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Abstract

By means of the continuation theorem of coincidence degree theory, su± cient
conditions are obtained for the existence of solutions of periodic boundary value
problems involving impulsive di®erential equations.

In recent years, impulsive di®erential equations have attracted much attention since
many evolution processes are subject to short term perturbations in the form of im-
pulses. See, for instance, [1-8]. In this paper, we consider the following periodic
boundary value problem of impulsive di®erential equation (PBVP)

8
<
:

_x(t) = g(t; x(t)) + p(t); t 6= tk; k = 1; 2; ¢¢¢;m;
x(t+k ) ¡ x(tk) = Ik(tk; x(tk)); k = 1; 2; ¢¢¢;m;
x(0) = x(T );

(1)

where 0 = t0 < t1 < t2 < ¢¢¢< tm < tm+1 = T; T > 0; J = [0; T ]; g 2 C(J £ R; R);
g(0; u) = g(T; u) for u 2 R; Ik 2 C(J £ R; R) for k = 1; 2; ¢¢¢;m; p 2 C(J; R); and
p(0) = p(T ):

Next we brie°y state the part of Mawhin's coincidence degree theory that will
be used in our study of PBVP (1). For further details, we refer the readers to [9,
10]. Let X and Y be real normed vector spaces, L : domL ½ X ! Y be a linear
mapping, and N : X ! Y be a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if dimKerL = codimImL < +1 and ImL is closed in
Y . If L is a Fredholm mapping of index zero, there then exist continuous projectors
P : X ! X and Q : Y ! Y such that ImP = KerL and KerQ = ImL: It follows that
Lp = LjdomL\KerP : domL \ KerP ! ImL = KerQ is one-to-one and onto ImL. We
denote its inverse by Kp. If ª is an open bounded subset of X, the mapping N will be
called L-compact on ¹ª if QN(ª ) is bounded and Kp(I ¡ Q)N : ¹ª ! X is compact.

Since ImQ is isomorphic to KerL, there exists an isomorphism Ĵ : ImQ ! KerL:

Mawhin's Continuation Theorem ([9, 10]). Let L be a Fredholm mapping
of index zero and let N be L-compact on ¹ª . Suppose (i) For each ¸ 2 (0; 1); x 2
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78 Impulsive Di®erential Equations

@ª , Lx 6= ¸Nx; (ii) QNx 6= 0 for each x 2 KerL \ @ª ; and (iii) Brouwer degree
degB(ĴQN; ª \ KerL; 0) 6= 0: Then the equation Lx = Nx has at least one solution in
domL \ ¹ª :

Set J 0 = J n ft1; ¢¢¢; tmg: Let

PCT = fu : J ! Rj u 2 C(J 0; R); u(t¡j ); u(t+j ) exist for

j = 1; 2; ¢¢¢; m; and u(0) = u(T )g
and

PC1
T = fu : J ! Rj u 2 C1(J 0; R); u(t+j ); u(t¡j ); u0(t+j ); u0(t¡j ) exist;

u(t¡j ) = u(tj); j = 1; 2; ¢¢¢; m; and u(0) = u(T ); u0(0) = u0(T )g

where u(t+j ); u(t¡j ) denote the right and left limits of u(t) at t = tj respectively; u0(t+j );

u0(t¡j ) denote the right and left limits of u0(t) at t = tj respectively.

For u(t) 2 PC1
T , it is easy to see that the left derivative u0

¡ (tj) exists and is equal
to u0(t¡j ). In the following, u0(tj) may be understood as u0

¡ (tj).

For u 2 PCT , denote its norm by kuk = supfju(t)j : t 2 Jg: For u 2 PC1
T , denote

its norm by kuk1 = kuk + ku0k: One can easily prove that PCT and PC1
T are Banach

spaces.
Let X = Y = PCT and let L : domL = PC1

T ½ X ! Y be given by

Lx(t) =

½
_x(t); t 6= tk; k = 1; 2; ¢¢¢; m
x(t+k ) ¡ x(tk); t = tk; k = 1; 2; ¢¢¢; m

It is obvious that L is a linear mapping.

