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Abstract

In the present work, using the Matkowski type contraction, we discuss the existence of fixed point
results within the framework of orthogonal G-metric spaces. Our results extend and generalize sev-
eral well-known findings that are already present in the literature. Furthermore, as an application, we
investigate solution to a nonlinear integral equation.

1 Introduction

The study of metric fixed point theory has been researched extensively in the past two decades or so because
fixed point theory plays a key role in mathematics and applied sciences. For example, in the areas such as
optimization, mathematical models, and economic theories.
The literature of the last decades is rich of papers that focus on all matters related to the generalized

metric spaces. In 2005, Mustafa and Sims introduced a new class of generalized metric spaces called G-metric
spaces (see [6]) as a generalization of metric spaces (X , d). This was done to introduce and develop a new
fixed point theory for a variety of mappings in this new setting. This helped to extend some known metric
space results to this more general setting. Thereafter, the concept of G-metric space has been studied and
used to obtain various fixed point theorems by several mathematicians (see [2, 5, 8, 9, 11]). Here, we present
the necessary definitions and results in G-metric spaces. However, for more details, we refer to [6].

Definition 1 Let X be a non-empty set, G : X 3 → R+ be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · ·,

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X .

Then the function G is called a generalized metric, or, more specially, a G-metric on X , and the pair (X ,G)
is called a G-metric space.

Definition 2 Let (X ,G) be a G-metric space, and let (xn) be a sequence of points of X . We say that (xn)
is G-convergent to x ∈ X if limn,m→∞ G(x, xn, xm) = 0, that is, for any ε > 0, there exists N ∈ N such that
G(x, xn, xm) < ε, for all n,m ≥ N . We call x the limit of the sequence and write xn → x or limxn = x.
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Proposition 1 Let (X ,G) be a G-metric space. The following are equivalent:

(1) (xn) is G-convergent to x.

(2) G(xn, xn, x)→ 0 as n→ +∞.

(3) G(xn, x, x)→ 0 as n→ +∞.

(4) G(xn, xm, x)→ 0 as n,m→ +∞.

Definition 3 Let (X ,G) be a G-metric space. A sequence (xn) is called a G-Cauchy sequence if, for any
ε > 0, there exists N ∈ N such that G(xn, xm, xl) < ε for all m,n, l ≥ N , that is, G(xn, xm, xl) → 0 as
n,m, l→ +∞.

Proposition 2 Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) The sequence (xn) is G-Cauchy.

(2) For any ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for all m,n ≥ N .

Proposition 3 Let (X ,G) be a G-metric space. A mapping f : X → X is G-continuous at x ∈ X if and only
if it is G-sequentially continuous at x, that is, whenever (xn) is G-convergent to x, (f(xn)) is G-convergent
to f(x).

Proposition 4 Let (X ,G) be a G-metric space. Then, the function G(x, y, z) is jointly continuous in all
three of its variables.

Proposition 5 Let (X ,G) be a G-metric space, then for any x, y, z, a ∈ X ,

(1) if G(x, y, z) = 0 then x = y = z;

(2) G(x, y, z) ≤ G(x, x, y) + G(x, x, z);

(3) G(x, y, y) ≤ 2G(y, x, x); and

(4) G(x, y, z) ≤ G(x, a, z) + G(a, y, z).

Definition 4 A G-metric space (X ,G) is called G-complete if every G-Cauchy sequence is G-convergent in
(X ,G).

In 2017, Eshaghi Gordji et al. [3] defined orthogonal metric spaces as a generalization of metric spaces,
as follows:

Definition 5 ([3]) Let ⊥⊆ X × X be a binary relation defined on a nonempty set X . If the relation ⊥
satisfies the following condition: there exists x0 ∈ X such that

[∀y, y ⊥ x0] or [∀y, x0 ⊥ y],

then X is called an orthogonal set (briey, O-set) and x0 is called an orthogonal element. We denote this
O-set by (X ,⊥).

