Midterm Exam 2 Solution

1 (15 points) True or False. T for true and F for false.
i (F) If $a>0$ and $x>y>0$, then $\log _{a} x>\log _{a} y$.
ii (T) For any real number $|x| \leq 1$, we have $\cos (\arccos x)=x$.
iii (F) If f and g are continuos on $[a, b]$ and $f(x) \geq g(x)$ on $[a, b]$, then $\int_{b}^{a}|f(x)| d x \geq$ $\int_{b}^{a}|g(x)| d x$.
iv (F) A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-t-6$. The distance traveled during the time period $1 \leq t \leq 4$ is $-\frac{9}{2}$.
$\mathrm{v}(\mathrm{T})$ Assume that f and g are continuous, that $a<b$, and that $\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x$, then for any partition P of $[a, b]$

$$
U_{f}(P)>\int_{a}^{b} g(x) d x
$$

2 (5 points) Find the upper Riemann sum $U_{f}(P)$ and the lower Riemann sum $L_{f}(P)$ of the function $f(x)=2 x^{3}-3 x^{2}+1$ on $[-2,4]$ with $P=\{-2,-1,2,4\}$.
Answer: $f^{\prime}(x)=6 x^{2}-6 x=6 x(x-1)$. Hence $f(x)$ is increasing on $[-2,0]$ and $[1,4]$ and decreasing on $[0,1]$. Therefore

$$
\begin{gathered}
U_{f}(P)=f(-1) \times 1+f(2) \times 3+f(4) \times 2=-4+15+162=173 \\
L_{f}(P)=f(-2) \times 1+f(-1) \times 3+f(2) \times 2=-27-12+10=-29
\end{gathered}
$$

3 (25 points.) Compute the following derivatives.
i $\frac{d}{d x}\left[(\cos x)^{\sin x}\right]$
Answer:

$$
\begin{aligned}
\frac{d}{d x}\left[(\cos x)^{\sin x}\right]=\frac{d}{d x} e^{\sin x \ln \cos x} & =e^{\sin x \ln \cos x}\left(\cos x \ln \cos x-\frac{\sin ^{2} x}{\cos x}\right) \\
& =(\cos x)^{\sin x}\left(\cos x \ln \cos x-\frac{\sin ^{2} x}{\cos x}\right)
\end{aligned}
$$

ii $\frac{d}{d x} \arctan \left(2^{x}\right)$
Answer:

$$
\frac{d}{d x} \arctan \left(2^{x}\right)=\frac{1}{1+2^{2 x}} \times \ln 2 \times 2^{x}=\frac{\ln 2\left(2^{x}\right)}{1+2^{2 x}}
$$

iii $\frac{d}{d x}[\ln (\csc x)]$

Answer:

$$
\frac{d}{d x}[\ln (\csc x)]=\frac{1}{\csc x}(-\csc x \cot x)=-\cot x
$$

iv Find $g^{\prime}(0)$, where $g(x)=\frac{\sqrt{x^{2}+4} e^{x}}{(x+1)^{5}}$ (Hint: Use logarithmic differentiation.)
Answer:

$$
\ln g(x)=\frac{1}{2} \ln \left(x^{2}+4\right)+x-5 \ln (x+1)
$$

Therefore

$$
g^{\prime}(x)=g(x)\left(\frac{x}{x^{2}+4}+1-\frac{5}{x+1}\right)
$$

and

$$
g^{\prime}(0)=g(0)(-4)=-8
$$

v Find $h^{\prime}(x)$, where $h(x)=\int_{\sqrt{x}}^{x^{2}} \frac{z}{\sqrt{z+1}} d z$.
Answer:

$$
h^{\prime}(x)=\frac{x^{2}}{\sqrt{x^{2}+1}} \times 2 x-\frac{\sqrt{x}}{\sqrt{\sqrt{x}+1}} \times \frac{1}{2 \sqrt{x}}=\frac{2 x^{3}}{\sqrt{x^{2}+1}}-\frac{1}{2 \sqrt{\sqrt{x}+1}}
$$

4 (25 points) Compute the following integrals.
i Find $\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} d x$

Answer:

$$
\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} d x=\int_{1}^{2} \frac{u-1}{2 \sqrt{u}} d u=\left.\left(\frac{1}{3} u^{\frac{3}{2}}-u^{\frac{1}{2}}\right)\right|_{1} ^{2}=\frac{2 \sqrt{2}}{3}-\sqrt{2}-\frac{1}{3}+1=\frac{2}{3}-\frac{\sqrt{2}}{3}
$$

ii Find $\int \frac{e^{x}}{e^{x}+1} d x$

Answer:

$$
\int \frac{e^{x}}{e^{x}+1} d x=\int \frac{1}{u} d u=\ln \left(e^{x}+1\right)+C
$$

iii Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=-\int_{\pi}^{0} \sqrt{1-\cos ^{2} \theta} \sin \theta d \theta=\int_{0}^{\pi} \sin ^{2} \theta d \theta=\int_{0}^{\pi} \frac{-\cos 2 \theta+1}{2} d \theta=\frac{\pi}{2}
$$

iv Find $\int_{0}^{1}\left(x^{2}-1\right)\left(x^{3}-3 x+2\right)^{4} d x$
Answer:

$$
\int_{0}^{1}\left(x^{2}-1\right)\left(x^{3}-3 x+2\right)^{4} d x=\int_{2}^{0} \frac{1}{3} u^{4} d u=-\left.\frac{u^{5}}{15}\right|_{0} ^{2}=-\frac{32}{15}
$$

v Find $\int \frac{x}{\sqrt{1-x^{4}}} d x$

$$
\int \frac{x}{\sqrt{1-x^{4}}} d x=\int \frac{1}{2 \sqrt{1-u^{2}}} d u=\frac{1}{2} \arcsin x^{2}+C
$$