THEOREM 1. Assume that
R T

0 p(t)dt = 0 and there exist constants ck; hk > 0
for k = 0; 1; 2; ¢¢¢; m; such that the following conditions hold: (i) if x ¸ c0; then
g(t; x) · h0 uniformly for t 2 J , (ii) if jxj ¸ c0; then xg(t; x) > 0 uniformly for t 2 J ,
(iii) if jxj ¸ c0; then xIk(tk; x) > 0 for k = 1; 2; ¢¢¢; m; (iv) jIk(tk; x)j · ckjxj + hk for
k = 1; 2; ¢¢¢; m; and (v)

Pm
k=1 ck < 1=2: Then PBVP (1) has at least one solution.

We remark that condition (i) in Theorem 1 can be replaced by the following condi-
tion: (a) if x · ¡ c0; then g(t; x) ¸ ¡ h0 uniformly for t 2 J .

Before proving Theorem 1, we need the following lemmas.

LEMMA 1. H ½ PCT is relatively compact if, and only if, every function of H is
uniformly bounded on J and is equicontinuous on each Jk for k = 0; 1; 2; ¢¢¢; m; where
J0 = [0; t1); Jk = (tk; tk+1) for k = 1; 2; ¢¢¢; m ¡ 1; and Jm = (tm; T ]:

The proof is an immediate consequence of Ascoli-Arzela Theorem.

LEMMA 2. L is a Fredholm mapping of index zero.

PROOF. It is clear that

KerL = fu : u(t) ´ c; c 2 Rg:
For y 2 Y we de¯ne Q : Y ! Y by

Qy =

mP
i=1

y(ti) +
R T

0
y(t)dt

T + m
:
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We assert that ImL = KerQ. There are two cases to consider.
Case 1. If y 2 ImL, then there exists x 2 domL ½ X such that Lx = y i.e.

½
_x(t) = y(t); t 6= tk; k = 1; 2; ¢¢¢; m;
x(t+k ) ¡ x(tk) = y(tk); k = 1; 2; ¢¢¢; m:

Hence, we have

Z T

0

y(t)dt =

Z t1

0

y(t)dt +
m¡ 1X

k=1

Z tk+1

tk

y(t)dt +

Z T

tm

y(t)dt

= x(t1) ¡ x(0) +
m¡ 1X

k=1

[x(tk+1) ¡ x(t+k )] + x(T ) ¡ x(t+m)

= x(t1) +

m¡ 1X

k=1

[x(tk+1) ¡ x(tk) ¡ y(tk)] ¡ x(tm) ¡ y(tm)

= ¡
mX

k=1

y(tk):

So, we have
mX

k=1

y(tk) +

Z T

0

y(t)dt = 0:

Therefore, y 2 KerQ, which implies that ImL ½ KerQ.

Case 2. If y 2 KerQ, then
Pm

i=1 y(ti) +
R T

0 y(t)dt = 0: De¯ne the function x(t) by

x(t) =

8
><
>:

a1 +
R t

t1
y(s)ds; t 2 [0; t1];

ai+1 +
R t

ti+1
y(s)ds; t 2 (ti; ti+1]; i = 1; 2; ¢¢¢; m ¡ 1;

am+1 +
R t

T y(s)ds; t 2 (tm; T ];

where a1; :::; am+1 are given by the following system of equations

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

mP
i=1

(1 + ti ¡ ti¡ 1)ai + (T ¡ tm)am+1 = ¡
m¡ 1P
i=0

R ti+1

ti

R t

ti+1
y(s)dsdt

¡
R T

tm

R t

T
y(s)dsdt;

a1 ¡ a2 = ¡ y(t1) ¡
R t2

t1
y(s)ds;

¢¢¢¢¢¢¢¢ ¢¢¢ ¢¢¢¢¢¢¢¢
ai ¡ ai+1 = ¡ y(ti) ¡

R ti+1

ti
y(s)ds;

