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Received 12 May 2001

Abstract

In this paper, we de¯ne upper and lower D-continuous multifunctions and ob-
tain some of their characterizations and basic properties. Also some relationships
between D-continuity and other types of continuity are given.

In 1968, Singal and Singal [9] introduced and investigated the concept of almost
continuous functions. In 1981, Heldermann [2] introduced some new regularity axioms
and studied the class of D-regular spaces. In 1990, Kohli [3] introduced the concept
of D-continuous functions and some properties of D-continuous functions are given by
him. The purpose of this paper is to extend this concept and to provide some properties
of multifunctions.

A multifunction F : X ,! Y is a correspondence from X to 2Y with F (x) a
nonempty subset of Y , for each x 2 X . Let A be a subset of a topological space (X; ¿).
A± and A denote the interior and closure of A respectively. A subset A of X is called
regular open (regular closed) [12] if, and only if, A =

¡
A

¢±
(respectively A = (A±)). A

space (X; ¿) is said to be almost regular [8] if for every regular closed set F and each
point x not belonging to F , there exist disjoint open sets U and V containing F and x
respectively. For a given topological space (X; ¿), the collection of all sets of the form
U+ = fT µ X : T µ U g (U¡ = fT µ X : T \ U 6= ;g) with U in ¿, forms a basis
(respectively subbasis) for a topology on 2X (see [5]). This topology is called upper
(respectively lower) Vietoris topology and denoted by ¿+

V (respectively ¿ ¡
V ). We will

denote such a multifunction by F : X ,! Y . For a multifunction F , the upper and
lower inverse set of a set B of Y will be denoted by F+(B) and F ¡ (B) respectively, that
is, F +(B) = fx 2 X : F (x) µ Bg and F ¡ (B) = fx 2 X : F (x) \ B 6= ;g. The graph
G(F ) of the multifunction F : X ,! Y is strongly closed [4] if for each (x; y) =2 G(F ),
there exist open sets U and V containing x and containing y respectively such that
(U £ V ) \ G(F ) = ;.

In [7], a multifunction F : X ,! Y is said to be (i) upper semi continuous (or u.s.c.)
at a point x 2 X if for each open set V in Y with F (x) µ V , there exists an open
set U containing x such that F (U ) µ V ; and (ii) lower semi continuous (or l.s.c.) at a
point x 2 X if for each open set V in Y with F (x) \ V 6= ;, there exists an open set U
containing x such that F (z) \ V 6= ; for every z 2 U .

In [10], a multifunction F : X ,! Y is said to be (i) upper weakly continuous (or
u.w.c.) at a point x 2 X if for each open set V in Y with F (x) µ V , there exists an
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open set U containing x such that F (U) µ V ; and (ii) lower weakly continuous (or
l.w.c.) at a point x 2 X if for each open set V in Y with F (x)\ V 6= ;, there exists an
open set U containing x such that F (z) \ V 6= ; for every z 2 U .

Let F : X ,! Y be a multi function. F is said to be upper D-continuous (brie°y
u.D .c.) at x0 2 X , if for each open F¾ -set V with F (x0) ½ V , there exists an open
neighborhood Ux0 of x0 such that the implication x 2 Ux0 ) F (x) ½ V holds. F is
said to be lower D-continuous (brie°y l.D.c.) at x0 2 X , if for each open F¾ -set V with
F (x0) \ V 6= ; there exists an open neighborhood Ux0

of x0 such that the implication
x 2 Ux0

) F (x0)\ V 6= ; holds. F is said to be D-continuous (brie°y D.c.) at x0 2 X ,
if it is both u.D .c. and l.D.c. at x0 2 X . Finally, F is said to be u.D.c. (l.D.c. or
D .c.) on X , if it has this property at each point x 2 X .

THEOREM 1. Let X and Y be topological spaces. For a multifunction F : X ,!
Y , the following statements are equivalent: (a) F is u.D.c. (l.D.c.). (b) For every
open F¾ -set V , F+(V ) (F ¡ (V )) is an open set in X . (c) For every closed G± -set K;
F ¡ (K) (F+(K)) is closed in X . (d) For each x 2 X and each net fx® g® 24 which
converges to x, if V is an open F¾ -set with F (x) ½ V (F (x) \ V 6= ;), then there is an
® o 2 4 such that for every ® ¸ ®o; F (x® ) ½ V (respectively F (x® ) \ V 6= ;).

