\mathcal{L} -Classes of Inverse Semigroups *

Shigeru Kobayashi and Haruki Shimada[†]

Received 4 June 2001

Abstract

In this paper, we provide some properties of inverse semigroups from those of their \mathcal{L} -classes.

1 Introduction

Let S be a semigroup and e be an idempotent element in S. Then a \mathcal{H} -class H_e is a subgroup of S. If there exists a morphism θ from S to H_e , then we can make $N^0 \times S \times N^0$ into a semigroup (here and in the sequel, N stands for the set of positive integers and N^0 the set of nonnegative integers). This is called the Bruck-Reilly extension of S determined by θ . If S is a group and θ is an endomorphism of S, then the Bruck-Reilly extension is a bisimple inverse ω -semigroup. In this case, the \mathcal{H} -classes are important in the study of semigroups. Furthermore, let S be a complete regular semigroup, then every \mathcal{H} -class is a group, and it is known that the Clifford semigroup is a semilattice [1]. On the other hand, for \mathcal{L} -classes and \mathcal{R} -classes of an inverse semigroup, fundamental properties were given by several authors [5,6,7]. In this paper, we consider the properties of inverse semigroups which are related to the structure of their \mathcal{L} -classes. If every \mathcal{L} -class of an inverse semigroup S is a semigroup, then we will show S is a Clifford semigroup. We give a characterization of inverse semigroups whose \mathcal{L} -classes contain a semigroup. We shall also show that if every \mathcal{L} -class of an inverse semigroup S is not a semigroup, then S has a chain of idempotent elements which is not well ordered.

2 Preliminaries

Let S be a semigroup. Then an equivalence \mathcal{L} on S is defined by the rule that $a\mathcal{L}b$ if, and only if, $S^1a = S^1b$, where $S^1 = Sa \cup \{a\}$. Similarly we define the equivalence \mathcal{R} by the rule that $a\mathcal{R}b$ if, and only if, $aS^1 = bS^1$. It is well known that \mathcal{L} is a right congruence and \mathcal{R} is a left congruence. The intersection of \mathcal{L} and \mathcal{R} is denoted by \mathcal{H} and the join of \mathcal{L} and \mathcal{R} is denoted by \mathcal{D} . The \mathcal{L} -class (resp. \mathcal{R} -class, \mathcal{H} -class, \mathcal{D} -class) containing the element a will be denoted by L_a (resp. R_a , H_a , D_a). If e is

^{*}Mathematics Subject Classifications: 20M18

[†]Department of Mathematics, Naruto Universit of Education, Takashima, Naruto, Tokushima 772-8502, Japan

an idempotent element of S, then H_e is a subgroup of S, and no \mathcal{H} -class can contain more than one idempotent.

A semigroup S is called an I-semigroup if a unary operation $a \mapsto a^{-1}$ is defined on S such that, for all $a, b \in S$,

$$(a^{-1})^{-1} = a, \ aa^{-1}a = a.$$

Completely regular semigroup is specified within an I-semigroup by

$$aa^{-1} = a^{-1}a,$$

and that a Clifford semigroup is specified by the properties

$$aa^{-1} = a^{-1}a, \ aa^{-1}bb^{-1} = bb^{-1}aa^{-1}.$$

An inverse semigroup is an *I*-semigroup S such that for all $a, b \in S$,

$$aa^{-1}bb^{-1} = bb^{-1}aa^{-1}$$

PROPOSITION 2.1. The following statements are equivalent.

- (1) S is an inverse semigroup.
- (2) S is regular, that is for any element a in S, there exists x in S such that axa = a and its idempotents commute.
- (3) Every \mathcal{L} -class and every \mathcal{R} -class contains exactly one idempotent.
- (4) Every element of S has a unique inverse.

PROPOSITION 2.2. Let S be an inverse semigroup with semilattice E of idempotents. Then the following hold.

- (1) $(ab)^{-1} = b^{-1}a^{-1}$ for every a, b in S.
- (2) Both aea^{-1} and $a^{-1}ea$ are idempotent for every a in S and e in E.
- (3) $a\mathcal{L}b$ if, and only if, $a^{-1}a = b^{-1}b$; $a\mathcal{R}b$ if, and only if, $aa^{-1} = bb^{-1}$.
- (4) For $e, f \in E$, $e\mathcal{D}f$ if, and only if, there exists a in S such that $aa^{-1} = e$ and $a^{-1}a = f$.

