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Abstract
In this paper, we shall present an interesting and significant refinement of a classical result of Cauchy

about the moduli of the zeros of a quaternionic polynomial. As an application of this result, we shall
obtain zero-free regions for polynomials with quaternionic coeffi cients.

1 Introduction

Concerning the location of zeros of quaternionic polynomials, the first study was done by Eilenberg and
Niven [3, 7]. After these fundamental works, the question of locating the zeros of quaternionic polynomials
has been vastly investigated. Let us first introduce the background information about the quaternions and
quaternionic polynomials. The quaternions were first introduced by the Irish mathematician Sir William
Rowan Hamilton in 1843. The quaternions are mathematical entities used to represent rotations in 3-D
space. They extend the concept of complex numbers by adding two additional imaginary units, providing a
concise way to perform spatial rotations. The quaternion number system is represented by the letter H and
is generally represented as q = α + iβ + jγ + kδ ∈ H, where α, β, γ, δ ∈ R and i, j, k are the fundamental
quaternion units such that i2 = j2 = k2 = ijk = −1. Depending upon the position of the coeffi cients, the
quaternionic polynomial of degree n in indeterminate q is defined as f(q) = qn + qn−1a1 + · · ·+ qan−1 + an
or g(q) = qn + a1q

n−1 + · · ·+ an−1q + an.

The Quaternion Companion Matrix: The n×n companion matrix of a monic quaternionic polynomial
of the form f(q) = qn + qn−1a1 + ...+ qan−1 + an is given by

Cf =



0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1
0 1 0 · · · 0 −an−2
0 0 1 · · · 0 −an−3
...
0 0 0 · · · 1 −a1


,

whereas the n× n companion matrix for a monic quaternionic polynomial of the form g(q) = qn + a1q
n−1 +

· · ·+ an−1q + an, is given by

Cg =


0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 .
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Right Eigenvalue: Given an n × n matrix A = [aµν ] of quaternions, λ ∈ H is called a right eigenvalue of
A, if Ax = xλ for some non-zero eigenvector x = [x1, x2, · · ·xn]T of quaternions.

Left Eigenvalue: Given an n × n matrix A = [aµν ] of quaternions, λ ∈ H is called the left eigenvalue of
A, if Ax = λx for some non-zero eigenvector x = [x1, x2, · · · , xn]T of quaternions. To estimate the zeros of
a polynomial is a long-standing classical problem. It is an interesting area of research for engineers as well
as mathematicians and many results on the topic are available in the literature. One of the famous results
regarding the distribution of zeros of polynomials known as the Eneström-Kakeya theorem, is as follows:

Theorem 1 Let f(z) =
n∑
j=0

ajz
j be a polynomial of degree n such that 0 < a0 ≤ a1 ≤ · · · ≤ an. Then all

the zeros of f(z) lie in |z| ≤ 1.

Over the last two years various results were proved by several authors regarding the location of zeros of
quaternionic polynomials. Recently, Carney et al. [2] extended the Eneström-Kakeya theorem to quaternionic
settings by proving the following result.

Theorem 2 If f(q) = qnan + q
n−1an−1 + q

n−2an−2 + ...+ qa1 + a0 is a polynomial of degree n (where q is
a quaternionic variable) with real coeffi cients satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an, then all the zeros of f lie in
|q| ≤ 1.

For the complex case, concerning the location of the zeros, the famous Cauchy’s theorem [6] can be stated
as:

Theorem 3 If f(z) =
n∑
j=0

ajz
j is a polynomial of degree n with complex coeffi cients where an 6= 0, then all

the zeros of f(z) lie in |z| ≤ 1 +M , where

M = max
0≤j≤n−1

∣∣∣∣ ajan
∣∣∣∣ .

Recently, Dar et al. [5] proved the following quaternionic version of Cauchy’s theorem.

Theorem 4 If f(q) = qn+qn−1a1+· · ·+qan−1+an is a quaternionic polynomial with quaternion coeffi cients
and q is quaternionic variable, then all the zeros of f(q) lie inside the ball |q| ≤ 1 + max

1≤ν≤n
|aν |.