PROOF. (a))(b): If V is an open F¾ -set of Y , then for each x 2 F +(V ); F (x) ½ V
and hence there is an open neighborhood U of x such that

S
x2U F (x) ½ V . Thus

F +(V ); being a neighborhood of each of its points, is open.

(b))(c): Let K be a closed G±-set of Y . Then Y nK is an open F¾ -set and
F +(Y nK) = XnF ¡ (K ) is open. Thus F ¡ (K) is closed in X:

(c))(b): Let V be an open F¾ -set. Then Y nV is a closed G± -set and F ¡ (Y nV ) =
XnF+(V ) is closed in X . Thus F+(V ) is an open set in X .

(b))(a): Let x 2 X and let V be an open F¾ -set containing F (x). Then F +(V ) is
an open set containing x and F (F+(V )) ½ V . Thus F is u.D.c. at x.

(b))(d): Let fx® g® 24 be a net in X which converges to x and let V be an open
F¾ -set containing F (x). Then F+(V ) is an open set containing x. Since fx® g converges
to x, there is an ® o 2 4 such that for every ® ¸ ®o, x® 2 F +(V ). Thus for every
® ¸ ®o, F (x® ) ½ V .

(d))(b): Let V be an open F¾ -set of Y . To show that F+(V ) is open, assume to
the contrary that there is x 2 F +(V ) such that F+(V ) is not neighborhood of x. Then
there is a net fx® g in X which converges to x and misses F +(V ) frequently. Then
fF (x® )g misses V frequently, which is a contradiction.

The proof for the case where F is l.D .c. is similarly proved. The proof is complete.

As an example, let X = f0; 1g; ¿ = f;; X; f1gg and Y = fa; b; cg; # = f;; Y ; fag; fbg;
fa; bgg. If we de¯ne F : (X; ¿) ,! (Y; #) with F (0) = fag; F (1) = fbg, then F is u.D.c.
(l.D.c.) but not u.s.c. (respectively l.s.c.) at x0 = 0.

THEOREM 2. Let F : (X; ¿) ,! (Y; #) be a multifunction. If F is u.s.c. (l.s.c.),
then F is u.D.c. (respectively l.D .c.).

PROOF. Suppose that F is u.s.c. (l.s.c.) at x0 2 X . If V is an open F¾ -set in Y
with F (x0) ½ V (respectively F (x0) \ V 6= ;) then F+(V ) (respectively F ¡ (V )) is an
open set in X . Thus F is u.D.c. (respectively l.D .c.) at x0 2 X: The proof is complete.
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THEOREM 3. Let X be a topological space and let Y be a D-regular space [2]. If
F is point compact and u.D.c. (l.D.c.), then F is u.s.c. (respectively l.s.c.).

PROOF. Suppose that V is an open set in Y with F (x0) ½ V . Since Y is D-regular
for every y 2 F (x0), there is an open F¾ -set Gy such that y 2 Gy and Gy ½ V . If
we de¯ne the family § = fGy : y 2 F (x0)g, then it is an open cover of F (x0) and
F (x0) ½

S
Gy ½ V . Since F is point compact and for each y 2 F (x0); Gy is an open

F¾ -set, there is a ¯nite subcover of F (x0) such that F (x0) ½
S

n
i=1Gyi ½ V; and if we

take
S

Gyi = G, then it is an open F¾ -set. Also since F is u.D .c., for F (x0) ½ G, there
is an open set Ux0 such that x0 2 Ux0 and the implication x 2 Ux0 ) F (x) ½ G ½ V
holds. Thus F is u.s.c. at x0 2 X . The other case is similarly proved. The proof is
complete.

THEOREM 4. Let X and Y be topological spaces and let F : X ,! Y be a
multifunction. If the graph function GF : X ! X £ Y is u.D.c. (l.D .c.), then F is
u.D.c. (respectively l.D .c.).