¢¢¢¢¢¢¢¢ ¢¢¢ ¢¢¢¢¢¢¢¢
am¡ 1 ¡ am = ¡ y(tm¡ 1) ¡

R tm

tm¡ 1
y(s)ds;

am ¡ am+1 = ¡ y(tm) ¡
R T

tm
y(s)ds:

(2)

Let ¢ denote the determinant of coe± cients of system (2). It is easy to see that
¢ = (m + T )(¡ 1)m 6= 0: Therefore, system (2) has the unique solution (a1; ¢¢¢; am+1):
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It is easy to verify that x(t) 2 PC1
T . Next we prove that Lx = y: Clearly, we have

x0(t) = y(t); t 6= tk; k = 1; 2; ¢¢¢; m:

By (2), x(ti) = ai for i = 1; 2; ¢¢¢;m; and

x(t+i ) = ai+1 +

Z ti

ti+1

y(s)ds; i = 1; 2; ¢¢¢; m ¡ 1;

x(t+m) = am+1 +

Z tm

T

y(s)ds;

we have

x(t+i ) ¡ x(ti) = ai+1 +

Z ti

ti+1

y(s)ds ¡ ai = y(ti); i = 1; 2; ¢¢¢; m ¡ 1;

and

x(t+m) ¡ x(tm) = am+1 +

Z tm

T

y(s)ds ¡ am = y(tm):

This proves that Lx = y: Hence, we have KerQ ½ ImL:
Combining Case 1 and Case 2, we have ImL = KerQ.
It is easy to verify that Q2y = Qy for y 2 Y: Therefore Q is a continuous projector.
Clearly, ImL is a closed subspace of Y , and Y = ImL © ImQ:
Since dimKerL = 1 and codimImL = dimImQ = 1; L is a Fredholm mapping of

index zero. The proof is complete.

De¯ne P = Q : PCT ! PCT by

Qy =

mP
i=1

y(ti) +
R T

0
y(t)dt

T + m
; y 2 PCT :

From the proof of Lemma 2, we know that P = Q are continuous projectors such
that X = KerL © KerP and Y = ImL © ImQ: Consequently, the restriction LP of L to
domL\KerP is one-to-one and onto ImL, so that its inverse KP : ImL ! domL\KerP
is de¯ned. Further, we have the following result.

LEMMA 3. KP : ImL ! domL \ KerP is a compact mapping.

PROOF. For any y 2 ImL, set

z(t) =

8
><
>:

a1 +
R t

t1
y(s)ds; t 2 [0; t1];

ai+1 +
R t

ti+1
y(s)ds; t 2 (ti; ti+1]; i = 1; 2; ¢¢¢; m ¡ 1;

am+1 +
R t

T
y(s)ds; t 2 (tm; T ]:

where a1; :::; am+1 are given by (2). It follows from the ¯rst equation of (2) that
z(t) 2 KerP . Thus, we have KP y(t) = z(t): Therefore, by Lemma 1 and the de¯nition
of KP , it is easy to see that KP is a compact mapping. The proof is complete.
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LEMMA 4. If the conditions of Theorem 1 hold, then there exists a constant M > 0,
such that every solution x(t) of the problem

Lx = ¸Nx; ¸ 2 (0; 1)

satis¯es kxk · M:

PROOF. Let Lx = ¸Nx for x(t) 2 X; i.e.

½
_x(t) = ¸g(t; x(t)) + ¸p(t); t 6= tk; k = 1; 2; ¢¢¢; m;
x(t+k ) ¡ x(tk) = ¸Ik(tk; x(tk)); k = 1; 2; ¢¢¢; m:

(3)

Then we have

Z T

0

_x(t)dt =

Z t1

0

_x(t)dt +

m¡ 1X

k=1

Z tk+1

tk

_x(t)dt +

Z T

tm

_x(t)dt

= x(t1) ¡ x(0) +

m¡ 1X

k=1

[x(tk+1) ¡ x(t+k )] + x(T ) ¡ x(t+m)

= x(t1) +
m¡ 1X

k=1

[x(tk+1) ¡ x(tk) ¡ ¸Ik(tk; x(tk))] ¡ x(tm) ¡ ¸Im(tm; x(tm))