Theorem 4 was refined by Rather et al. [8] by proving:

Theorem 5 Let f(q) = qn + qn−1a1 + qn−2a2 + · · · + qan−1 + an be a monic quaternionic polynomial of
degree n with quaternionic coeffi cients and q be a quaternion variable. If α2 ≥ α3 ≥ · · · ≥ αn are ordered
positive numbers,

αν =
|aν |
rν

, ν = 2, 3, · · · , n,

where r is a positive real number. Then all the zeros of f(q) lie in the union of balls {q ∈ H : |q| ≤ r(1 + α2)}
and {q ∈ H : |q + a1| ≤ r} .

2 Main Results

We begin with the following result which is a significant refinement of Theorem 4.
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Theorem 6 If f(q) = qn+qpqp+q
p−1qp−1+· · ·+qq1+q0, 0 ≤ p ≤ n− 1 is a monic quaternionic polynomial

of degree n with quaternionic coeffi cients and q be a quaternion variable, and |qν | ≤M , ν = 0, 1, · · · , n− p,
then all the zeros of f(q) lie in the ball

|q| ≤
{
(1 +M)

p+1 − 1
} 1
n

.

If in Theorem 6, we take p = n− 1, we get following result.

Corollary 1 Let f(q) = qn + qn−1an−1 + qn−2an−2 + · · · + qa1 + a0 be a monic quaternionic polynomial
of degree n with quaternionic coeffi cients and q be a quaternion variable, and |aν | ≤M, ν = 0, 1, · · · , n− 1.
Then all the zeros of f(q) lie in the ball

|q| ≤ {(1 +M)n − 1}
1
n .

The following corollary is an immediate consequence of Theorem 6.

Corollary 2 If f(q) = qn + qpap + qp−1ap−1 + · · · + qa1 + a0, 0 ≤ p ≤ n− 1 is a quaternionic polynomial
of degree n with quaternionic coeffi cients, then |q| ≤ (1 +M)

p+1
n .

Remark 1 If p = n− 1, then Corollary 2 reduces to Theorem 4.

Corollary 3 If f(q) = qn + qpap + qp−1ap−1 + · · · + qa1 + a0, 0 ≤ p ≤ n− 1 is a quaternionic polynomial
of degree n with quaternionic coeffi cients such that |aj | ≤ 1, j = 0, 1, · · · , p, then all the zeros of f(q) lie in
the ball |q| ≤ 2 p+1n .

From Corollary 1, we can easily deduce the following:

Corollary 4 If f(q) = qn + qpap + qp−1ap−1 + · · · + qa1 + a0, 0 ≤ p ≤ n− 1 is a quaternionic polynomial
of degree n with quaternionic coeffi cients such that |aj | ≤ 1, j = 0, 1, · · · , p, then all the zeros of f(q) lie in
the ball |q| ≤ (2n − 1)

1
n .

As an application to Corollary 4, we now present the following result regarding the location of zeros of a
quaternionic polynomial.

Theorem 7 Let f(q) = qn+ qn−1an−1+ q
n−2an−2+ · · ·+ qa1+a0 be a monic quaternionic polynomial with

quaternionic coeffi cients and |f(q)| attains maximum on |q| = t at the point q = teIα where t ∈ R. Then
f(q) does not vanish in the ball ∣∣q − teIα∣∣ < t

n (2n − 1)
1
n

.

3 Lemmas

For the proofs of these theorems we need the following lemmas. Lemma 1 is due to Dar et al. [5].

Lemma 1 All the left eigenvalues of a n × n matrix A = (aµν) of quaternions lie in the union of the n
Geršgorin balls defined by Bµ = {q ∈ H : |q − aµµ| ≤ ρµ(A)} where ρµ(A) =

∑n
ν=1
ν 6=µ
|aµν |.

Lemma 2 is due to Rather et al. [8].