Definition 6 ([3]) Let (X ,⊥) be O-set. A sequence {xi} is called an orthogonal sequence if

[∀i, xi ⊥ xi+1] or [∀i, xi+1 ⊥ xi].

Definition 7 ([3]) Let (X ,⊥) be an O-set. A mapping T : X ×X → X is said to be ⊥-preserving if x ⊥ y
implies T x ⊥ T y.
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The following are non-trivial examples of an orthogonal set.

Example 1 Let X = 2Z and set a binary relation ⊥ on 2Z as m ⊥ n if m.n = 0. Then (2Z,⊥) is an
orthogonal set with 0 as an orthogonal element.

Example 2 Let X be a non-empty set and we consider the power set P(X ). We define ⊥ on P(X ) as
A ⊥ B if A ∩ B = ∅. Then (P(X ),⊥) is an orthogonal set, as for all A ∈ P(X ), ∅ ∩ A = ∅. Similarly, one
can define ⊥ on P (X ) as A ⊥ B if A ∪ B = X . Then (P(X ),⊥) is also an orthogonal set.

Example 3 Let X be set of all matrices of order n over R, i.e. X =Mn(R). We define ⊥ on X as A ⊥ B
if AB = BA. Then (Mn(R),⊥) is an orthogonal set since CA = AC for a scalar matrix C ∈ Mn(R).

For more details about fixed point results on orthogonal metric spaces, the readers are referred to [1, 7, 10].
Combining these two ideas leads to the concept of an orthogonal G-metric space, which is the primary setting
for the results presented here. On the other hand, the contraction condition is also often generalized. Instead
of requiring a single constant less than one to bound the contraction, Matkowski-type contractions employ
a more general function that is contractive but not necessarily linear. This approach can lead to fixed point
theorems that are applicable to broader classes of mappings (see [4]). The aim of this paper is to combine
orthogonal G-metric spaces with Matkowski-type contractions to obtain new fixed point results. We then
show how these results can be applied to establish the existence of solutions to nonlinear integral equations.

2 Preliminaries

We begin by defining the key concepts used throughout the paper.

Definition 8 (Orthogonal G-Metric Space) Let X be a nonempty set equipped with an orthogonal re-
lation ⊥. A mapping G : X3 → [0,∞) is called an orthogonal G-metric if it satisfies the following conditions
for all x, y, z, a ∈ X:

(OG1) G(x, y, z) = 0 if x = y = z;

(OG2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y;

(OG3) G(x, x, y) = G(x, y, x) = G(y, x, x);

(OG4) G(x, y, z) = G(p(x, y, z)) where p is a permutation of x, y, z;

(OG5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X;

(OG6) For x ⊥ y, G(x, y, y) = G(y, x, x), G(x, y, y) = G(y, z, z) and y ⊥ z implies G(x, y, z) = G(y, x, z).

The triple (X,G,⊥) is called an orthogonal G-metric space.

Definition 9 (Orthogonal G-Convergence) A sequence {xn} in an orthogonal G-metric space (X,G,⊥)
is said to be orthogonally G-convergent to a point x ∈ X if for all ε > 0, there exists N ∈ N such that
G(xn, x, x) < ε for all n ≥ N.

Definition 10 (Orthogonal G-Cauchy Sequence) A sequence {xn} in an orthogonal G-metric space
(X,G,⊥) is said to be an orthogonal G-Cauchy sequence if for all ε > 0, there exists N ∈ N such that
G(xn, xm, xm) < ε for all n,m ≥ N.

Definition 11 (Orthogonal G-Complete) An orthogonal G-metric space (X,G,⊥) is said to be orthog-
onally G-complete if every orthogonal G-Cauchy sequence in X orthogonally G-converges to some point in
X.
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Definition 12 (Matkowski Functione) A function ϕ : [0,∞)→ [0,∞) is said to be a Matkowski function
if:

(i) ϕ is non-decreasing;

(ii) ϕ is continuous; and

(iii) ϕ(t) < t for t > 0 and ϕ(0) = 0.