PROOF. Suppose GF is u.D .c. at x0 2 X . Let V be an open F¾ -set with F (x0) ½
V . Then GF (x) ½ X £ V and X £ V is an open F¾ -set in X £ Y . Since GF is
u.D.c., there is an open set U with x0 2 U such that GF(U) ½ X £ V . From [6],
U ½ G+

F (X £ V ) = X \ F +(V ) = F+(V ) and so F is u.D.c. at x0 2 X . Suppose GF

is l.D.c. at x0 2 X . Let V be an open F¾ -set with F (x0) \ V 6= ;. Then

GF (x0) \ (X £ V ) = (fx0g £ F (x0)) \ (X £ V ) = fx0g £ (F (x0) \ V ) 6= ;

and X £ V is an open F¾ -set in X £ Y . Since GF is l.D.c., there is an open set U with
x0 2 U such that U ½ G¡

F (X £ V ). From [6], U ½ G¡
F (X £ V ) = X \ F ¡ (V ) = F ¡ (V )

and so F is l.D .c. at x0 2 X . The proof is complete.

Let (X; ¿) be a topological space and let fK¯ : ¯ 2 ¢ g be a closed cover of X: If

for any subset F of X and for the collection fK¯ : ¯ 2 ¢ g the equation
S

K¯

T
F =S

(K¯

T
F ) holds, then the collection is called a hereditarily closure preserving closed

cover of X [3]:

THEOREM 5. Let X and Y be topological spaces. Then the following statements
are true: (a) If F : X ,! Y is u.D .c.(l.D .c.), then the restriction multifunction F jA :
A ,! Y is u.D.c. (l.D.c.). (b) Let F : X ,! Y be a multifunction. If fU® : ® 2 4g
is an open cover of X and for each ® ; F® = F jU® is u.D .c.(l.D .c.), then F is u.D .c.
(l.D .c.). (c) Let F : X ,! Y be a multifunction. If fK¯ : ¯ 2 4g is a hereditarily
closure preserving closed cover of X and for each ¯ 2 ¢ ; F¯ = F jK¯

is u.D .c. (l.D .c.),
then F is u.D .c. (respectively l.D.c.).

PROOF. (a) Let V be an open F¾ -set in A with F jA(x0) ½ V (F jA(x0) \ V 6= ;).
Since F is u.D.c. (respectively l.D.c.) and F jA(x0) = F (x0) ½ V (respectively
F jA(x0) = F (x0) \ V 6= ;), there is an open neighborhood of x0 such that the implica-
tion x 2 U ) F (x) ½ V (respectively F (x)\V 6= ;) holds. If we take U1 = U \A, then
U1 is an open neighborhood of x0 in A and F jA (U1) ½ V (respectively U1 ½ F ¡ (V )).
Thus F jA is u.D.c. (respectively l.D.c.) at x0 2 X:

(b) Let V be an open F¾ -set of Y . Then F+(V ) =
S

fF+
® (V ) : ® 2 4g (F ¡ (V ) =S

fF ¡
® (V ) : ® 2 4g) and since for each ® 2 4; F® is u.D.c.(l.D.c.) and F+

® (V )
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(respectively F ¡
® (V )) is an open set in U® and hence in X . Thus F+(V ) (respectively

F ¡ (V )) being the union of open sets is open.
(c) Let K be a closed G±-set of Y . Then F +(K) = [fF +

¯ (K) : ¯ 2 4g (F ¡ (K) =

[fF ¡
¯ (K ) : ¯ 2 4g) and since for each ® 2 4; F¯ is u.D.c. (respectively l.D .c.) and

F +
¯ (K) (respectively F ¡

¯ (K)) is closed in K¯ and hence in X . Also since fK¯ : ¯ 2 4g
is a hereditarily closure preserving closed cover of X , the collection fF+

¯ (K ) : ¯ 2 4g
(respectively fF ¡

¯ (K) : ¯ 2 4g) is a closure preserving collection of closed sets. Thus

F +(K) (respectively F ¡ (K)) is closed.
The proof is complete.

