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Abstract

In this paper a ¯xed point theorem due to Schaefer is used to investigate the
existence of solutions for ¯rst order nonresonance impulsive functional di®erential
equations in Banach spaces with periodic boundary conditions.

1 Introduction

This paper is concerned with the existence of solutions for the nonresonance boundary
value problem for functional di®erential equations with impulsive e®ects

y0(t) ¡ ¸y(t) = f(t; yt); t 2 J = [0; T ]; t 6= tk; k = 1; : : : ; m; (1)

¢ yjt=tk
= Ik(y(t¡k )); k = 1; : : : ; m; (2)

y(t) = y(0); t 2 J0; My(0) ¡ Ny(T ) = 0; (3)

where ¸ 2 R; f : J £ C(J0; E) ! E is a given function, J0 = [¡ r; 0]; 0 < r <
1; 0 = t0 < t1 < : : : < tm < tm+1 = T; I1; :::; Im 2 C(E;E) are bounded, ¢ yjt=tk

=
y(t+k ) ¡ y(t¡k ); y(t¡k ) and y(t+k ) represent the left and right limits of y(t) at t = tk,
respectively, E a real Banach space with norm j ¢j, and M and N are constant. Note
that if M = N = 1, then (3) represents periodic boundary conditions. For notational
purposes, let t¡ 1 = ¡ r.

For any continuous function y de¯ned on [¡ r; T ] ¡ ft1; : : : ; tmg and any t 2 J , we
denote by yt the element of C(J0; E) de¯ned by

yt(µ) = y(t + µ); µ 2 J0:

Here yt(¢) represents the history of the state from time t ¡ r, up to the present time t.
Impulsive di®erential equations have become more important in recent years in

some mathematical models of real world phenomena, especially in the biological or
medical domain see; the monographs of Bainov and Simeonov [2], Lakshmikantham,
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66 Impulsive Functional Di®erential Equations

Bainov and Simeonov [10], and Samoilenko and Perestyuk [13], and the papers of Agur
et al. [1], Goldbeter et al. [6].

Recently an extension to functional di®erential equations with impulsive e®ects has
been done in [17] by using the coincidence degree theory. For other results on functional
di®erential equations we refer the interested reader to the monograph of Erbe, Kong
and Zhang [5], Hale [7], Henderson [8], and the survey paper of Ntouyas [12].

The fundamental tools used in the existence proofs of all above mentioned works are
essentially ¯xed point arguments, nonlinear alternative, topological transversality [3],
degree theory [11] or the monotone method combined with upper and lower solutions
[4], [9].

This paper will be divided into three sections. In Section 2 we will recall brie°y
some basic de¯nitions and preliminary facts which will be used throughout Section 3.
In Section 3 we shall establish an existence theorem for (1){(3). We consider the case
when ¸ 6= 0. Note that when the impulses are absent (i.e. for Ik ´ 0; k = 1; : : : ; m),
then the problem (1){(3) is a nonresonance problem since the linear part in equation
(1) is invertible. Our approach is based on a ¯xed point theorem due to Schaefer [14]
(see also, Smart [15]).

2 Preliminaries

In this section, we introduce notations, de¯nitions, and preliminary facts which are
used throughout this paper. C(J0; E) is the Banach space of all continuous functions
from J0 into E with the norm

kÁk = supfjÁ(µ)j : ¡ r · µ · 0g:

By C(J; E) we denote the Banach space of all continuous functions from J into E with
the norm

kykJ = supfjy(t)j : t 2 Jg:

A measurable function y : J ! E is Bochner integrable if, and only if, jyj is Lebesgue
integrable. (For properties of the Bochner integral, see for instance, Yosida [16]).
L1(J; E) denotes the Banach space of functions y : J ! E which are Bochner integrable
normed by

kykL1 =

Z T

0

jy(t)jdt for all y 2 L1(J; E):