The proofs of these two results can be found in [2, Theorem 5.1.1] and [2, Proposition 5.1.2] respectively.

3 Inverse semigroups

In this section, we assume that S is an inverse semigroup. If every \mathcal{L} -class, or, every \mathcal{R} -class in S is a semigroup, then we have the following.

THEOREM 3.1. If every \mathcal{L} -class, or, every \mathcal{R} -class in S is a semigroup, then S is a Clifford semigroup.

PROOF. Suppose that $(a, b) \in \mathcal{L}$. Then by Proposition 2.2(3), $a^{-1}a = b^{-1}b$. Since every \mathcal{L} -class is a semigroup, we have $a\mathcal{L}ba$. Hence

$$a^{-1}a = (ba)^{-1}ba = a^{-1}(b^{-1}b)a = a^{-1}(a^{-1}a)a = a^{-2}a^2.$$

Also for each a in S, aa^{-1} and $a^{-1}a$ are idempotent. Since idempotents commute, so we obtain

$$aa^{-1} = aa^{-1}aa^{-1} = aa^{-2}a^{2}a^{-1} = (aa^{-1})(a^{-1}a)(aa^{-1})$$
$$= (a^{-1}a)(aa^{-1})(aa^{-1})(a^{-1}a) = a^{-1}a^{2}a^{-2}a = a^{-1}aa^{-1}a = a^{-1}a$$

Thus S is a Clifford semigroup. A similar argument can be applied to the case where each \mathcal{R} -class in S is a semigroup. The proof is complete.

Next if there is a \mathcal{L} -class L_a in S such that L_a is a semigroup, then we have the following characterization.

THEOREM 3.2. Let a be an element of S. Then the following conditions are equivalent.

- (1) L_a is a semigroup.
- (2) For every element b in L_a , $b^{-1}b = b^{-2}b^2$.
- (3) For every element c in $R_{a^{-1}}$, $cc^{-1} = c^2 c^{-2}$.
- (4) $R_{a^{-1}}$ is a semigroup.

PROOF. To see that (1) implies (2), let b be an element in L_a . Then $a^{-1}a = b^{-1}b$. Since L_a is a semigroup, $b\mathcal{L}ab$, thus

$$b^{-1}b = (ab)^{-1}ab = b^{-1}(a^{-1}a)b = b^{-1}(b^{-1}b)b = b^{-2}b^2$$

(2) \Rightarrow (3): Let c be an element in $R_{a^{-1}}$. Then since $a^{-1} \in R_{a^{-1}}$,

$$a^{-1}a = a^{-1}(a^{-1})^{-1} = cc^{-1} = (c^{-1})^{-1}c^{-1}.$$

It follows that $a\mathcal{L}c^{-1}$, so $c^{-1} \in L_a$. By (2), this shows that

$$cc^{-1} = (c^{-1})^{-1}c^{-1} = (c^{-1})^{-2}(c^{-1})^{2} = c^{2}c^{-2}.$$

 $(3) \Rightarrow (4)$: Let $g, h \in R_{a^{-1}}$. Then $g\mathcal{R}h$. Since \mathcal{R} is a left congruence, it follows that $g^2\mathcal{R}gh$ and by our assumption, $g\mathcal{R}g^2$ and hence that $g\mathcal{R}gh$. Thus $gh \in R_g = R_{a^{-1}}$.

(4) \Rightarrow (1): Let $x, y \in L_a$, then $x^{-1}x = a^{-1}a = y^{-1}y$. Hence

$$x^{-1}(x^{-1})^{-1} = a^{-1}(a^{-1})^{-1} = y^{-1}(y^{-1})^{-1}.$$

This shows that $x^{-1}, y^{-1} \in R_{a^{-1}}$. Since $R_{a^{-1}}$ is a semigroup, we see that $y^{-1}x^{-1} = (xy)^{-1} \in R_{a^{-1}}$. Thus

$$(xy)^{-1}xy = (xy)^{-1}((xy)^{-1})^{-1} = a^{-1}(a^{-1})^{-1} = a^{-1}$$

It follows that $xy \in L_a$, so L_a is a semigroup.