THEOREM 6. Let F : X ,! Y and G : Y ,! Z be two multifunctions. If F is
u.s.c. (l.s.c.) and G : Y ,! Z is u.D.c. (respectively l.D.c.), then G ± F : X ,! Z is a
u.D .c. (respectively l.D.c.)

PROOF. Let V be an open F¾ -set in Z . Since G is u.D.c. (l.D.c.), G+(V ) (re-
spectively G¡ (V )) is an open set in Y . Also since F is u.s.c. (respectively l.s.c.),
F +(G+(V )) = (G ± F )+(V ) (respectively F ¡ (G¡ (V )) = (G ± F )¡ (V )) is an open set
in X . Thus G ± F is u.D .c. (respectively l.D.c.) The proof is complete.

THEOREM 7. Let F : (X; ¿) ,! (Y; #) be a multifunction and let Y be extremally
disconnected space. If F is l.D.c. (u.D.c.), then F is l.w.c. (respectively u.w.c.).

PROOF. Let V be an open set of Y . Since Y is extremally disconnected, V is an
open set of Y and so V is an open F¾ -set of Y . Also since F is u.D.c. (l.D.c.), F +(V )
(respectively F ¡ (V )) is open in X . Thus F is u.w.c. (respectively l.w.c.). The proof
is complete.

THEOREM 8. Let F : (X; ¿) ,! (Y; #) be a multifunction and let Y be a regular
space. If F is l.w.c., then F is l.D.c.

PROOF. Let F be l.w.c. at x0 2 X and let V be an open F¾ -set in Y with
F (x0) \ V 6= ;. Since Y is a regular space, for each y 2 F (x0) \ V; there is an open set
Gy such that y 2 Gy ½ Gy ½ V . Thus F (x0) \ Gy 6= ;. Also since F is l.w.c., there
is an open neighborhood U of x0 such that the implication x 2 U ) F (x) \ Gy 6= ;
holds. Hence F (U) \ Gy ½ F (U) \ V 6= ; and F is l.D.c. at x0 2 X: The proof is
complete.

THEOREM 9. Let F : (X; ¿) ,! (Y; #) be a multifunction and let Y be a regular
space. If the family § = fT : T 2 #g has the local ¯nite property and F is u.w.c., then
F is u.D.c.

PROOF. Let V be an open F¾ -set in Y with F (x0) ½ V . Since Y is regular,
for each y 2 F (x0), there is an open set Gy such that y 2 Gy ½ Gy ½ V . So
F (x0) ½

S
y2F (x0)

Gy ½
S

Gy ½ V . If we take V1 =
S

y2F (x0)
Gy; then since F is u.w.c.

at x0 2 X , for F (x0) ½ V1, there is an open neighborhood U of x0 such that F (U) ½ V1.

Also since § = fGyjGy 2 #g has the local ¯nite property V1 = [Gy ½ [Gy = [Gy ½ V;
F +(V ) is open in X . Thus F is u.D .c. at x0 2 X . The proof is complete.

Now we give a multifunction F which is u.D.c. (l.D.c.) but not u.w.c. (respectively
l.w.c.). Let X = f0; 1g;¿ = f;; X; f1gg and Y = fa;b; cg; # = f;; Y ; fag; fbg; fa; bgg.
If we de¯ne F : (X; ¿) ,! (Y; #) with F (0) = fag; F (1) = fbg, then F is u.D.c. (l.D.c.)
but not u.w.c. (respectively l.w.c.) at x0 = 0.
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THEOREM 10. Let F : X ,! Y be a quotient multifunction. Then a multifunction
G : Y ,! Z is u.D.c. if, and only if, G ± F is u.D .c.

PROOF. Since quotient map is u.D.c., from Theorem 6, G±F is u.D .c. Conversely,
let V be an open F¾ -set of Z . Then (G ± F )+(V ) = F+(G+(V )) is open in X . Since
F is a quotient map, G+(V ) is open in Y , and so G is u.D.c. The proof is complete.

