 & 6 & -12 & 6 \\
6 & 17 & 2 & -3 \\
-12 & 2 & 30 & 12 \\
6 & -3 & 12 & 36
\end{array}\right]
$$

i (3 points) Show that A is symmetric positive definite. You must state your reason clearly. Answer: It is easy to see A is a symmetric matrix with positive diagonal elements. By checking $36>6+12+6,17>6+2+3,30>12+2+12$, and $36>6+3+12$, we know A is also strictly diagonally dominant. By the theorem in the text book, A is symmetric positive definite.
ii (5 points) Find the Cholesky decomposition of $A\left(L L^{T}=A\right)$.
Answer: By solving directly, we have

$$
L=\left[\begin{array}{rrrr}
6 & 0 & 0 & 0 \\
1 & 4 & 0 & 0 \\
-2 & 1 & 5 & 0 \\
1 & -1 & 3 & 5
\end{array}\right]
$$

and $A=L L^{T}$.
iii (2 points) Find the determinant of A.
Answer: $\operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}\left(L^{T}\right)=600^{2}=360000$

2 Let A be a 3×3 strictly diagonally dominant matrix and

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

i (5 points) Show that if we perform Guassian elimination on A with scaled partial pivoting strategy, then a_{11} is the pivot element for the first pass.
Answer: Since A is S.D.D., the scaled vector s is $\left.\left[\mid a_{11}\right],\left|a_{22}\right|,\left|a_{33}\right|\right]^{T}$. Therefore we have

$$
\frac{\left|a_{11}\right|}{\left|a_{11}\right|}=1, \frac{\left|a_{21}\right|}{\left|a_{22}\right|}<1, \frac{\left|a_{31}\right|}{\left|a_{33}\right|}<1 .
$$

This shows a_{11} is the pivot element.
ii (5 points) Suppose after the first pass, we have

$$
\left[\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
0 & b_{22} & b_{23} \\
0 & b_{32} & b_{33}
\end{array}\right]
$$

Show that

$$
B=\left[\begin{array}{ll}
b_{22} & b_{23} \\
b_{32} & b_{33}
\end{array}\right]
$$

is also a strictly diagonally dominant matrix.

Answer: By some calculation, we have

$$
\begin{array}{ll}
b_{22}=a_{22}-a_{12} \frac{a_{21}}{a_{11}}, \quad b_{23}=a_{23}-a_{13} \frac{a_{21}}{a_{11}} \\
b_{32}=a_{32}-a_{12} \frac{a_{31}}{a_{11}}, \quad b_{33}=a_{33}-a_{13} \frac{a_{31}}{a_{11}}
\end{array}
$$

Since A is S.D.D., we have $\left|a_{11}\right|>\left|a_{12}\right|+\left|a_{13}\right|,\left|a_{22}\right|>\left|a_{21}\right|+\left|a_{23}\right|,\left|a_{33}\right|>\left|a_{31}\right|+\left|a_{32}\right|$. Therefore,

$$
\begin{aligned}
& \left|b_{22}\right| \geq\left|a_{22}\right|-\left|a_{21}\right| \frac{\left|a_{12}\right|}{\left|a_{11}\right|}>\left|a_{21}\right|+\left|a_{23}\right|-\left|a_{21}\right| \frac{\left|a_{11}\right|-\left|a_{13}\right|}{\left|a_{11}\right|}=\left|a_{23}\right|+\left|a_{21}\right| \frac{\left|a_{13}\right|}{\left|a_{11}\right|} \geq\left|b_{23}\right| \\
& \left|b_{33}\right| \geq\left|a_{33}\right|-\left|a_{31}\right| \frac{\left|a_{13}\right|}{\left|a_{11}\right|}>\left|a_{31}\right|+\left|a_{32}\right|-\left|a_{31}\right| \frac{\left|a_{11}\right|-\left|a_{12}\right|}{\left|a_{11}\right|}=\left|a_{32}\right|+\left|a_{31}\right| \frac{\left|a_{12}\right|}{\left|a_{11}\right|} \geq\left|b_{32}\right|
\end{aligned}
$$

This shows B is S.D.D.

3 (10 points) Let $P(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a degree 5 polynomial. Suppose $P(x)$ passes through $(-3,15),(-2,10),(-1,5),(1,-5),(2,8),(3,12)$. Find a_{0}. (Hint: $\left.a_{0}=P(0)\right)$.
Answer: By Neville's algorithm, we have

x_{i}	$f\left(x_{i}\right)$					
-3	15					
-2	10	0				
-1	5	0	0			
1	-5	0	0	0		
2	8	-18	-6	-3	-1.8	
3	12	0	-27	-11.25	-6.3	-4.05

Hence $a_{0}=P(0)=-4.05$.