THEOREM 3.3. Suppose that a is an element in S such that L_a is a semigroup. Then the following hold.

- (1) $a^{-1}a$ is the largest idempotent in the \mathcal{D} -class D_a . This shows that each \mathcal{D} -class contains at most one \mathcal{L} -class which is semigroup.
- (2) For any element $b \in L_a$, each $b^n b^{-n}$ $(n \in N)$ is idempotent and

$$bb^{-1} \ge b^2 b^{-2} \ge \dots \ge b^n b^{-n} \ge \dots$$

PROOF. To see that (1) holds, let f be an idempotent in D_a . Then there exists an element b in S such that $b^{-1}b = a^{-1}a$ and $bb^{-1} = f$. This shows that b is contained in L_a , so by Theorem 3.2(2), $b^{-1}b = b^{-2}b^2$. Since idempotents commute,

$$f = bb^{-1} = bb^{-1}bb^{-1} = bb^{-2}b^{-2}b^{-1} = f(b^{-1}b) f = (b^{-1}b) f = (a^{-1}a) f.$$

This implies that $a^{-1}a \ge f$. Therefore $a^{-1}a$ is the largest idempotent in \mathcal{D}_a . Next we assume that there exists \mathcal{L} -class L_b in the \mathcal{D} -class D_a which is a semigroup. Then $a^{-1}a$ and $b^{-1}b$ are the largest idempotent elements in D_a , hence $a^{-1}a = b^{-1}b$ and $L_a = L_b$.

To see that (2) holds, suppose that $b \in L_a$. Then $b^n b^{-n}$, $n \in N$, are idempotent elements and by Theorem 3.2(2),

$$a^{-1}a = b^{-1}b = b^{-2}b^2 = \dots = b^{-n}b^n$$
.

It follows that $b^{-1}b = a^{-1}a \ge bb^{-1}$ by (1). Therefore we obtain $bb^{-1} = (bb^{-1})(b^{-1}b)$ and

$$b^{2}b^{-2} = b(bb^{-1})b^{-1} = b(bb^{-1})(b^{-1}b)b^{-1} = (b^{2}b^{-2})(bb^{-1}).$$

This implies that $bb^{-1} \ge b^2 b^{-2}$. Next we assume that $b^k b^{-k} \ge b^{k+1} b^{-(k+1)}$ for $k \ge 1$. Then

$$\begin{aligned} b^{k+2}b^{-(k+2)} &= b\left(b^{k+1}b^{-(k+1)}\right)b^{-1} = b\left(b^{k+1}b^{-(k+1)}\right)\left(b^{k}b^{-k}\right)b^{-1} \\ &= b^{k+2}b^{-1}\left(b^{-k}b^{k}\right)b^{-(k+1)} = b^{k+2}b^{-1}\left(b^{-(k+1)}b^{k+1}\right)b^{-(k+1)} \\ &= \left(b^{k+2}b^{-(k+2)}\right)\left(b^{k+1}b^{-(k+1)}\right) \end{aligned}$$

This shows that $b^{k+1}b^{-(k+1)} \ge b^{k+2}b^{-(k+2)}$, so an inductive argument leads to $bb^{-1} \ge b^2b^{-2} \ge \dots \ge b^nb^{-n} \ge \dots$. The proof is complete.

COROLLARY 3.4. Let *a* be an element in a periodic inverse semigroup *S* and assume that the \mathcal{L} -class L_a is a semigroup. Then L_a is group.

PROOF. Since S is periodic, L_a becomes a periodic semigroup. Let b be an element in L_a . Then there exists a positive integer n such that b^n is idempotent. It follows that $b^n = a^{-1}a$ since $a^{-1}a$ is the largest idempotent in D_a and $b^n \in L_a$, hence $b^n b^{-n} = a^{-1}a$. Now Theorem 3.3 (2) shows that

$$a^{-1}a \ge bb^{-1} \ge b^2b^{-2} \ge \dots \ge b^nb^{-n}$$
.