THEOREM 11. Suppose for each ® 2 4; F® : X® ,! Y® is a multifunction and
let F : ¦ X® ,! ¦ Y® be a multifunction de¯ned by F ((x® )) = (F® (x® )) for each point
(x® ) in ¦ X® . If F is u.D.c. (l.D:c.), then for each ® 2 4, F® is u.D .c. (respectively
l.D:c.).

PROOF. Let G® o be a closed G± -set of Y® o. Then G® o £
Q

® 6=® o
Y® is a closed G± -

set of ¦ Y® . Since F is u.D.c. (l.D:c.), F ¡ (G® o £
Q

® 6=® o
Y® ) = F ¡ (G® o) £

Q
® 6=® o

X®

(respectively F+(G® o
£

Q
® 6=® o

Y® ) = F +(G® o
) £

Q
® 6=® o

X® ) is closed in ¦ X® . Con-

sequently F ¡
® o

(G® o) (resepctively F+(G® o)) is closed in X® o and so G® o is u.D .c.
(respectively l.D:c.). The proof is complete.

THEOREM 12. Let F : X ! ¦ X® be a multifunction into a product space. If F
is u.D .C. (l.D:c), then each ® 2 4, P® ± F is u.D.c. (respectively l.D:c.).

PROOF. Let G® o be an open F¾ -set of X® o. Then, (P® o±F )+(G® o) = F +(P+
® o

(G® o))
= F+(G® o £

Q
® 6=® o

X® ) (respectively (P® o ±F )¡ (G® o) = F ¡ (P ¡
® o

(G® o)) = F ¡ (G® o £Q
® 6=® o

X® )). Since F is u.D .c. (respectively l.D:c.) and since G® o £
Q

® 6=® o
X® is an

open F¾ -set, F+(G® o £
Q

® 6=® o
X® ) (respectively F ¡ (G® o £

Q
® 6=® o

X® )) is open in X .
Thus P® ± F is u.D .c. (respectively l.D:c.). The proof is complete.

THEOREM 13. The set of all points of X for which F : X ,! Y is not u.D.c. is
identical to the union of the boundaries of the inverse image of open F¾ -sets of Y .

PROOF. Suppose F is not u.D.c. at a point x 2 X . Then there exists an open
F¾ -set V containing F (x) such that for every open set U containing x, F (U ) 6 µ V .
Thus for every open set U containing x, U \ (XnF+(V )) 6= ;. Therefore, x cannot
be an interior point of F+(V ). Hence x is a boundary point of F+(V ): Now, let x
belong to the boundary of F+(V ) for some open F¾ -set of Y (that is x 2 F+(V ) but
x =2 [F+(V )]o). Then F (x) ½ V . If F is u.D .c. at x, then there is an open set U
containing x such that F (U) ½ V . Thus x 2 U ½ F+(V ), and so x is an interior point
of F +(V ): This is contrary to the fact that x belongs to the boundary of F +(V ): Hence
F is not u.D.c. at x. The proof is complete.

THEOREM 14. A u.D.c. image of a connected space is connected for a multifunc-
tion F .

PROOF. Let F : X ,! Y be a u.D .c. multifunction from a connected space X
onto a space Y . Suppose Y is not connected and let Y = A [ B be a partition of Y .
Then both A and B are open and closed subsets of Y . Since F is u.D .c., F +(A) and
F+(B) are open subsets of X . In view of the fact that F +(A) and F +(B) are disjoint,
X = F+(A) [ F +(B) is a partition of X . This is contrary to the connectedness of X:
The proof is complete.

THEOREM 15. Let F : X ! Y be u.D.c. If every pair of distinct points of Y are
contained in disjoint open sets such that one of them may be chosen to be an F¾ -set.
Then F has strongly closed graph.
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PROOF. Suppose (x; y) =2 G(F ). Then y =2 F (x). By the hypothesis on Y , there
are disjoint open sets V1 and V2 containing F (x) and y respectively, and V1 is an F¾ -set.
Since F is u.D.c., F +(V1) is open. Thus U = F+(V1) is an open set containing x and
F (U) ½ V1 ½ Y nV2. Consequently, U £ V does not contain any points of G(F ), and
so G(F ) is strongly closed in X £ Y . The proof is complete.