Lemma 2 Let P (q) be a quaternionic polynomial with quaternionic coeffi cients and Cp be the companion
matrix of P (q). Then for any diagonal matrix D = diag(d1, d2, ..., dn−1, dn), where d1, d2, ..., dn are positive
real numbers, the left eigenvalues of D−1CPD and the zeros of P (q) are same.
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Lemma 3 If f(q) = qn + qpap + · · ·+ qa1 + a0, 0 ≤ p ≤ n− 1 is a quaternionic polynomial of degree n and

if δ1, δ2, · · · , δp+1 are p+ 1 non-zero quaternions such that
p+1∑
k=1

|δk| ≤ 1, then all the zeros of f(q) lie in the

ball |q| ≤ R, where

R =

{
max

1≤k≤p+1

|ap−k+1|
|δk|

} 1
n−p+k−1

.

Proof of Lemma 3. The companion matrix for the polynomial f(q) = qn + qpap + · · · + qa1 + a0,
0 ≤ p ≤ n− 1 is given by

Cf =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...
0 0 0 · · · 1 −ap
...
0 0 0 · · · 1 0


.

We take matrix P = diag
(

1
rn−1 ,

1
rn−2 , · · · ,

1
r , 1
)
, where r is a positive real number and form the matrix

P−1CfP =



0 0 0 · · · 0 − a0
rn−1

r 0 0 · · · 0 − a1
rn−2

0 r 0 · · · 0 − a2
rn−3

...
0 0 0 · · · 0 − ap

rn−p−1

...
0 0 0 · · · r 0


.

Applying Lemma 1 to the matrix P−1CfP , it follows that all the left eigenvalues of P−1CfP lie in the union
of balls |q| ≤ t and

|q + an−1| ≤
|a0|
rn−1

+
|a1|
rn−2

+ · · ·+ |an−2|
r

+ |an−1| .

Since

|q| = |q + an−1 − an−1| ≤ |q + an−1|+ |an−1|

≤ a0
rn−1

+
a1
rn−2

+ · · ·+ an−2
r

+ |an−1|

=

n∑
k=1

|an−k|
rk−1

.

That is, all the left eigenvalues of the matrix T−1CfT lie in the ball

|q| ≤ max
{
r,

n∑
k=1

|an−k|
rk−1

}
. (1)

We now choose

r = max

{
|an−k|
|δk|

}1/k
, k = 1, 2, · · · , n.

Then
|an−k|
|δk|

≤ rkδk, k = 1, 2, · · · , n,
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which gives
|an−k|
rk−1

≤ r|δk|,

so that
n∑
k=1

|an−k|
rk−1

≤
n∑
k=1

r|δk| = t

n∑
k=1

|δk| ≤ r.

Using this in (1), it follows that all the left eigenvalues of the matrix P−1CfP lie in

|q| ≤ max
1≤k≤n

{
|an−k|
|δk|

} 1
k

. (2)

Since P is a diagonal matrix with real positive entries, by Lemma 2, it follows that the left eigenvalues of
P−1CfP are the zeros of f(q). Therefore, all the zeros of f(q) lie in the ball given by (2). This completes
the proof of Lemma 3.
Lemma 4 is due to Zhenghua [11].

Lemma 4 If f(q) = qn + qpap + qp−1ap−1 + · · · + qa1 + a0 is a quaternionic polynomial of degree n and
1 ≤ p ≤ ∞, then

max
|q|=r

|f ′(q)| ≤ nmax
|q|=r

|f(q)| .

Applying Lemma 4 to the quaternionic polynomial f(rq), where r is any positive real number, we get:

Lemma 5 If f(q) = qn + qpap + qp−1ap−1 + · · · + qa1 + a0 is a quaternionic polynomial of degree n and
1 ≤ p ≤ ∞, then

max
|q|=r

|f ′(q)| ≤ n

r
max
|q|=r

|f(q)| .

The next lemma is obtained by repeated application of Lemma 5.

Lemma 6 If f(q) is a quaternionic polynomial of degree n ≥ 1, and r is any positive real number, then

max
|q|=r

|f ′(q)| ≤ n(n− 1) · · · (n− k + 1)
rk

max
|q|=r

|f(q)| , k = 1, 2, · · · , n.