We introduce some notation in order to de¯ne the solution of (1){(3). Suppose
y : [¡ r; T ] ! E and each y(t¡k ) and y(t+k ) exist, k = 1; : : : ; m. By convention, set
y(t¡k ) = y(tk) for k = 1; : : : ; m: Let yk denote the restriction of y to Jk = [tk¡ 1; tk] in the
following sense. If t 2 (tk¡ 1; tk], then yk(t) = y(t). If t = tk¡ 1, then yk(tk¡ 1) = y(t+k¡ 1).
De¯ne

ª = fy : [¡ r; T ] ! Ej yk 2 C(Jk; E); 0 · k · m + 1; and y(t) = y(0); t 2 J0g:

ª is a Banach space with the norm

kykª = maxfkykkkj k = 0; : : : ; m + 1g;
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where jj ¢jjk denotes the supremum norm on Jk, k = 0; : : : ; m + 1:
We shall also consider the set

ª 1 = fy : [¡ r; T ] ! Ej yk 2 W 1;1(Jk; E); 1 · k · m + 1; and y(t) = y(0); t 2 J0g

The set ª 1 is a Banach space with the norm

kykª 1 = maxfkykkW 1;1(Jk;E)j k = 1; : : : ; m + 1g:

A map f : J £ C(J0; E) ¡! E is said to be L1-Carath¶eodory if (i) t 7¡! f(t; u) is
measurable for each u 2 C(J0; E); (ii) u 7¡! f(t; u) is continuous for almost all t 2 J ;
and (iii) for each k > 0; there exists gk 2 L1(J; R+) such that jf(t; u)j · gk(t) for
all kuk · k and almost all t 2 J:

We now de¯ne a solution of problem (1){(3). A function y 2 ª \ ª 1 is said to be a
solution of (1){(3) if y satis¯es the equation y0(t)¡ ¸y(t) = f(t; yt) a.e. on J¡ ft1; :::tmg
and the conditions ¢ yjt=tk

= Ik(y(t¡k )); k = 1; : : : ; m; y(t) = y(0) for all t 2 J0, and
My(0) ¡ Ny(T ) = 0.

Our main result is based on the following:

LEMMA 1 (See also [15], p. 29). Let S be a convex subset of a normed linear space
X and assume 0 2 S. Let K : S ! S be a completely continuous operator, and let

© (K) = fy 2 S : y = ¹K(y) for some 0 < ¹ < 1g:

Then either © (K) is unbounded or K has a ¯xed point.

We now consider the following \linear problem" (4), (2), (3), where (4) is the
equation

y0(t) ¡ ¸y(t) = g(t); t 6= tk; k = 1; : : : ; m; (4)

where g 2 L1(Jk; E); k = 1; : : : ; m. For short, we shall refer to (4), (2), (3) as
(LP ). Note that (LP ) is not really a linear problem since the impulsive functions are
not necessarily linear. However, if Ik; k = 1; :::; m, are linear, then (LP ) is a linear
impulsive problem.

We state and prove the following auxiliary result. Eloe and Henderson [4] have
constructed the analogous Green's function for the problem (1), (2), (3) in the case
of n-dimensional systems. The proof here gives an alternate development. In the
development we require that N be a nonzero constant, although the conclusion of the
lemma is valid in the case N = 0.

LEMMA 2. y 2 ª 1 is a solution of (LP ), if and only if y 2 ª is a solution of the
following impulsive integral equation

y(t) =

½
y(0) t 2 J0R T

0 H(t; s)g(s)ds +
Pm

k=1 H(t; tk)Ik(y(tk)) t 2 J
; (5)

where

H(t; s) = (M ¡ Ne¸ T )¡ 1

½
Me¡ ¸ (s¡ t) 0 · s · t · T

Ne¸ T e¡ ¸ (s¡ t) 0 · t < s · T
: (6)
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PROOF. We prove only one of the implications. Suppose that y 2 ª 1 is a solution
of (LP ). Then

y0 ¡ ¸y = g(t); t 6= tk;

i.e.,
(e¡ ¸ ty(t))0 = e¡ ¸ tg(t); t 6= tk: (7)

Assume that tk < t · tk+1; k = 0; :::; m. By integration of (7) we obtain

e¡ ¸ ti+1y(ti+1) ¡ e¡ ¸ t+i y(t+i ) =

Z ti+1

ti

e¡ ¸ sg(s)ds; i = 0; : : : ; k ¡ 1:

Adding appropriate terms, we obtain

e¡ ¸ ty(t) ¡ y(0) =
X

0<tk<t

e¡ ¸ tk(y(t+k ) ¡ y(tk)) +

Z t

0

e¡ ¸ sg(s)ds: (8)

Thus,

y(T ) = e¸ T

·
y(0) +

mX

k=1

e¡ ¸ tkIk(y(tk)) +

Z T

0

e¡ ¸ sg(s)ds

¸
:

Substitute this expression into (3) to obtain

y(0) = (M ¡ Ne¸ T )¡ 1Ne¸ T

"
mX

k=1

e¡ ¸ tkIk(y(tk)) +

Z T

0

e¡ ¸ sg(s)ds

#
: (9)

Substitute (9) into (8) to obtain

e¡ ¸ ty(t) = (M ¡ Ne¸ T )¡ 1Ne¸ T

"
mX

k=1

e¡ ¸ tkIk(y(tk)) +

Z T

0

e¡ ¸ sg(s)ds

#

+
X

0<tk<t

e¡ ¸ tkIk(y(tk)) +

Z t

0

e¡ ¸ sg(s)ds: (10)

Now employ (10) to obtain

e¡ ¸ ty(t) = (M ¡ Ne¸ T )¡ 1Ne¸ T

· X

0<tk<t

e¡ ¸ tkIk(y(tk)) +
X

t· tk<T

e¡ ¸ tkIk(y(tk))

+

Z T

0

e¡ ¸ sg(s)ds + (M ¡ Ne¸ T )(Ne¸ T )¡ 1
X

0<tk<t

e¡ ¸ tkIk(y(tk))

+(M ¡ Ne¸ T )(Ne¸ T )¡ 1

Z t

0

e¡ ¸ sg(s)ds

¸

= (M ¡ Ne¸ T )¡ 1Ne¸ T

·
MN ¡ 1e¡ ¸ T

X

0<tk<t

e¡ ¸ tkIk(y(tk))

+
X

t· tk<T

e¡ ¸ tkIk(y(tk)) + MN ¡ 1e¡ ¸ T

Z t

0

e¡ ¸ sg(s)ds +

Z T

t

e¡ ¸ sg(s)ds

¸
:
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Thus

y(t) = (M ¡ Ne¡ ¸ T )¡ 1

·
M

Z t

0

e¡ ¸ (s¡ t)g(s)ds + N

Z T

t

e¡ ¸ (s¡ t¡ T )g(s)ds

+M
X

0<tk<t

e¡ ¸ (tk¡ t)Ik(y(tk)) + N
X

t· tk<T

e¡ ¸ (tk¡ t¡ T )Ik(y(tk))

¸

=

Z T

0

H(t; s)g(s)ds +

mX

k=1

H(t; tk)Ik(y(tk)):

3 Main Result

We are now in a position to state and prove our existence result for the problem (1){(3).
For the study of this problem we ¯rst list the following hypotheses:

(H1) f : J £ C(J0; E) ¡! E is an L1¡ Carath¶eodory map;

(H2) there exist constants ck such that jIk(y)j · ck; k = 1; :::; m for each y 2 E;

(H3) there exists m 2 L1(J; R) such that

jf(t; yt)j · m(t) for almost all t 2 J and all y 2 ª ;

(H4) for each bounded B ½ ª and t 2 J the set

(Z T

0

H(t; s)f(s; ys)ds +

mX

k=1

H(t; tk)Ik(y(tk)) : y 2 B

)

is relatively compact in E.

REMARK. (i) If the dimension of E is ¯nite then (H4) is trivially satis¯ed. (ii)
Condition (H4) is satis¯ed if for each t 2 J the map C(J0; E) ! E : u 7¡! f(t; u)
sends bounded sets into relatively compact sets.