Let (X; ¿) be a topological space. Then X is said to be a D-normal space if for
every distinct closed subsets K and F of X , there are two open F¾ -sets U and V such
that K µ U , F µ V and U \ V = ;.

THEOREM 16. Let F and G be u.D.c. and point closed multifunctions from a
space X to a D-normal space Y . Then the set A = fxjF (x) \ G(x) 6= ;g is closed in
X .

PROOF. Let x 2 XnA. Then F (x) \ G(x) = ; and so by the hypothesis on
Y , there are disjoint open F¾ -sets U and V containing F (x) and G(x) respectively.
Since F and G are u.D.c., the sets F +(U) and G+(V ) are open and contain x. Let
H = F +(U) \ G+(V ). Then H is an open set containing x and H \ A = ;. Thus A is
closed in X . The proof is complete.

As a corollary, the set of ¯xed points of a u.D.c. self map of a D-normal space is
closed.

THEOREM 17. Let F : X ,! Y be u.D .c., F (x) 6= F (y) for each distinct pair
x; y 2 X and point closed from a topological space X to a D-normal space Y . Then
X is Hausdor®.

PROOF. Let x and y be any two distinct points in X . Then F (x) \ F (y) = ;.
Since Y is D-normal, there are disjoint open F¾ -sets U and V containing F (x) and
F (y) respectively. Thus F +(U) and F +(V ) are disjoint open sets containing x and y
respectively. Thus X is Hausdor®. The proof is complete.

Let (X; ¿) be a topological space. Since the intersection of two open F¾ -sets is an
open F¾ -set, the collection of all open F¾ -subsets of (X; ¿) is a base for a topology ¿¤

on X: It is immediate that a space (X; ¿) is D-regular if, and only if, ¿¤ = ¿ [3]. The
following example shows that a D-regular space may not be ¯rst countable.

EXAMPLE. Let X be the set of positive integers. Let N (n; E) denote the number
of integers in a set E ½ X which are less than or equal to n: We describe the Appert's
topology on X by declaring open any set which excludes the integer 1, or any set
E containing 1 for which limn!1N (n; E) = 1: Then the Appert space is completely
normal, completely regular and hence from [2] D-regular. However, it is not ¯rst
countable.

THEOREM 18. Let (X;¿) be a topological space. Then the following statements
are equivalent: (a) (X; ¿) is a D-regular space. (b) Every u.D.c. and point com-
pact multifunction F from a topological space Y into (X;¿) is u.s.c. (c) The identity
mapping IX from (X; ¿¤) onto (X; ¿) is continuous.

PROOF. (a))(b): Let F : (Y; #) ,! (X; ¿) be a u.D.c. multifunction and let
V be an open set in X with F (x) ½ V . Then since F is point compact and (X; ¿) is
D-regular, there is an open F¾ -set V1 such that F (x) ½ V1 ½ V . Since F is u.D.c.,there
exits an open set U containing x such that F (U) ½ V1 ½ V . Thus F is u.s.c. at x.
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(b))(c): Let IX : (X; ¿ ¤) ,! (X;¿) be the identity mapping. Let F (x) ½ V and V
be an open F¾ -set in X . Then I+

X (V ) = V is an open F¾ -set and I+
X (V ) 2 ¿ ¤ . Thus

IX is u.D.c. at x. From (b), IX is u.s.c. at x.
(c))(a): Let V an open set in (X; ¿) with x 2 V . From (c), IX : (X;¿ ¤) ,! (X; ¿)

is u.s.c. and, for IX (x) = x ½ V; there is an open F¾ -set U in (X; ¿ ¤) such that
IX (U) ½ V and x 2 U = IX (U ) ½ V . Thus (X; ¿) is D-regular space. The proof is
complete.

In [1], a space X is said to be sequential if a subset U of X is open if, and only if,
every sequence converging to a point in U is eventually in U .

THEOREM 19. Let F : X ! Y be a u.D . continuous function from a sequential
space X into a countably compact Hausdor® space Y . If Y has a neighborhood base
of closed G±-sets then F is upper continuous.
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