- 1. Find the following derivatives.
 - i Find q'(x), where $q(x) = x^{\sqrt{x}}$.
 - ii If $xy + e^y = e$, find the value of y' and y'' at the point where x = 0.

iii Find
$$f'(x)$$
, where $f(x) = \begin{cases} x^3 \sin \frac{2}{x^2} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$

(Hint: Use the definition to compute f'(0) separately.)

- 2. Find the following integrals.
 - i Find $\int x^2 \ln x \, dx$.
 - ii Find $\int \cos^3 x \, dx$.
 - iii Find $\int x \cos^3 x \, dx$. Hint: Use integration by part and ii.
 - iv Find $\int \sec^3 x \, dx$. Hint: Use integration by parts and $\tan^2 x = \sec^2 x 1$.
 - v Find $\int_0^1 \sqrt{x^2 + 1} \, dx$. Hint: Use iv.

vi Find
$$\int_0^1 \frac{x^3 - 3x - 3}{x^2 - x - 6} dx$$

vii Find
$$\int \frac{1}{x^2 + x + 1} dx$$

- 3. Find the following area or volume.
 - i Find the region enclosed by $4x + y^2 = 12$ and x = y.
 - ii Find the volume of the solid obtained by rotating the region bounded by $y = \frac{1}{4}x^2$ and $y = 5 x^2$ about the x-axis.
- 4. Find equations of both lines through the points (2, -3) that are tangent to the parabola y = x² + x.
 5. Consider the graph of y = f(x) = 3x⁴ 4x³ 12x² + 1.
- - i Find the intervals of increase or decrease.
 - ii Find all local maximum and minimum value of f(x).
 - iii Find the intervals on which f is concave upward or downward and all inflection points.
 - iv Sketch the graph.
- 6. Find the point on the line y = 2x + 3 that is closest to the origin.