= ¡ ¸

mX

k=1

Ik(tk; x(tk))

= ¸

Z T

0

g(t; x(t))dt;

which implies that Z T

0

g(t; x(t))dt +

mX

k=1

Ik(tk; x(tk)) = 0 (4)

Set E1 = ft 2 [0; T ] : x(t) ¸ c0g; E2 = ft 2 [0; T ] : x(t) · ¡ c0g; and E3 = ft 2 [0; T ] :
jx(t)j < c0g: From (4), we have

Z

E2

g(t; x(t))dt = ¡
Z

E1

g(t; x(t))dt ¡
Z

E3

g(t; x(t))dt ¡
mX

k=1

Ik(tk; x(tk))

¸ ¡ h0T ¡ °T ¡
mX

k=1

ckkxk ¡
mX

k=1

hk;

where
° = max

t2[0;T ];jxj· c0

jg(t; x)j:

Therefore, we have

Z T

0

jg(t; x(t))jdt =

Z

E1

jg(t; x(t))jdt +

Z

E2

jg(t; x(t))jdt +

Z

E3

jg(t; x(t))jdt
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=

Z

E1

jg(t; x(t))jdt ¡
Z

E2

g(t; x(t))dt +

Z

E3

jg(t; x(t))jdt

· h0T + (h0T + °T +
mX

k=1

hk) +
mX

k=1

ckkxk + °T:

That is Z T

0

jg(t; x(t))jdt · M1 +

mX

k=1

ckkxk (5)

where

M1 = 2h0T + 2°T +
mX

k=1

hk:

Next we make the following claims.
Claim 1. There exists ¿ 2 [0; T ]; such that jx(¿)j · c0: Indeed, assume to the

contrary that jx(t)j > c0 for any t 2 [0; T ]: Without loss of generality, assume that
x(0) > 0. Then, by x(t) 2 C[0; t1]; we have x(t) > 0 for any t 2 [0; t1]: By (3) and
condition (iii) of Theorem 1, we know that x(t+1 ) > 0. Therefore, we have x(t) > 0 for
any t 2 [t1; t2]: By using simple induction, we can prove that x(t) > 0 for any t 2 [0; T ]:
So, we have x(t) > c0 for any t 2 [0; T ]: Hence, by conditions (ii) and (iii) of Theorem
1, we have g(t; x(t)) > 0 for any t 2 [0; T ] and Ik(tk; x(tk)) > 0 for k = 1; 2; ¢¢¢; m:
This is contrary to (4). The proof of Claim 1 is complete.

Claim 2. jx(t)j · jx(¿)j +
R T

0
j _x(t)jdt +

Pm
k=1 jIk(tk; x(tk))j for any t 2 [0; T ]:

Indeed, without loss of generality, we assume that t 2 (tk; tk+1] and ¿ 2 (tk+q; tk+q+1];
0 · q · m ¡ k: Then we have

x(t) ¡ x(¿)

= x(t) ¡ x(tk+1) +

qX

j=1

[x(tk+j) ¡ x(tk+j+1)] + x(tk+q+1) ¡ x(¿)

=

Z t

tk+1

_x(t)dt +

qX

j=1

[x(t+k+j) ¡ x(tk+j+1) ¡ ¸Ik+j(tk+j ; x(tk+j))] +

Z tk+q+1

¿

_x(t)dt

=

Z t

tk+1

_x(t)dt ¡
qX

j=1

Z tk+j+1

tk+j

_x(t)dt ¡ ¸

qX

j=1

Ik+j(tk+j ; x(tk+j)) +

Z tk+q+1

¿

_x(t)dt

=

Z t

¿

_x(t)dt ¡ ¸

qX

j=1

Ik+j(tk+j ; x(tk+j)):

Hence, we have

jx(t)j · jx(¿)j +

Z T

0

j _x(t)jdt +

mX

k=1

jIk(tk; x(tk))j:

The proof of Claim 2 is complete.
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On the other hand, by (3) and (5), we obtain

