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Abstract
In this paper, we shall present an interesting and significant refinement of a classical result of Cauchy
about the moduli of the zeros of a quaternionic polynomial. As an application of this result, we shall
obtain zero-free regions for polynomials with quaternionic coefficients.

1 Introduction

Concerning the location of zeros of quaternionic polynomials, the first study was done by Eilenberg and
Niven [3, 7]. After these fundamental works, the question of locating the zeros of quaternionic polynomials
has been vastly investigated. Let us first introduce the background information about the quaternions and
quaternionic polynomials. The quaternions were first introduced by the Irish mathematician Sir William
Rowan Hamilton in 1843. The quaternions are mathematical entities used to represent rotations in 3-D
space. They extend the concept of complex numbers by adding two additional imaginary units, providing a
concise way to perform spatial rotations. The quaternion number system is represented by the letter H and
is generally represented as ¢ = a + i8 + jy + ké € H, where o, 3,v,0 € R and i, j, k are the fundamental
quaternion units such that i2 = j2 = k2 = ijk = —1. Depending upon the position of the coefficients, the
quaternionic polynomial of degree n in indeterminate ¢ is defined as f(q) = ¢" +¢" ‘a1 + -+ qan_1 + a,
or g(q) = q" +a1q"t + -+ an_1q+ an.

The Quaternion Companion Matrix: The n X n companion matrix of a monic quaternionic polynomial
of the form f(q) = ¢" + ¢" ‘a1 + ... + qan_1 + a, is given by

000 --- 0 —ap
1 00 -+ 0 —ap
01 0 - 0 —apo
Cr=10 0 1 0 —an, 3>
000 - 1 —a |

whereas the n X n companion matrix for a monic quaternionic polynomial of the form g(q) = ¢" +a1¢" "' +
<o 4 Gp_1q + an, is given by

0 1 0 0
0 0 1 0
Cy =
0 0 0 1
—0np —Ap—-1 —0Gp-2 - —a1
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Right Eigenvalue: Given an n x n matrix A = [a,,] of quaternions, A € H is called a right eigenvalue of
A, if Az = 2\ for some non-zero eigenvector x = [z1, o, -+ ,|7 of quaternions.

Left Eigenvalue: Given an n X n matrix A = [a,,] of quaternions, A € H is called the left eigenvalue of
A, if Az = Az for some non-zero eigenvector x = [z, 2, - ,7,|7 of quaternions. To estimate the zeros of
a polynomial is a long-standing classical problem. It is an interesting area of research for engineers as well
as mathematicians and many results on the topic are available in the literature. One of the famous results
regarding the distribution of zeros of polynomials known as the Enestrom-Kakeya theorem, is as follows:

Theorem 1 Let f(z) = Y. ajzj be a polynomial of degree n such that 0 < ag < ay < -+ < a,. Then all
§=0
the zeros of f(z) lie in |z| < 1.

Over the last two years various results were proved by several authors regarding the location of zeros of
quaternionic polynomials. Recently, Carney et al. [2] extended the Enestrom-Kakeya theorem to quaternionic
settings by proving the following result.

Theorem 2 If f(q) = ¢"an +q" *an—1+q¢" 2an_2+ ... + qa1 + ag is a polynomial of degree n (where q is
a quaternionic variable) with real coefficients satisfying 0 < ag < a1 < ... < ay, then all the zeros of f lie in
gl < 1.

For the complex case, concerning the location of the zeros, the famous Cauchy’s theorem [6] can be stated
as:

Theorem 3 If f(z) = Y a;jz7 is a polynomial of degree n with complex coefficients where a,, # 0, then all
§=0
the zeros of f(z) lie in |z| < 1+ M, where

s
M = max J
0<j<n—1

a .
Recently, Dar et al. [5] proved the following quaternionic version of Cauchy’s theorem.

Theorem 4 If f(q) = ¢"+q¢" a1+ +qan_1+a, is a quaternionic polynomial with quaternion coefficients
and q is quaternionic variable, then all the zeros of f(q) lie inside the ball |q| < 1+ wax lay|.
<v<n

Theorem 4 was refined by Rather et al. [8] by proving:

Theorem 5 Let f(q) = ¢" + ¢" ‘a1 + ¢ 2az + -+ + qan_1 + a, be a monic quaternionic polynomial of
degree n with quaternionic coefficients and q be a quaternion variable. If as > a3 > -+ > «a,, are ordered
positive numbers,

) 1/22,3,"',”,

where T is a positive real number. Then all the zeros of f(q) lie in the union of balls {g € H : |¢| <r(1+ a2)}
and {g€ H: |g+a1| <r}.