THEOREM 1. Assume that hypotheses (H1)-(H4) hold. Then the problem (1){(3)
has at least one solution on J1:

PROOF. Transform the problem into a ¯xed point problem. Consider the operator,
K : ª ! ª de¯ned by:

(Ky)(t) =

½
y(0) t 2 J0R T

0 H(t; s)f(s; ys)ds +
Pm

k=1 H(t; tk)Ik(y(tk)) t 2 J
:

Then clearly from Lemma 2 the ¯xed points of K are solutions to (1){(3). We shall
show that K satis¯es the assumptions of Lemma 1. The proof will be given in several
steps.
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Step 1: K maps bounded sets into bounded sets in ª : Indeed, it is enough to show
that there exists a positive constant ` such that for each y 2 Bq = fy 2 ª : kykª · qg
one has kKykª · `. Let y 2 Bq, then for each t 2 J; we have

(Ky)(t) =

Z T

0

H(t; s)f(s; ys)ds +

mX

k=1

H(t; tk)Ik(y(tk)):

By (H1) we have for each t 2 J ,

j(Ky)(t)j ·
Z T

0

jH(t; s)jjf(s; ys)jds +

mX

k=1

jH(t; tk)jjIk(y(tk))j

·
Z T

0

jH(t; s)jjgq(s)jds +

mX

k=1

jH(t; tk)j supfjIk(y)j : kykª · qg:

Then for each h 2 K(Bq) we have

khkª · sup
(t;s)2J£ J

jH(t; s)j
Z T

0

jgq(s)jds +

mX

k=1

sup
t2J

jH(t; tk)j supfjIk(y)j : kykª · qg

= `:

Step 2: K maps bounded sets into equicontinuous sets of ª . Indeed, let ¿1; ¿2 2
J; ¿1 < ¿2 and Bq be a bounded set of ª as in Step 1. Let y 2 Bq: Then

j(Ky)(¿2) ¡ (Ky)(¿1)j

·
Z T

0

jH(¿2; s) ¡ H(¿1; s)jjgq(s)jds +
mX

k=1

jH(¿2; tk) ¡ H(¿1; tk)jck:

As ¿2 ! ¿1 the right-hand side of the above inequality tends to zero.
Step 3: K : ª ! ª is continuous. Indeed, let fyng be a sequence such that yn ! y

in ª : Then there is an integer q such that kynkª · q for all n = 0; 1; 2; ::: and kykª · q,
so yn 2 Bq and y 2 Bq: We have then by the dominated convergence theorem

kKyn ¡ Kykª · sup
t2J

· Z T

0

jH(t; s)jjf(s; yns) ¡ f(s; ys)jds

+

mX

k=1

jH(t; tk)jjIk(yn(tk)) ¡ Ik(y(tk))j
¸

! 0:

Thus K is continuous.
As a consequence of Steps 1 to 3 and (H4) together with the Arzela-Ascoli theorem

we can conclude that K : ª ! ª is completely continuous.
Step 4: The set

© (K) := fy 2 ª : y = ¹K(y); for some 0 < ¹ < 1g
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is bounded. Indeed, let y 2 © (K). Then y = ¹K(y) for some 0 < ¹ < 1. Thus for each
t 2 J

y(t) = ¹

Z T

0

H(t; s)f(s; ys)ds + ¹

mX

k=1

H(t; tk)Ik(y(tk)):

This implies by (H2)-(H3) that for each t 2 J we have

jy(t)j ·
Z T

0

jH(t; s)f(s; ys)jds +

mX

k=1

jH(t; tk)Ik(y(tk))j

· sup
(t;s)2J£ J

jH(t; s)j
Z T

0

m(s)ds +
mX

k=1

sup
t2J

jH(t; tk)j ck

= b;

where b is independent of y. This shows that © (K) is bounded.
Set X := ª . As a consequence of Lemma 1 we deduce that K has a ¯xed point

which is a solution of (1){(3). The proof is complete.

Clearly, hypothesis (H3) is a strong hypothesis. Now that the alternative method
due to Schaefer [14] has been established, standard hypotheses to obtain a priori bounds
on solutions can be applied. For example, since H(t; s) · Mej¹ jT for some positive
constant M , if jf(t; x)j · g(t)jxj on [0; T ] £ R; then a standard Gronwall inequality
can be applied to obtain a priori bounds on solutions.
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