3 Main Results

Now, we are ready to present our fixed point theorem for orthogonal G-metric spaces using Matkowski-type
contractions.

Theorem 1 Let (X ,G,⊥) be an orthogonally G-complete space, and let T : X → X be a self-mapping.
Assume that T satisfies the following conditions:

(i) T is an orthogonal preserving mapping.

(ii) There exists a Matkowski function ϕ such that for all x, y ∈ X with x ⊥ y,

G(T x, T y, T y) ≤ ϕ(M);

where

max
{
G(x, y, y),G(x, T x, T x),G(y, T y, T y),

G(x, T y, T y) + G(y, T x, T x)

2

}
= M.

(iii) There exists an x0 ∈ X such that x0 ⊥ T (x0).

Then T has a fixed point in X .

Proof. Let x0 ∈ X be such that x0 ⊥ T (x0). Define a sequence {xn} by xn+1 = T (xn) for n ≥ 0. Since T
is orthogonal preserving, we have xn ⊥ xn+1 for all n ≥ 0. Let dn = G(xn, xn+1, xn+1) for n ≥ 0. If dn = 0
for some n, then xn = xn+1, which implies xn is a fixed point of T . Assume dn > 0 for all n. Then, applying
Condition (ii) for xn ⊥ xn−1, we have

dn = G(xn, xn+1, xn+1)

= G
(
T (xn−1), T (xn), T (xn)

)
≤ ϕ

(
max

{
G(xn−1, xn, xn), G

(
xn−1, T (xn−1), T (xn−1)

)
, G
(
xn, T (xn), T (xn)

)
,

G
(
xn−1, T (xn), T (xn)

)
+ G

(
xn, T (xn−1), T (xn−1)

)
2

})
= ϕ

(
max

{
dn−1, dn−1, dn,

G(xn−1, xn+1, xn+1) + G(xn, xn, xn)

2

})
≤ ϕ

(
max

{
dn−1, dn,

G(xn−1, xn, xn) + G(xn, xn+1, xn+1) + 0

2

})
≤ ϕ

(
max

{
dn−1, dn,

dn−1 + dn
2

})
≤ ϕ(max{dn−1, dn}).

Now, if max{dn−1, dn} = dn, then we have dn ≤ ϕ(dn) and since ϕ(t) < t for t > 0 then ϕ(dn) < dn, leading
to a contradiction. Thus max{dn−1, dn} = dn−1. This yields dn ≤ ϕ(dn−1). Since ϕ is non-decreasing and
ϕ(t) < t for t > 0, the sequence {dn} is a decreasing sequence of non-negative real numbers. Therefore, {dn}
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converges to some limit L such that L ≤ ϕ(L). This shows that L = 0. Thus, limn→∞ G(xn, xn+1, xn+1) = 0.
Also, we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2) + ...+ G(xm−1, xm, xm).

For any ε > 0, choose N large enough such that G(xn, xn+1, xn+1) < ε/2 for all n > N . Therefore,
for m,n > N , G(xn, xm, xm)Σnm−1i=1 G(xi, xi+1, xi+1) < ε. This implies {xn} is an orthogonal G-Cauchy
sequence, and since X is orthogonally G-complete, there exists x∗ ∈ X such that xn → x∗. Now let us prove
that x∗ is the fixed point of T . From condition (ii), we have

G
(
T xn, T x∗, T x∗

)
≤ ϕ

(
max

{
G(xn, x

∗, x∗),G(xn, T xn, T xn),G(x∗, T x∗, T x∗),

G(xn, T x∗, T x∗) + G(x∗, T xn, T xn)

2

})
.