Z T

0

j _x(t)jdt · ¸

Z T

0

jg(t; x(t))jdt + ¸

Z T

0

jp(t)jdt · M1 +

mX

k=1

ckkxk +

Z T

0

jp(t)jdt:

Therefore, we have

jx(t)j · c0 + M1 +
mX

k=1

ckkxk +

Z T

0

jp(t)jdt +
mX

k=1

ckkxk +
mX

k=1

hk

Hence, we have

kxk · 1

1 ¡ 2
mP

k=1

ck

·
c0 + M1 +

mX

k=1

hk +

Z T

0

jp(t)jdt

¸
: (6)

The proof is complete by taking M to be the right hand side of (6).

We now turn to the proof of Theorem 1. Let r > maxfM; c0g with M as given in
Lemma 4 and let ª = fx 2 PCT : kxk < rg. De¯ne a map N : X ! Y by

Nx(t) =

½
g(t; x(t)) + p(t); t 6= tk; k = 1; 2; ¢¢¢; m;
Ik(tk; x(tk)); t = tk; k = 1; 2; ¢¢¢; m:

We assert that N is continuous. Indeed, assume that xn; x 2 PCT such that xn ! x:
Then there exists H > 0 such that kxnk · H and kxk · H: Given any " > 0; it follows
from the uniform continuity of g; I1; :::; Im on [0; T ] £ fx 2 R : jxj · Hg that there
exists 0 < ± < " such that jg(t; x1) ¡ g(t; x2)j < " and jIk(t; x1) ¡ Ik(t; x2)j < " for any
x1; x2 2 fx 2 Rn : jxj · Hg with jx1 ¡ x2j < ±. Again, for ± > 0, there exists a positive
integer K such that, for n ¸ K; kxn ¡ xk · ±: Since

Nxn(t) ¡ Nx(t) =

½
g(t; xn(t)) ¡ g(t; x(t)); t 6= tk;
Ik(tk; xn(tk)) ¡ Ik(tk; x(tk)); t = tk;

for k = 1; 2; ¢¢¢; m, we have

jNxn(t) ¡ Nx(t)j · "; n ¸ K; t 2 [0; T ]:

Hence, we have

kNxn ¡ Nxk · "; n ¸ K:

This proves that N is continuous on PCT . Therefore, PBVP (1) is equivalent to the
operator equation

Lx = Nx; x 2 domL:

We now apply Mawhin's Continuation Theorem for ª . In view of Lemma 3, N is
L-compact on ¹ª : By Lemma 4, it is easy to see that Lx 6= ¸Nx for any (x; ¸) 2
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(domL \ @ª ) £ (0; 1): Note that for x 2 @ª \ KerL = @ª \ R; we must have x = r or
x = ¡ r. Therefore, for such an x;

QNx =

mP
i=1

Ii(ti; x) +
R T

0
g(t; x)dt

T + m
6= 0:

Let

© (x; ¹) = ¹x + (1 ¡ ¹)

mP
i=1

Ii(ti; x) +
R T

0
g(t; x)dt

T + m
; ¹ 2 [0; 1]:

Then, for any x 2 @ª \ KerL; ¹ 2 [0; 1]; we have

x© (x; ¹) = ¹x2 + (1 ¡ ¹)

mP
i=1

xIi(ti; x) +
R T

0 xg(t; x)dt

T + m
> 0; ¹ 2 [0; 1];

which implies that © (x; ¹) is a homotopy. Therefore, by the property of invariance
under a homotopy of coincidence degree, we have

degB(ĴQN; ª \ KerL; 0) = degB(© (x; 0); ª \ KerL; 0)

= degB(© (x; 1); ª \ KerL; 0)

= degB(x; ª \ KerL; 0) = 1;

where the isomorphism Ĵ of ImQ onto KerL is the identity mapping, since ImQ = KerL.
It follows from Mawhin's Continuation Theorem that Lx = Nx has at least one solution
in domL \ ¹ª : Therefore, PBVP (1) has at least one solution. The proof is complete.
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