4 Let $x_{0}=-2, x_{1}=-1, x_{2}=1, x_{3}=2$ and $f(x)=x^{4}-x^{3}+1$. Let $P_{3}(x)$ be the unique interpolating polynomial of degree at most 3 interpolates f at $x_{0}, x_{1}, x_{2}, x_{3}$.
i (5 points) Construct the Lagrange form of $P_{3}(x)$.
Answer: $f(-2)=25, f(-1)=3, f(1)=1, f(2)=9$. Therefore

$$
\begin{aligned}
P_{3}(x) & =25 \frac{(x+1)(x-1)(x-2)}{-12}+3 \frac{(x+2)(x-1)(x-2)}{6} \\
& +\frac{(x+2)(x+1)(x-2)}{-6}+9 \frac{(x+2)(x+1)(x-1)}{12}
\end{aligned}
$$

ii (5 points) Construct the Newton form of $P_{3}(x)$.
Answer: First we compute the divided difference,

x_{i}	$f\left(x_{i}\right)$			
-2	25			
-1	3	-22		
1	1	-1	7	
2	9	8	3	-1

Therefore

$$
P_{3}(x)=25-22(x+2)+7(x+2)(x+1)-(x+2)(x+1)(x-1)
$$

iii (5 points) Show that

$$
\max _{x \in[-2,2]}\left|f(x)-P_{3}(x)\right| \leq 4
$$

Answer: By the error analysis in the textbook, we have

$$
r(x)=f(x)-P(x)=\frac{f^{4}(\xi)}{24}(x+2)(x+1)(x-1)(x-2)=\left(x^{2}-4\right)\left(x^{2}-1\right)=x^{4}-5 x^{2}+4
$$

The critical points are $x=0, \pm \sqrt{5 / 2}$. Since $r(2)=r(-2)=0, r(0)=4$ and $r(\pm \sqrt{5 / 2})=$ $-9 / 4$, we have $-\frac{9}{4} \leq r(x) \leq 4$. Therefore

$$
\max _{x \in[-2,2]}\left|f(x)-P_{3}(x)\right|=\max _{x \in[-2,2]}|r(x)| \leq 4
$$

iv (5 points) Find another set of interpolation points $\tilde{x}_{0}, \tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}$ so that the interpolating polynomial $\tilde{P}_{3}(x)$ has smaller interpolation error. That is

$$
\max _{x \in[-2,2]}\left|f(x)-\tilde{P}_{3}(x)\right| \leq 2
$$

You only need to list the set of interpolation points.
Answer: The best choices of the interpolating points for maximum norm are the roots of Chebysheve polynomial under suitable linear transformation. Therefore we should choose

$$
\tilde{x}_{0}=2 \cos \left(\frac{\pi}{8}\right), \tilde{x}_{1}=2 \cos \left(\frac{3 \pi}{8}\right), \tilde{x}_{2}=2 \cos \left(\frac{5 \pi}{8}\right), \tilde{x}_{3}=2 \cos \left(\frac{7 \pi}{8}\right) .
$$

5 Let $s(x)$ be a cubic spline interpolant of f relative to the partition

$$
a=x_{0}<x_{1}<x_{2}<x_{3}<x_{4}<x_{5}=b .
$$

Suppose on each interval $\left[x_{j}, x_{j+1}\right], s$ is written as

$$
s(x)=s_{j}(x)=a_{j}+b_{j}\left(x-x_{j}\right)+c_{j}\left(x-x_{j}\right)^{2}+d_{j}\left(x-x_{j}\right)^{3}
$$

and $s\left(x_{j}\right)=a_{j}=f\left(x_{j}\right)$. Let $h_{j}=x_{j+1}-x_{j}$.
i (5 points) What equations can you get from continuity of $s(x), s^{\prime}(x)$ and $s^{\prime \prime}(x)$?
Answer: Continuity of s gives

$$
a_{j+1}=a_{j}+b_{j} h_{j}+c_{j} h_{j}^{2}+d_{j} h_{j}^{3}, \quad j=0,1,2,3
$$

Continuity of s^{\prime} gives

$$
b_{j+1}=b_{j}+2 c_{j} h_{j}+3 d_{j} h_{j}^{2}, \quad j=0,1,2,3
$$

Continuity of s^{\prime} gives

$$
2 c_{j+1}=2 c_{j}+6 d_{j} h_{j} \quad\left(\text { or } c_{j+1}=c_{j}+3 d_{j} h_{j}\right), \quad j=0,1,2,3
$$

ii (5 points) Derive the equation that involves $c_{j-1}, c_{j}, c_{j+1}, a_{j-1}, a_{j}, a_{j+1}$ only by using equations obtained in i.
Answer: See the textbook for detail. For $j=1,2,3,4$, we have

