Homework Assignment 8

Due on Thursday 4/25

Do the following exercise problems in the text book by Salas, Hille and Etgen,
Sec 5.5: 2, 6, 8, 18, 20, 24, 30, 34
Sec 5.6: 6, 10, 26, 29, 33, 36
Sec 5.7: $4,12,14,21,24,30,35,36,37,44,47,48,52,62,72,82,84$
Sec 5.8: 1-15, 24, 26, 33, 36
Sec 5.9: 5, 14, 16, 21, 37
Do the following problems.
Exercise 1. Let $L(x)=\int_{1}^{x} \frac{1}{t} d t$ for $x>0$. Show that

1. $L(a)+L(b)=L(a b)$.
2. $L\left(a^{n}\right)=n L(a)$.

Exercise 2. Find the following integrals.

1. $\int_{-1}^{1} x \sqrt{1-x^{2}} d x$
2. $\int_{0}^{\pi / 3}\left(\cos ^{2} x-\sin ^{2} x\right) d x$ (Hint: $\left.\cos ^{2} x-\sin ^{2} x=(\cos x+\sin x)(\cos x-\sin x)\right)$
3. $\int_{-1}^{1} \frac{\sin x}{1+x^{2}} d x$

Exercise 3. Let f be a continuous function on $[a, b]$.

1. Suppose $f(c) \geq 0$ for some $c \in[a, b]$. Show that there exists an interval I in $[a, b]$ such that $f(x)>f(c) / 2>0$ on I.
2. Use 1. to show that if $f(x) \geq 0$ and $\int_{b}^{a} f(x) d x=0$, then $f(x)=0$ on $[a, b]$.