4 Proof of the Main Theorems

Proof of Theorem 6. By hypothesis, we have

|qp−k+1| ≤M, k = 1, 2, · · · , p+ 1. (3)

We take

δk =

[
(1 +M)

n

(1 +M)
p+1 − 1

][
qp−k+1

(1 +M)
n−p+k−1

]
. (4)

Then with the help of (3), we get

p+1∑
k=1

|δk| =
(1 +M)

n

(1 +M)
p+1 − 1

p+1∑
k=1

|qp−k+1|
1

(1 +M)
n−p+k−1 ≤

(1 +M)
n

(1 +M)
p+1 − 1

p+1∑
k=1

M

(1 +M)
n−p+k−1 . (5)

Now

p+1∑
k=1

M

(1 +M)
n−p+k−1 =

M

(1 +M)
n−p

p+1∑
k=1

M

(1 +M)
k−1
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=
M

(1 +M)
n−p

[
1− 1

(1+M)p+1

1− 1
(1+M)

]

=
(1 +M)

p+1 − 1
(1 +M)

n . (6)

Using (6) in (5), we obtain
p+1∑
k=1

|δk+1| ≤ 1. Applying Lemma 3 with δk, k = 1, 2, · · · , p+ 1 defined by (4), it

follows that all the zeros of f(q) lie in the ball

|q| ≤ max
1≤k≤p+1

∣∣∣∣ 1δk qp−k+1
∣∣∣∣ 1
n−p+k−1

= max
1≤k≤p+1

 (1 +M)n−p+k−1
{
(1 +M)

p+1 − 1
}

(1 +M)
n


1

n−p+k−1

= (1 +M) max
1≤k≤p+1

[
(1 +M)

p+1 − 1
(1 +M)

n

] 1
n−p+k−1

= (1 +M)

[
(1 +M)

p+1 − 1
(1 +M)

n

] 1
n

=
[
(1 +M)

p+1 − 1
] 1
n

.

This completes the proof of Theorem 6.
Proof of Theorem 7. Let t be any positive real number and let w = teIα, α ∈ R. Then by hypothesis

max
|q|=t

f(q) =
∣∣q (teIα)∣∣ = |q(w)| .

Now consider a polynomial

R(q) = f

(
t

n
q + w

)
= f(w) +

(
t

n

)
f ′(w)q +

(
t

n

)2
f ′′(w)

q2

2!
+ · · ·+

(
t

n

)n
f (n)(w)

qn

n!
.

If T (q) = qnR
(
1
q

)
, then we have

T (q) = f(w)qn +
( q
n

)
f ′(w)qn−1 + · · ·+

(
t

n

)n
f (n)(w)

n!
=

n∑
j=0

(
t

n

)n−j
q(n−j)(w)qj

(n− j)! .

Since w = teiα, by using Lemma 6, we obtain∣∣∣f (n−j)(w)∣∣∣ =
∣∣∣f (n−j)(teIα)∣∣∣

≤ n(n− 1) · · · (j + 1)
tn−j

max
|q|=t
|f(q)|

≤ n(n− 1) · · · (j + 1)
tn−j

max
|q|=t
|f(q)|

≤ n(n− 1) · · · (j + 1)
tn−j

|f(w)|
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≤ nn−j

tn−j
|f(w)|

=

(
n

j

)(n−j)
|f(w)| , j = 0, 1, · · · , (n− 1).

This implies∣∣∣∣∣
(
t

n

)n−j
f (n−j)(w)

(n− j)!

∣∣∣∣∣ =
(
t

n

)n−j ∣∣f (n−j)(w)∣∣
(n− j)! ≤

(
t

n

)(n−j) ∣∣∣f (n−j)(w)∣∣∣ ≤ |f(w)| , j = 0, 1, · · · , (n− 1).

Which shows that the polynomial T (q) satisfies the conditions of Corollary 4. Consequently, all the zeros

of T (q) lie in the ball |q| ≤ (2n − 1)
1
n . Since R(q) = qnT

(
1
q

)
, all the zeros of T (q) lie in the ball |q| ≥

1

(2n−1)
1
n
. Replacing q by (q − w)

(
n
t

)
and noting that f(q) = R (q − w)

(
n
t

)
, we conclude that the quaternionic

polynomial f(q) does not vanish in the ball

|q − w| < t

n (2n − 1)
1
n

,

which is the desired result.
This completes the proof of Theorem 7.
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