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Abstract

Infinitely many smooth and compactly supported solutions to the steady ideal MHD equations have
been constructed from some solutions of the steady incompressible Euler equations.

1 Introduction

This short note is devoted to constructing smooth and compactly supported solutions to the steady ideal
magneto-hydrodynamic (MHD) equations including incompressible and compressible cases. The steady
incompressible MHD equations read

u · ∇u−B · ∇B +∇p = 0,
u · ∇B −B · ∇u = 0,
∇ · u = ∇ ·B = 0,

where the space variable x ∈ Rd, d = 2, 3; (1)

and the equations we consider in the compressible case are as follows
ρu · ∇u− (∇×B)×B +∇p(ρ) = 0,
∇× (u×B) = 0,
∇ · (ρu) = ∇ ·B = 0,

where the space variable x ∈ Rd, d = 2, 3. (2)

Ideal MHD equations model the dynamics of electrically conducting fluids such as liquid metals [9] or plasma
[13] under the influence of magnetic fields.
For unsteady ideal MHD equations in incompressible case, infinitely many bounded weak solutions are

constructed in [7] via Baire Category methods. Those solutions exhibit compact support in both time and
space while do not conserve helicity and energy. Nonuniquness of Hβ weak solutions with small β is also
obtained in [1] through Nash’s scheme or convex integration technique. Main approaches for the above
two results were already successfully applied to the incompressible Euler equations decades before ([3, 4]).
Infinitely many weak solutions of lower integrability than L3 and violating the magnetic helicity conservation
are constructed in [6]. Recently, nonuniqueness of Hölder continuous weak solutions that fail to conserve
Elsässer energies and cross helicity is also established in [11]. For the classical MHD equations, infinitely
many W s,p weak solutions with vanishing magnetic helicity are also built in [10, 12].
As for steady MHD equations, to our knowledge, most of the known results are about the Liouville theo-

rem for these equations with viscosity. Without viscosity, ideal MHD equations may admit nonuniquenness.
It seems that this note is the first rigorous proof of nonuniqueness of compactly supported smooth solutions
to (1) and (2).

Theorem 1 There exist infinitely many nontrivial smooth solutions to the steady ideal incompressible MHD
equations (1) and isentropic compressible MHD equations (2) such that (u,B) are compactly supported.
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Our approach to prove Theorem 1 is constructing solutions of the form ϕ(P )U , borrowing the main idea
of [8, 2, 5], where ϕ is a smooth compactly supported function and (U,P ) are smooth solutions built in [8, 2]
to the steady incompressible Euler equations, i.e. (U,P ) satisfy{

U · ∇U +∇P = 0,
∇ · U = 0.

(3)

Meanwhile, we also utilize orthogonality property of these solutions

U · ∇P = 0 (4)

and also norm relation

|U |2 = c0P, where constant c0 = 3
2 if d = 2; c0 = 3, if d = 3. (5)

2 Proof of Theorem 1

In this section, we will prove the main result. We divide it into two subsections.

2.1 Solutions to (1)

As discussed in the introduction, we set

u(x) = φ(P (x))U(x), B(x) = ψ(P (x))U(x) (6)

with compactly supported functions φ(s) and ψ(s) to be found. Then by (3), (4) and a direct calculation
we get

∇ · u = φ(P )∇ · U + φ′(P )U · ∇P = 0,
∇ ·B = ψ(P )∇ · U + ψ′(P )U · ∇P = 0,
u · ∇B −B · ∇u = φ(P )ψ(P )U · ∇U − ψ(P )φ(P )U · ∇U = 0,

for any smooth functions φ(P ) and ψ(P ). As for the first equation in (1), again by (3) and (4), we derive

φ2(P )U · ∇U − ψ2(P )U · ∇U +∇p = −(φ2(P )− ψ2(P ))∇P +∇p, (7)

hence taking

p =

∫ P

−∞
(φ2(s)− ψ2(s))ds (8)

leads to
∇p = (φ2(P )− ψ2(P ))∇P,

then the first equation in (1) is valid. Therefore, we get smooth solutions (u,B, p) with velocity u and
magnetic filed B defined in (6) for any smooth and compactly supported functions φ(s) and ψ(s) and
pressure p defined in (8).

2.2 Solutions to (2)

Note that
(∇×B)×B = B · ∇B − 1

2∇|B|
2,

∇× (u×B) = (B · ∇)u− (u · ∇)B + u∇ ·B −B∇ · u
= (B · ∇)u− (u · ∇)B −B∇ · u.
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The equations (2) are reduced to be the following system
ρu · ∇u−B · ∇B + 1

2∇|B|
2 +∇p(ρ) = 0,

(B · ∇)u− (u · ∇)B −B∇ · u = 0,
∇ · (ρu) = ∇ ·B = 0.

(9)

Similar to the incompressible case, define

u(x) = α(P (x))U(x), B(x) = β(P (x))U(x), ρ(x) = r(P (x)) (10)

with compactly supported functions α(s), β(s) and r(P ) to be fixed. First of all, by (3) and (4)

∇ · (ρu) = ∇ · (r(P )α(P )U) = r(P )α(P )∇ · U + d
dP
(r(P )α(P ))U · ∇P = 0,

for all smooth functions r(P ) and α(P ). Similarly, we get ∇ · B = 0 for all smooth function β(P ). As for
the second line of (9), again from (3) and (4), we can derive

(B · ∇)u− (u · ∇)−B∇ · u
= α(P )β(P )U · ∇U − α(P )β(P )U · ∇U − β(P )U∇ · (α(P )U)
= 0.

For the first line of (9), from (3), (4) and (5), we infer

r(P )(α(P )U) · ∇(α(P )U)− β(P )U · ∇(β(P )U) + 1
2
∇(β2(P )|U |2) +∇p(r(P ))

= r(P )α2(P )U · ∇U − β2(P )U · ∇U + c0
2
∇(β2(P )P ) +∇p(r(P ))

=

(
−r(P )α2(P ) + β2(P ) + d

dP
(
c0
2
β2(P )P ) + p′(r(P ))r′(P )

)
∇P.

To make it vanish, we require

−r(P )α2(P ) + β2(P ) + d
dP
(
c0
2
β2(P )P ) + p′(r(P ))r′(P ) = 0.

Thus we choose β(P ) and r(P ) as increasing and compactly supported functions with support satisfying

supp β(P ) = supp r(P ) ⊃ supp r′(P ). (11)

Then we are able to define α(P ) such that

α2(P ) =
1

r(P )
[β2(P ) +

d
dP
(
c0
2
β2(P )P ) + p′(r(P ))r′(P )]

=
(1 + c0

2 )β
2(P ) + c0Pβ(P )β

′(P )

r(P )
+
p′(r(P ))

r(P )
r′(P ), (12)

which will satisfy our requirement. Finally, (u,B, ρ) defined in (10) are smooth solutions to (2) where β(P )
and r(P ) are increasing and compactly supported functions with support satisfying (11), and α(P ) is defined
in (12).
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