Homework Assignment 14 Due on Thursday 6/6

Do the following exercise problems in the text book by Salas, Hille and Etgen,
Sec 8.5: 6, 10, 16, 20, 24, 26, 29, 35, 40, 45, 50
Sec 10.1: 4, 12, 25, 28, 30,
Sec 10.2: 10, 22, 25, 31, 34, 41, 45, 46, 49, 54, 63,
Do the following problems.
Exercise I. Let $I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+1\right)^{n}} d t$ for all positive integer n.

1. Show that for $n \geq 2$, we have

$$
\frac{2 n-2}{\left(x^{2}+1\right)^{n}}=\frac{d}{d x}\left(\frac{x}{\left(x^{2}+1\right)^{n-1}}\right)+\frac{2 n-3}{\left(x^{2}+1\right)^{n-1}}
$$

2. Use 1 to show that for $n \geq 2$, we have

$$
I_{n}(x)=\frac{1}{2 n-2}\left(\frac{x}{\left(x^{2}+1\right)^{n-1}}+(2 n-3) I_{n-1}(x)\right)
$$

Use the formula to show that

$$
\int_{0}^{x} \frac{1}{\left(t^{2}+1\right)^{2}} d t=\frac{1}{2}\left(\frac{x}{x^{2}+1}+\arctan x\right)
$$

and

$$
\int_{0}^{x} \frac{1}{\left(t^{2}+1\right)^{3}} d t=\frac{1}{8}\left(\frac{2 x}{\left(x^{2}+1\right)^{2}}+\frac{3 x}{x^{2}+1}+3 \arctan x\right)
$$

Exercise II. Consider the curve Γ defined by $a x^{2}+2 b x y+c y^{2}=1$. Suppose (x_{0}, y_{0}) is a point on Γ. Show that the tangent line to Γ at point $\left(x_{0}, y_{0}\right)$ is given by

$$
a x_{0} x+b y_{0} x+b x_{0} y+c y_{0} y=1 .
$$

Hint: Use implicit derivative to fine y^{\prime} at $\left(x_{0}, y_{0}\right)$,