Since G(T xn, T x∗, T x∗) = G(xn+1, T x∗, T x∗), taking limit as n→∞, we get

G(x∗, T x∗, T x∗) ≤ ϕ
(
G(x∗, T x∗, T x∗)

)
,

which implies G(x∗, T x∗, T x∗) = 0. Hence x∗ = T x∗. This completes the proof.

Theorem 2 (Uniqueness) In addition to the hypotheses of the Theorem 1, suppose that for any two fixed
points x and y of T , it holds that x ⊥ y. Then the fixed point of ⊥ is unique.

Proof. Suppose x and y are two fixed points such that x = T x and y = T y. By assumption, x ⊥ y. Using
condition (ii) of the Theorem 1,

G(x, y, y) = G(T x, T y, T y)

≤ ϕ
(

max{G(x, y, y),G(x, T x, T x),G(y, T y, T y),
G(x, T y, T y) + G(y, T x, T x)

2
}
)

= ϕ
(

max{G(x, y, y), 0, 0,G(x, y, y)}
)

= ϕ(G(x, y, y)).

It follows that G(x, y, y) = 0. Hence x = y which shows the uniqueness of the fixed point.

4 Application to Nonlinear Integral Equations

In this section we employ our main result in nonlinear integral equation.

Theorem 3 Consider the nonlinear integral equation:

x(t) = h(t) +

∫ b

a

k(t, s, x(s))ds, for all t ∈ [a, b],

where, [a, b] is a closed interval in R, h : [a, b]→ R, is continuous and k : [a, b]×[a, b]×R→ R is a continuous
function. Assume the following conditions:

(i) There exists a Matkowski function ϕ such that

|k(t, s, x)− k(t, s, y)| ≤ ϕ(|x− y|)/(b− a),

for all t, s ∈ [a, b] and x, y ∈ R.
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(ii) There exists a function x0 ∈ C([a, b]) where C([a, b]) is the space of all continuous functions on [a, b],
such that

x0(t) ≤ h(t) +

∫ b

a

k(t, s, x0(s))ds.

Then, the nonlinear integral equation has a unique solution in C([a, b]).

Proof. Let X = C([a, b]). Define a G-metric on X by

G(x, y, z) = sup
t∈[a,b]

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|).

It is known that (X ,G) is a complete G-metric space. We define x ⊥ y in X if x(t)y(t) for all t ∈ [a, b].
Define an operator T : X → X by

T (x)(t) = h(t) +

∫ b

a

k(t, s, x(s))ds.

Let x, y ∈ X be such that x ⊥ y, which means x(t) ≤ y(t) for all t ∈ [a, b]. Then,

|T (x)(t)− T (y)(t)| = |
∫ b

a

k(t, s, x(s))ds−
∫ b

a

k(t, s, y(s))ds|

≤
∫ b

a

|k(t, s, x(s))− k(t, s, y(s))|ds

≤
∫ b

a

(
ϕ(|x(s)− y(s)|)/(b− a)

)
ds

≤ ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|)
)
.

This shows,

|T (x)(t)− T (y)(t)| ≤ ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|)
)
.

Since we have
|x(t)− y(t)| ≤ |x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|

and similarly for other terms, we have

G(T x, T y, T y)

≤ ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|)
)

+ ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|)
)

+ ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|)
)

= 3ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|)
)

≤ 3ϕ
(

sup
s∈[a,b]

(|x(s)− y(s)|+ |y(s)− y(s)|+ |y(s)− x(s)|
)

= 3ϕ(G(x, y, y))

≤ ϕ
(

max
{
G(x, y, y),G(x, T x, T x),G(y, T y, T y),

G(x, T (y), T y) + G(y, T x, T x)

2

})
.

From the condition (ii), x0 ⊥ T (x0). We also know that T is orthogonal preserving since x ⊥ y implies
T (x)(t)T (y)(t). Therefore all the conditions of Theorems 1 and 2 are satisfied. Hence, T has a unique fixed
point x ∈ C([a, b]), which is the solution of the nonlinear integral equation.
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