2 Main Results

We begin with the following result which is a significant refinement of Theorem 4.
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Theorem 6 If f(q) = ¢"+¢"qp+q" ' qp—1+ - +qq1+q0, 0 < p < n — 1 is a monic quaternionic polynomial
of degree n with quaternionic coefficients and q be a quaternion variable, and |q,| < M, v =0,1,--- ,n—p,
then all the zeros of f(q) lie in the ball

3=

lal < {1+ -1}
If in Theorem 0, we take p=n — 1, we get following result.
Corollary 1 Let f(q) = ¢" + ¢" an—1 + ¢" 2an—2 + -+ + qa1 + ag be a monic quaternionic polynomial

of degree n with quaternionic coefficients and q be a quaternion variable, and |a,| < M, v =0,1,--- ,n — 1.
Then all the zeros of f(q) lie in the ball

" 1
gl <{(1+M)" -1}
The following corollary is an immediate consequence of Theorem 6.

Corollary 2 If f(q) = ¢" + ¢?ap + ¢?tap—1 + -+ qa1 + ap, 0 < p < n—1 is a quaternionic polynomial
pt+1

of degree n with quaternionic coefficients, then |g| < (14 M)
Remark 1 If p=n—1, then Corollary 2 reduces to Theorem /.

Corollary 3 If f(q) = ¢" + ¢?a, + ¢° ta,—1 + -+ +qa1 + ap, 0 < p < n—1 is a quaternionic polynomial

of degree n with quaternionic coefficients such that |a;| <1, j =0,1,---,p, then all the zeros of f(q) lie in
pt1

the ball |g] <27 .

From Corollary 1, we can easily deduce the following:

Corollary 4 If f(q) = ¢" + ¢?ap + ¢* tap—1 + -+ qa1 + ap, 0 < p < n—1 is a quaternionic polynomial
of degree n with quaternionic coefficients such that |aj| <1, j =0,1,---,p, then all the zeros of f(q) lie in

the ball |q| < (2" — 1)7 .

As an application to Corollary 4, we now present the following result regarding the location of zeros of a
quaternionic polynomial.

Theorem 7 Let f(q) = ¢"+¢" tan_1+¢" 2an_2+--+qai +ag be a monic quaternionic polynomial with
quaternionic coefficients and |f(q)| attains mazimum on |q| = t at the point ¢ = te!® where t € R. Then

f(q) does not vanish in the ball
t

|q—telo‘| < —7F
n(2m —1)

3=

3 Lemmas
For the proofs of these theorems we need the following lemmas. Lemma 1 is due to Dar et al. [5].

Lemma 1 All the left eigenvalues of a n x n matric A = (au.) of quaternions lie in the union of the n
Ger3gorin balls defined by B, = {q € H : |¢ — ay,| < p,(A)} where p,(A) = ZZ? lap].

Lemma 2 is due to Rather et al. [8].
Lemma 2 Let P(q) be a quaternionic polynomial with quaternionic coefficients and C, be the companion

matriz of P(q). Then for any diagonal matriz D = diag(dy,ds, ...,dn—1,dy), where dy,da, ..., d, are positive
real numbers, the left eigenvalues of D='CpD and the zeros of P(q) are same.
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Lemma 3 If f(q) = ¢" 4+ qPap +---+qa1 +ao, 0 < p <n—1is a quaternionic polynomial of degree n and

p+1
if 01,02, ,0p41 are p+ 1 non-zero quaternions such that > |0x| < 1, then all the zeros of f(q) lie in the

k=1
ball |g| < R, where

1
FEPFE=T
= max [op-r1] ’ .
1<k<p+1 |0k

Proof of Lemma 3. The companion matrix for the polynomial f(¢) = ¢" + ¢?a, + --- + qa1 + ao,
0 <p<n-—1isgiven by

000 -+ 0 —aqa
100 --- 0 —a
01 0 -+ 0 —a
Cr=|:
000 -+ 1 —a
o o o --- 1 0 |
We take matrix P = diag (T,,%l, Tn%g, ceey %, 1), where r is a positive real number and form the matrix
0 0 0 -+ 0 —=
r 00 - 0 -
0O r 0 -+ 0 -2
pP7lcyp = |:
00 0 0 ——=2—
0o 00 --- 7 0 |

Applying Lemma 1 to the matrix P~*C P, it follows that all the left eigenvalues of P~'C P lie in the union

of balls |¢| <t and

|lan—2|
r

laol &

—1 ,r.n—2+.“+

lg+ an—1| < +lan-1]-

TTL
Since
|Q| = |q +apn—1— an—1| < |q + an—1| + |an—1|

ag al an—2

7nnfl—i_,,qn72—|_“.—i_ r

n
_ |an—k‘
- Z rk=1"
k=1
That is, all the left eigenvalues of the matrix T-'CT lie in the ball