5 Let Ω the region enclosed by curves $y=x^{2}$ and $y=2 x$.
i (2 points) Find the area of Ω.
Answer: The area A is $\int_{0}^{2}\left(2 x-x^{2}\right) d x=x^{2}-\left.\frac{1}{3} x^{3}\right|_{0} ^{2}=\frac{4}{3}$
ii (6 points) Find the volume of the solid generated by revolving Ω about the x-axis and the y-axis.
Answer: Denote the volume of the solid generated by revolving Ω about the x-axis and the y-axis by V_{x} and V_{y} respectively. Then

$$
\begin{aligned}
& V_{x}=\int_{0}^{2} \pi\left(4 x^{2}-x^{4}\right) d x=\left(\frac{32}{3}-\frac{32}{5}\right) \pi=\frac{64}{15} \pi \\
& V_{y}=\int_{0}^{2} 2 \pi x\left(2 x-x^{2}\right) d x=2 \pi\left(\frac{16}{3}-\frac{16}{4}\right)=\frac{8}{3} \pi
\end{aligned}
$$

iii (2 points) Locate the centroid of Ω.
Answer: By Pappus's theorem, we have

$$
\bar{y}=\frac{V_{x}}{2 \pi A}=\frac{8}{5}, \quad \bar{x}=\frac{V_{y}}{2 \pi A}=1 .
$$

6 (5 points) The base of a solid is the region enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

Find the volume of the solid given that each cross section perpendicular to the x-axis is an isosceles triangle with base in the region and altitude equal to one-half the base.

Answer:

$$
\begin{gathered}
A(x)=\frac{1}{2} b h=\frac{1}{2}\left(\frac{2 b}{a} \sqrt{a^{2}-x^{2}}\right)\left(\frac{b}{a} \sqrt{a^{2}-x^{2}}\right)=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) \\
V=\int_{-a}^{a} A(x) d x=2 \int_{0}^{a} A(x) d x=\frac{2 b^{2}}{x^{2}} \int_{0}^{a}\left(a^{2}-x^{2}\right)=\frac{4}{3} a b^{2}
\end{gathered}
$$

7 (5 points) Simplify the following expression

$$
\tan (\operatorname{arcsec} x)
$$

Answer: Let $\theta=\operatorname{arcsec} x$. Then $\theta \in(0, \pi / 2)$ if $x>0$ and $\theta \in(-\pi / 2, x)$ if $x<0$. Therefore

$$
\tan ^{2}(\operatorname{arcsec} x)=\tan ^{2} \theta=\sec ^{2} \theta-1=x^{2}-1
$$

Hence $\tan (\operatorname{arcsec} x)=\sqrt{x^{2}-1}$ if $x>0$ and $\tan (\operatorname{arcsec} x)=-\sqrt{x^{2}-1}$ if $x<0$.
8 (10 pints) Let $L(x)=\int_{1}^{x} \frac{1}{t} d t$ for $x>0$. Prove that
i $L(a)+L(b)=L(a b)$, for all $a>0$ and $b>0$.
Answer: Let $t=a u$. Then $d t=a d u$ and

$$
\int_{a}^{a b} \frac{1}{t} d t=\int_{1}^{b} \frac{1}{a u} a d u=\int_{1}^{b} \frac{1}{u} d u=L(b)
$$

Therefore we have

$$
L(a)+L(b)=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{a b} \frac{1}{t} d t=\int_{1}^{a b} \frac{1}{t} d t=L(a b)
$$

ii $L\left(a^{n}\right)=n L(a)$, for $a>0$ and $n \in \mathbb{R}$.
Answer: Let Let $t=u^{n}$. Then $d t=n u^{n-1} d u$ and

$$
L\left(a^{n}\right)=\int_{1}^{a^{n}} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{u^{n}} n u^{n-1} d u=n \int_{1}^{a} \frac{1}{u} d t=n L(a)
$$

9 (10 points) Let f be a continuous function on $[a, b]$ and $f(x) \geq 0$ on $[a, b]$. Prove that if $\int_{a}^{b} f(x) d x=0$, then $f(x)=0$ on $[a, b]$.
Answer: Suppose $f(x) \neq 0$ on $[a, b]$, then there exists $c \in[a, b]$, such that $f(c)>0$. Since $f(x)$ is continuous on $[a, b]$, then for $\epsilon=f(c) / 2>0$, there exists $\delta>0$ such that $|f(x)-f(c)|<\epsilon$ for all $|x-c|<\delta$ and $x \in[a, b]$. Let $[k, l]=[c-\delta / 2, c+\delta / 2] \cap[a, b]$. Then for all $x \in[k, l]$, we have

$$
f(x)>f(c)-\epsilon=2 \epsilon-\epsilon=\epsilon \text {. }
$$

Since $f(x)>0$, we have

$$
\int_{a}^{b} f(x) d x \geq \int_{k}^{l} f(x) d x>\int_{k}^{l} \epsilon d x=\epsilon(l-k)>0
$$

It contradicts to the fact $\int_{b}^{a} f(x) d x=0$. Hence $f(x)=0$ on $[a, b]$.

