Midterm Exam 1 solution

1 (15 points) True or False. Please write down your answer on your answer sheet. T for true and F for false.
i F. The polynomial $p(x)=x^{3}-x^{2}+x-10$ has exactly two local extreme values.
ii T . If f is not continuous at a, then f is not differentiable at a.
iii T. The graph of $f(x)=\frac{\sqrt{2 x^{2}+1}-x}{3 x}$ has 2 horizontal and 1 vertical asymptotes.
iv F. If both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} f(x) g(x)$ exist, then $\lim _{x \rightarrow a} g(x)$ exists.
v F. If f has a local maximum or minimum at c, then $f^{\prime}(c)=0$.
2 (10 points) Find the following limits.
i $\lim _{t \rightarrow 0} \cos \left(\frac{1}{t}-\frac{1}{t \sqrt{1+t^{2}}}\right)$
Answer: Since $\cos x$ is continuous everywhere and

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t \sqrt{1+t^{2}}}\right) & =\lim _{t \rightarrow 0}\left(\frac{\sqrt{1+t^{2}}-1}{t \sqrt{1+t^{2}}}\right)=\lim _{t \rightarrow 0}\left(\frac{\left(\sqrt{1+t^{2}}-1\right)\left(\sqrt{1+t^{2}}+1\right)}{t \sqrt{1+t^{2}}\left(\sqrt{1+t^{2}}+1\right)}\right) \\
& =\lim _{t \rightarrow 0}\left(\frac{t^{2}}{t \sqrt{1+t^{2}}\left(\sqrt{1+t^{2}}+1\right)}\right)=\lim _{t \rightarrow 0}\left(\frac{t}{\sqrt{1+t^{2}}\left(\sqrt{1+t^{2}}+1\right)}\right) \\
& =\frac{0}{2}=0,
\end{aligned}
$$

we have $\lim _{t \rightarrow 0} \cos \left(\frac{1}{t}-\frac{1}{t \sqrt{1+t^{2}}}\right)=\cos \left(\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t \sqrt{1+t^{2}}}\right)\right)=\cos 0=1$
ii $\lim _{x \rightarrow 0} \frac{x^{2}}{\sec x-1}$
Answer:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}}{\sec x-1} & =\lim _{x \rightarrow 0} \frac{x^{2} \cos x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{x^{2} \cos x(1+\cos x)}{1-\cos ^{2} x} \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)^{2} \times \lim _{x \rightarrow 0} \cos x(1+\cos x) \\
& =1 \times 2=2
\end{aligned}
$$

3 (20 points) Find the following derivatives.
i Find $f^{\prime}(1)$, where $f(x)=\frac{\sqrt[3]{x}-2 x^{2}}{\sqrt{x}}$.
Answer: First we simplify $f(x)=\frac{\sqrt[3]{x}-2 x^{2}}{\sqrt{x}}=x^{-1 / 6}-2 x^{3 / 2}$
Hence $f^{\prime}(1)=-\frac{1}{6}-3=-\frac{19}{6}$
ii Find $g^{\prime}(x)$, where $g(x)=\tan ^{2}(1-x)^{2}$.
Answer:

$$
g^{\prime}(x)=2 \tan (1-x)^{2} \sec ^{2}(1-x)^{2} \times 2(1-x) \times(-1)=-4(1-x) \tan (1-x)^{2} \sec ^{2}(1-x)^{2}
$$

iii If $x^{2}+x y+y^{3}=-1$, find the value of y^{\prime} and $y^{\prime \prime}$ at the point where $x=0$.
Answer: When $x=0$, we have $y^{3}=-1$. Thus $y=-1$. Since $2 x+y+x y^{\prime}+3 y^{2} y^{\prime}=0$, we have

$$
y^{\prime}=\frac{-2 x-y}{x+3 y^{2}}
$$

Hence $y^{\prime}=1 / 3$ when $x=-1$.

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\left(-2-y^{\prime}\right)\left(x+3 y^{2}\right)-(-2 x-y)\left(1+6 y y^{\prime}\right)}{\left(x+3 y^{2}\right)^{2}} \\
& =\frac{3(-2-1 / 3)-1(1-6 / 3)}{9}=\frac{-7+1}{9}=-\frac{2}{3}
\end{aligned}
$$

iv Find $\frac{d^{2} y}{d x^{2}}$, where $y=\frac{\sin x}{1-\cos x}$.
Answer: $\frac{d y}{d x}=\frac{\cos x(1-\cos x)-\sin x(\sin x)}{(1-\cos x)^{2}}=\frac{\cos x-1}{(1-\cos x)^{2}}=\frac{1}{\cos x-1}$

$$
\frac{d^{2} y}{d x^{2}}=\frac{\sin x}{(\cos x-1)^{2}}
$$

4 (10 points) Let $f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}} & , \quad x \neq 0 \\ 0 & , x=0\end{cases}$
i Find $f^{\prime}(x)$ for $x \neq 0$.
ii Find $f^{\prime}(0)$.
Answer: For $x \neq 0$, we have $f^{\prime}(x)=2 x \sin \frac{1}{x^{2}}-2 \frac{1}{x} \cos \frac{1}{x^{2}}$. For $x=0$, we have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h^{2}}-0}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h^{2}}
$$

Since $0 \leq\left|\sin \frac{1}{h^{2}}\right| \leq 1$ for any $h \neq 0$, we have $0 \leq|h|\left|\sin \frac{1}{h^{2}} \leq|h|\right.$ for any nonzero h. By $\lim _{h \rightarrow 0}|h|=0$ and the pitching theorem, we have $\lim _{h \rightarrow 0} h^{2} \sin \frac{1}{h^{2}}=0$. Thus $f^{\prime}(0)=0$.