Therefore we have that $b \in H_{a^{-1}a}$, and so $L_a \subseteq H_{a^{-1}a} \subseteq L_a$. Thus $L_a = H_{a^{-1}a}$ is a group. The proof is complete.

Corollary 3.4 shows that there is no finite inverse semigroup with a \mathcal{L} -class which is a semigroup but not a group.

EXAMPLE 3.5. Let \mathcal{I}_X be a symmetric inverse semigroup, that is, the set of all partial one to one maps of a set X. Let $X = \{1, 2\}$. Then the following two \mathcal{L} -classes

$$\left\{ \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) \right\} \quad \text{and} \quad \{\emptyset\}$$

are groups.

EXAMPLE 3.6. Let

$$\sigma = \left(\begin{array}{rrrrr} 0 & 1 & 2 & \cdots & n & \cdots \\ 1 & 2 & 3 & \cdots & n+1 & \cdots \end{array}\right)$$

and let $S = \{\sigma^{-m}\sigma^n \mid m, n \in N^0\}$. Then S has a \mathcal{L} -class which is a semigroup but not a group. Note that S is an inverse semigroup and isomorphic to bicyclic semigroup $N^0 \times N^0$. Thus \mathcal{L} -class $L_{\sigma\sigma^{-1}} \cong L_{(0,0)} = \{(m,0) \in N^0 \times N^0 \mid m \in N^0\}$ is a semigroup but not a group.

For any subset T in an inverse semigroup S, we define $R(T) = \{x \in S \mid Tx \subseteq T\}$. Clearly R(T) is a semigroup. Let a be an element of S. Then since $a^{-1}a$ is a right identity in $R(L_a)$, $a^{-1}a \in R(L_a)$

THEOREM 3.7. The following statements hold.

- (1) For any $y \in R(L_a), y^{-1}y \in R(L_a)$.
- (2) $a^{-1}a$ is the smallest idempotent element in $R(L_a)$.
- (3) There is an unique idempotent element in $R(L_a)$ if, and only if, $R(L_a) \subseteq L_a$.
- (4) L_a is a semigroup if, and only if, $L_a \subseteq R(L_a)$.
- (5) L_a is a group if, and only if, $D_a \subseteq R(L_a)$.

PROOF. (1): Let $y \in R(L_a)$. Then since $L_a y \subseteq L_a$, $(by)^{-1}(by) = a^{-1}a = b^{-1}b$ for any element $b \in L_a$. Hence for any $b \in L_a$,

$$(by^{-1}y)^{-1} by^{-1}y = y^{-1}yb^{-1}by^{-1}y = y^{-1}y (y^{-1}b^{-1}by) y^{-1}y = y^{-1}b^{-1}by = b^{-1}b = a^{-1}a.$$

It follows that $L_a y^{-1} y \subseteq L_a$. Thus $y^{-1} y \in R(L_a)$.

(2): Let f be an idempotent element in $R(L_a)$. Then since $af \in L_a$, $a^{-1}a = (af)^{-1}af = f(a^{-1}a)$. This implies that $a^{-1}a \leq f$, so $a^{-1}a$ is the smallest idempotent element in $R(L_a)$.

(3): Assume that there is an unique idempotent element in $R(L_a)$. Then by (2), $a^{-1}a$ is the unique idempotent in $R(L_a)$. Let $y \in R(L_a)$. Then by (1), $y^{-1}y \in R(L_a)$. Since $y^{-1}y$ is an idempotent element, we have that $y^{-1}y = a^{-1}a$, so $y \in L_a$. The converse is clear since L_a contains the unique idempotent element.

(4): Assume that L_a is a semigroup. Then $L_a L_a \subseteq L_a$, so $L_a \subseteq R(L_a)$. Conversely since $L_a \subseteq R(L_a)$, $L_a L_a \subseteq L_a$, hence L_a is a semigroup.

(5): Assume that L_a is a group. Then $L_a = R_a = D_a$. Thus by (4), $D_a = L_a \subseteq R(L_a)$. Conversely since $L_a L_a \subseteq L_a D_a \subseteq L_a R(L_a) \subseteq L_a$, L_a become a semigroup. Further, by Theorem 3.3(1), D_a contains an unique idempotent element. This shows that $D_a = R_a = L_a = H_a$. Hence L_a is a group.

