1. Find the following derivatives.
i Find $g^{\prime}(x)$, where $g(x)=x^{\sqrt{x}}$.
ii If $x y+e^{y}=e$, find the value of y^{\prime} and $y^{\prime \prime}$ at the point where $x=0$.
iii Find $f^{\prime}(x)$, where $f(x)= \begin{cases}x^{3} \sin \frac{2}{x^{2}} & , \quad x \neq 0 \\ 0 & , \quad x=0\end{cases}$
(Hint: Use the definition to compute $f^{\prime}(0)$ separately.)
2. Find the following integrals.
i Find $\int x^{2} \ln x d x$.
ii Find $\int \cos ^{3} x d x$.
iii Find $\int x \cos ^{3} x d x$. Hint: Use integration by part and ii.
iv Find $\int \sec ^{3} x d x$. Hint: Use integration by parts and $\tan ^{2} x=\sec ^{2} x-1$.
v Find $\int_{0}^{1} \sqrt{x^{2}+1} d x$. Hint: Use iv.
vi Find $\int_{0}^{1} \frac{x^{3}-3 x-3}{x^{2}-x-6} d x$
vii Find $\int \frac{1}{x^{2}+x+1} d x$
3. Find the following area or volume.
i Find the region enclosed by $4 x+y^{2}=12$ and $x=y$.
ii Find the volume of the solid obtained by rotating the region bounded by $y=\frac{1}{4} x^{2}$ and $y=5-x^{2}$ about the x-axis.
4. Find equations of both lines through the points $(2,-3)$ that are tangent to the parabola $y=x^{2}+x$.
5. Consider the graph of $y=f(x)=3 x^{4}-4 x^{3}-12 x^{2}+1$.
i Find the intervals of increase or decrease.
ii Find all local maximum and minimum value of $f(x)$.
iii Find the intervals on which f is concave upward or downward and all inflection points.
iv Sketch the graph.
6. Find the point on the line $y=2 x+3$ that is closest to the origin.