5 (5 points) Prove that for all real x and y,

$$
|\cos x-\cos y| \leq|x-y|
$$

Answer: If $x=y$, then the equation is true. By the mean value theorem, we have

$$
\cos x-\cos y=-(\sin c)(x-y)
$$

for some c in between x and y. Since $|\sin c| \leq 1$ for all c, we have

$$
|\cos x-\cos y|=|(\sin c)||(x-y)| \leq|x-y|
$$

6 (10 points) Find equations of both lines through the points $(2,-3)$ that are tangent to the parabola $y=x^{2}+x$.
Answer: Let $\left(a, a^{2}+a\right)$ be a point on the curve. Since $y^{\prime}=2 x+1$ we have the tangent line to the curve at the point $\left(a, a^{2}\right)$ is $y=(2 a+1)(x-a)+a^{2}+a=(2 a+1) x-a^{2}$. Suppose $(2,-3)$ is on the tangent line, we have $-3=4 a+2-a^{2}$. Hence we have $a=-1,5$. Therefore the equations are $y=-x-1$ and $y=11 x-25$.

7 (5 points) Use a differential to estimate the value of $\sqrt[4]{16.1}$.
Answer: Let $f(x)=x^{1 / 4}$ and $a=16$. The linear approximation of f at a is

$$
L(x)=f(a)+f^{\prime}(a)(x-a)=2+1 / 32(x-16) .
$$

By substituting $x=16.1$, we have

$$
\sqrt[4]{16.1} \simeq 2+0.1 / 32=2 \frac{1}{320}=2.003125
$$

8 (5 points) Water is poured into a conical container, vertex down, at the rate of 2 cubic feet per minute. The container is 6 feet deep and the open end is 8 feet across. How fast is the level of the water rising when the container is half full?
Answer: Let V be the volume of water, h be the hight and r be the radius. Then we know $r=2 / 3 h$ and

$$
V=\frac{1}{3} \pi r^{2} h=\frac{4}{27} \pi h^{3}
$$

Hence we have

$$
\frac{d V}{d t}=\frac{4}{9} \pi h^{2} \frac{d h}{d t}
$$

When the container is half full, we have $h=6 / \sqrt[3]{2}$ feet and therefore

$$
\frac{d h}{d t}=\frac{9}{4 \pi h^{2}} \frac{d V}{d t}=\frac{9 \sqrt[3]{4}}{4 \pi \times 36} \times 2=\frac{\sqrt[3]{4}}{8 \pi}
$$

9 (5 points) If $1200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
Answer: Let h be the height of the box and x be the side of the base. Then we have $x^{2}+4 h x=$ 1200. Hence we get $h=\frac{1200-x^{2}}{4 x}$. The volume V of the box is

$$
V=x^{2} h=\frac{x\left(1200-x^{2}\right)}{4} .
$$

SInce $V^{\prime}=\frac{1}{4}\left(1200-3 x^{2}\right)$, we have $V^{\prime}=0$ when $x=20$ and $V^{\prime \prime}<0$ for all other $x>0$, hence V has maximum value when $x=20, h=10$. In this case, the volume is

$$
V=x^{2} h=4000 \mathrm{~cm}^{3}
$$

10 (15 points) Consider the graph of $y=f(x)=3 x^{4}-8 x^{3}-6 x^{2}+24 x-7$.
i (5 points) Find the intervals of increase or decrease.
ii (5 points) Find all local maximum and minimum value of $f(x)$.
iii (5 points) Find the intervals on which f is concave upward or downward.
Answer: $f^{\prime}(x)=12 x^{3}-24 x^{2}-12 x+24=12\left(x^{3}-2 x^{2}-x+2\right)=12\left(x^{2}-1\right)(x-2)=$ $12(x-1)(x+1)(x-2)$.
Hence f is increasing on $[-1,1] \cup[2, \infty)$ and decreasing on $(-\infty,-1] \cup[1,2]$
f has local maximum at 1 and $f(1)=6, f$ has local minimum at $-1,2$ and the local minimum values are $f(-1)=-26$ and $f(2)=1$
$f^{\prime \prime}(x)=12\left(3 x^{2}-4 x-1\right)=36\left(x-\frac{2+\sqrt{7}}{3}\right)\left(x-\frac{2-\sqrt{7}}{3}\right)$
Hence f is concave up on $\left(-\infty, \frac{2-\sqrt{7}}{3}\right] \cup\left[\frac{2+\sqrt{7}}{3}, \infty\right)$ and concave down on $\left[\frac{2-\sqrt{7}}{3}, \frac{2+\sqrt{7}}{3}\right]$

11 (10 points) Prove that if $\lim _{x \rightarrow c} f(x)=L$, then there are positive numbers δ and B such that if $0<|x-c|<\delta$, then $|f(x)|<B$.
Answer: Since $\lim _{x \rightarrow c} f(x)=L$, we can choose $\epsilon=1$, then there exists $\delta>0$ such that if $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon=1$. Then let $B=|L|+1$, we have if $0<|x-c|<\delta$, then

$$
|f(x)| \leq|f(x)-L|+|L|<1+|L|=B
$$