- ‘an—k|
il < 3021, )
k=1

S + |an71‘

We now choose

|an7k| 1/k
r = max 0x] , k=1,2,--- /n.
k

Then
|an—k|

STkéka k= 1727"' » 1,
|0
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which gives

|an—&|
< 10k,
so that
n |an ]4;‘ n n
SICSIIES SUANIS ST
k=1 k=1 k=1
Using this in (1), it follows that all the left eigenvalues of the matrix P~*CP lie in

Jan—] | *
< . 2
i 1@%{ 1] @

Since P is a diagonal matrix with real positive entries, by Lemma 2, it follows that the left eigenvalues of
P~1CP are the zeros of f(q). Therefore, all the zeros of f(q) lie in the ball given by (2). This completes
the proof of Lemma 3. m

Lemma 4 is due to Zhenghua [11].

Lemma 4 If f(q) = ¢" + ¢ap + ¢° " ta,—1 + --- + qa1 + ao is a quaternionic polynomial of degree n and
1 <p<oo, then

lInnglf( 9| < ”‘H@XU(QN-
ql=r

Applying Lemma 4 to the quaternionic polynomial f(rq), where r is any positive real number, we get:
Lemma 5 If f(q) = ¢" + qPap + ¢* " tap—1 + - -+ + qa1 + ag is a quaternionic polynomial of degree n and
1 <p< o0, then

max |f/(q)] < max|f( |-

lgl=r T lal

The next lemma is obtained by repeated application of Lemma 5

Lemma 6 If f(q) is a quaternionic polynomial of degree n > 1, and r is any positive real number, then

nn—1)--(n—k+1)

max | f'(q)] < - max |f(q)], k=1,2,---,n
lal=r r lal=r
4 Proof of the Main Theorems
Proof of Theorem 6. By hypothesis, we have
|qp7k+1‘§M7 k:17277p+]- (3)
We take
(;k: (1 + M)n qp—k+1 ) (4)
(1+ M —1] | (14 p)n ekt
Then with the help of (3), we get
ﬁwaw—i%q T S T R 6
Pt k (1 +M p+1 1 p—k+1 M)n—p—i-k—l — (1 +M)p+1 1 P (1 + M)'rb—p+k—1'
Now

Pt (1 + M)nfp+k71 (1 + M)n*p — (1 +M)k71
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M 1w

(L+M)"7 | 1
Mt ©)
B 1+m"

1
(1+M)

p+l1
Using (6) in (5), we obtain Y |[0x4+1] < 1. Applying Lemma 3 with d, k =1,2,--- ,p+ 1 defined by (4), it
k=1

follows that all the zeros of f(q) lie in the ball

P S
n—pfk—1

1

|Q‘ < g;qP—k+1

max
1<k<p+1

(1 +M)”_p+k—1 {(1 + M)p+1 _ 1} ”*Pﬁ
- 1§r1I€1Saz)7{+1 (1+ M)"

= (1+M) max
1<k<p+1

(1+MP™ -1 T
(1+M)"

a4 (”M)M‘lr

1+ M)"

= A+ M- 1]% .

This completes the proof of Theorem 6. m
Proof of Theorem 7. Let t be any positive real number and let w = te’®, a € R. Then by hypothesis

maxf(q) = ]q (tela)’ = |q(w)].

lal=t
Now consider a polynomial
R(q) = f(flq+w)
= 1w+ (L) rwas (1) rwb s (1) owd
B 1 n 2! n n!’

Since w = te’®, by using Lemma, 6, we obtain

‘f(n—ﬁ(w)’ _ ‘f(n—j)(tela)
SIS R 1>Tnﬁx £(0)
< MDD ()
=~ n—j \Q‘:t
< nn=DGHD
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nJ

|/ (w)]

S e

B (;'L)(nj)f(w)I, =01, ,(n=-1).

This implies

t I =) ()

n (n—j)!
Which shows that the polynomial T'(q) satisfies the conditions of Corollary 4. Consequently, all the zeros
of T(q) lie in the ball |¢| < (2" — 1)%. Since R(q) = q”T( ), all the zeros of T'(¢) lie in the ball |q| >

1

q
B 11); . Replacing ¢ by (¢ — w) (%) and noting that f(¢) = R (q — w) (%), we conclude that the quaternionic
polynomial f(q) does not vanish in the ball

= ()T () e < w506

lg —w| < ——,
1

which is the desired result.
This completes the proof of Theorem 7. m
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