$$
h_{j-1} c_{j-1}+2\left(h_{j}-1+h_{j}\right) c_{j}+h_{j} c_{j+1}=\frac{3}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{3}{h_{j-1}}\left(a_{j}-a_{j-1}\right)
$$

iii (5 points) Suppose s satisfies the nature boundary condition $s^{\prime \prime}(a)=0$ and $s^{\prime \prime}(b)=0$. What equation does the boundary condition translate to in terms of the coefficients? Write down the complete system for determining the c_{j}.
Answer: $c_{0}=0$ and $c_{5}=0$. Hence the linear system is

$$
\left[\begin{array}{rrrr}
2\left(h_{0}+h_{1}\right) & h_{1} & 0 & 0 \\
h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & 0 \\
0 & h_{2} & 2\left(h_{2}+h_{3}\right) & h_{3} \\
0 & 0 & h_{3} & 2\left(h_{3}+h_{4}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=3\left[\begin{array}{l}
\frac{a_{2}-a_{1}}{h_{1}}-\frac{a_{1}-a_{0}}{h_{0}} \\
\frac{a_{3}-a_{2}}{h_{0}}-\frac{a_{2}-a_{1}}{h_{1}} \\
\frac{a_{4}-a_{3}}{h_{3}}-\frac{a_{3}-a_{2}}{h_{2}} \\
\frac{a_{5}-a_{4}}{h_{4}}-\frac{a_{4}-a_{3}}{h_{3}}
\end{array}\right]
$$

iv (5 points) Show that the nature cubic spline s defined in iii satisfies the minimum curvature property: Let g be any C^{2}-function on $[a, b]$ which interpolates f over the partition

$$
a=x_{0}<x_{1}<x_{2}<x_{3}<x_{4}<x_{5}=b .
$$

Then

$$
\int_{a}^{b}\left[s^{\prime \prime}(x)\right]^{2} d x \leq \int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x
$$

Moreover, the equality holds only if $g(x)=s(x)$. You must provide the detail of your proof. Answer: Let g br a C^{2}-function and $r(x)=g(x)-s(x)$. Obviously $r(x)$ is a C^{2}-function.

$$
\begin{aligned}
\int_{a}^{b} s^{\prime \prime}(x) r^{\prime \prime}(x) d x & =\sum_{i=0}^{4} \int_{x_{i}}^{x_{i+1}} s^{\prime \prime}(x) r^{\prime \prime}(x) d x=\sum_{i=0}^{4}\left(\left.s^{\prime \prime}(x) r^{\prime}(x)\right|_{x_{i}} ^{x_{i}+1}-\int_{x_{i}}^{x_{i+1}} s_{i}^{\prime \prime \prime}(x) r^{\prime}(x) d x\right) \\
& =s^{\prime \prime}(b) r^{\prime}(b)-s^{\prime \prime}(a) r^{\prime}(a)+\sum_{i=0}^{4}\left(\left.s_{i}^{\prime \prime \prime}(x) r(x)\right|_{x_{i}} ^{x_{i}+1}-\int_{x_{i}}^{x_{i+1}} s_{i}^{(4)}(x) r(x) d x\right) \\
& =0
\end{aligned}
$$

The first two terms are zero since $s^{\prime \prime}(b)=s^{\prime \prime}(a)=0$. We also use the fact

$$
r\left(x_{i}\right)=g\left(x_{i}\right)-s\left(x_{i}\right)=f\left(x_{i}\right)-f\left(x_{i}\right)=0
$$

and $s_{i}^{(4)}=0$. Therefore we have

$$
\begin{aligned}
\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x & =\int_{a}^{b}\left[s^{\prime \prime}(x)+r^{\prime \prime}(x)\right]^{2} d x=\int_{a}^{b}\left[s^{\prime \prime}(x)\right]^{2} d x+2 \int_{a}^{b} s^{\prime \prime}(x) r^{\prime \prime}(x) d x+\int_{a}^{b}\left[r^{\prime \prime}(x)\right]^{2} d x \\
& =\int_{a}^{b}\left[s^{\prime \prime}(x)\right]^{2} d x+\int_{a}^{b}\left[r^{\prime \prime}(x)\right]^{2} d x
\end{aligned}
$$

Hence

$$
\int_{a}^{b}\left[s^{\prime \prime}(x)\right]^{2} d x \leq \int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x
$$

and when the equality holds, we must have $r^{\prime \prime}(x)=0$. This shows $r(x)$ is a linear function. But $r\left(x_{i}\right)=0$ for $i=0,1,2,3,4$. It implies $r(x)=0$. It follows the equality holds only if $g(x)=s(x)$.