COROLLARY 3.8. Let a be an element in the inverse semigroup S. Then the following statements hold.

(1) There exists an unique idempotent element in $R(L_a)$ if, and only if, $a^{-1}a$ is a right identity element of $R(L_a)$.

(2) L_a is a semigroup if, and only if, $L_a = R(L_a) \cap D_a$.

PROOF. (1): Let y be an element in $R(L_a)$. Then since $R(L_a) \subseteq L_a$, $ya^{-1}a = yy^{-1}y = y$. Thus $a^{-1}a$ is a right identity element of $R(L_a)$. Conversely let f be an idempotent element in $R(L_a)$, then $a^{-1}a \leq f$. Further since $a^{-1}a$ is a right identity element in $R(L_a)$, $fa^{-1}a = f$. It follows that $f = a^{-1}a$.

(2): Let $z \in R(L_a) \cap D_a$, then $a^{-1}a \leq z^{-1}z$ and $z^{-1}z \leq a^{-1}a$ by Theorem 3.3(1) and Theorem 3.6(2). Hence $z^{-1}z = a^{-1}a$ which implies $z \in L_a$, that is, we have equality. The converse is clear from Theorem 3.6(4).

Finally, we consider an inverse semigroup S which satisfies the condition that each \mathcal{L} -class is not a semigroup. We have the following.

THEOREM 3.9. Let S be an inverse semigroup such that each \mathcal{L} -class is not a semigroup. Then there is a chain of idempotents in S which is not well ordered.

PROOF. Let e_{λ} be an idempotent element in S. Then since $L_{e_{\lambda}}$ is not a semigroup, there is an idempotent e_{μ} such that $L_{e_{\lambda}}L_{e_{\mu}} \cap L_{e_{\mu}} \neq \emptyset$ and $e_{\lambda} \neq e_{\mu}$. Let c be an element in $L_{e_{\lambda}}L_{e_{\mu}} \cap L_{e_{\mu}}$. Then there exist $a, b \in L_{e_{\lambda}}$ such that c = ab. Since e_{λ} is a right identity of $L_{e_{\lambda}}$, it follows that $b = be_{\lambda}$. Hence we have

$$Se_{\lambda} = Sc = (Sa)b = (Se_{\lambda})be_{\lambda} = (Se_{\lambda}be_{\lambda})e_{\lambda} = Se_{\mu}e_{\lambda}.$$

This shows that $e_{\lambda}e_{\mu}$ is an element in $L_{e_{\lambda}}$, so Proposition 2.1(3) implies that $e_{\mu}e_{\lambda} = e_{\mu}$, which means that $e_{\lambda} > e_{\mu}$. We can apply this process repeatedly to obtain a chain of idempotents in S. We claim that this chain is not well-ordered. Indeed, if there is a minimal element in the chain, then the \mathcal{L} -class which contains the minimal element must become a semigroup, but this is contrary to our assumption.

EXAMPLE 3.10. Let S be the inverse semigroup generated by the following set

$$\left\{ \left(\begin{array}{ccc} \ell & \ell+1 & \cdots & \ell+n & \cdots \\ \ell+1 & \ell+2 & \cdots & \ell+n+1 & \cdots \end{array} \right) \ \middle| \ \ell \in Z, \ n \in N^0 \right\}$$

and its inverse. Then each \mathcal{L} -class is

$$L_m = \{ \sigma \in S \mid \text{Im}\sigma = (m, m+1, m+2, \cdots) \}.$$

Clearly L_m is not semigroup.

References

- A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math., 42(1941), 1037–1049.
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II. Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I. 1967.
- [3] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
- [4] J. M. Howie and B. M. Schein, Anti-uniform semilattice, Bull. Australian Math. Soc., 1(1969), 263–268.

- [5] A. E. Liber, On the theory of generalized groups (in Russian), Doklady Akad. Nauk. SSSR, 97(1954), 25–28.
- [6] B. M. Schein, Representations of generalized groups, Izv. Uchebn. Zaved. Mathematika, 3(28)(1962), 164–176.
- [7] V. V. Vagner, Generalized groups (in Russian), Doklady Akad. Nauk. SSSR, 84(1952), 1119–1122.