6 Let L be an $n \times n$ lower triangular matrix with nonzero diagonal elements and be an $n \times 1$ vector.
i (5 points) Write a matlab code to solve the linear system $L x=b$ by forward substitution. The code should be a function M-file. It talks L, b as inputs and returns x.

Answer:

function $\mathrm{x}=$ forward_sub(L,b)
$[\mathrm{n}, \mathrm{m}]=\operatorname{size}(\mathrm{b})$;
$\mathrm{x}=\mathrm{zeros}(\mathrm{n}, \mathrm{m})$;
$\mathrm{x}(1)=\mathrm{b}(1) / \mathrm{L}(1,1)$;
for $\mathrm{i}=2: \mathrm{n}$
sum $=b(i) ;$
for $\mathrm{k}=1: \mathrm{i}-1$
sum $=\operatorname{sum}-\mathrm{L}(\mathrm{i}, \mathrm{k})^{*} \mathrm{x}(\mathrm{k}) ;$
end
$x(i)=\operatorname{sum} / L(i, i) ;$
end
ii (5 points) What is the operation counts of forward substitution? Your answer should be expressed as a function of n.
Answer: The operation counts are

$$
1+\sum_{i=2}^{n}\left(\sum_{k=1}^{i-1} 2+1\right)=1+\sum_{i=2}^{n}(2(i-1)+1)=1+(n-1)(2 n+2) / 2=n^{2}
$$

7 Let $f(x)$ be a C^{4}-function on $[a, b]$ and $x_{0}=a, x_{1}=b$.
i (5 points) Show that there exists a unique polynomial $P(x)$ of degree at most 3 that satisfies $P\left(x_{i}\right)=f\left(x_{i}\right)$ and $P^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$ for $i=0,1$.
Answer: Check Theorem on page 406 of the textbook.
ii (5 points) Let P be the unique polynomial defined in i and $x \in(a, b)$. Define

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \frac{(t-a)^{2}(t-b)^{2}}{(x-a)^{2}(x-b)^{2}}
$$

Show that $g(a)=g(b)=g(x)=0$ and $g^{\prime}(a)=g^{\prime}(b)=0$
Answer: Since $P(a)=f(a), P(b)=f(b), P^{\prime}(a)=f^{\prime}(a), P^{\prime}(b)=f^{\prime}(b)$, we have

$$
\begin{gathered}
g(a)=f(a)-P(a)=0, \quad g(b)=f(b)-P(b)=0, \quad g(x)=f(x)-P(x)-[f(x)-P(x)] \times 1=0 \\
g^{\prime}(a)=f^{\prime}(a)-P^{\prime}(a)=0, \quad g^{\prime}(b)=f^{\prime}(b)-P^{\prime}(b)=0
\end{gathered}
$$

iii (5 points) Use ii and Rolle's theorem to show that there exists a point $\xi \in(a, b)$ such that $g^{(4)}(\xi)=0$.
Answer: Since $g(a)=g(x)=g(b)=0$, by Rolle's theorem there exists $\xi_{1} \in(a, x)$ and $\xi_{2} \in(x, b)$ such that $g^{\prime}\left(\xi_{1}\right)=g^{\prime}\left(\xi_{2}\right)=0$. Since $a<\xi_{1}<\xi_{2}<b$ and $g^{\prime}(a)=g^{\prime}\left(\xi_{1}\right)=$ $g^{\prime}\left(\xi_{2}\right)=g^{\prime}(b)=0$, by Rolle's theorem there exits $\eta_{1} \in\left(a, \xi_{1}\right), \eta_{2} \in\left(\xi_{1}, \xi_{2}\right), \eta_{3} \in\left(\xi_{2}, b\right)$ such that $g^{\prime \prime}\left(\eta_{1}\right)=g^{\prime \prime}\left(\eta_{2}\right)=g^{\prime \prime}\left(\eta_{3}\right)=0$. This implies there exits $a<\theta_{1}<\theta_{2}<b$ such that $g^{\prime \prime \prime}\left(\theta_{1}\right)=g^{\prime \prime \prime}\left(\theta_{2}\right)=0$. By Rolle's theorem, it follows there exits $\xi \in(a, b)$ such that $g^{(4)}(\xi)=0$.
iv (5 points) Use $g^{(4)}(\xi)=0$ to show that

$$
f(x)-P(x)=\frac{f^{(4)}(\xi)}{24}(x-a)^{2}(x-b)^{2}
$$

Answer: Since $P(t)$ is a cubic polynomial, $P^{(4)}(t)=0$. Therefore,

$$
0=g^{(4)}(\xi)=f^{(4)}(\xi)-[f(x)-P(x)] \frac{24}{(x-a)^{2}(x-b)^{2}}
$$

It follows

$$
f(x)-P(x)=\frac{f^{(4)}(\xi)}{24}(x-a)^{2}(x-b)^{2}
$$

