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Abstract

This article discusses the solvability of a weakly singular integral equation with a logarithm kernel.
These equations are defined within the function space C[0, `], which consists of real-valued functions. The
primary methodological framework employed in our proofs is the concept of a measure of noncompact-
ness in conjunction with the theorem of Petryshyn. Furthermore, we illustrate the practical significance
of our findings by presenting a series of applications related to nonlinear singular integral equations.
These examples serve to demonstrate the efficacy and applicability of our theoretical results, thereby
contributing to the broader understanding of such integral equations in mathematical analysis.

Keywords: Measure of noncompactness; weakly singular integral equation; condensing map; existence
results; Petryshyn’s theorem.

1 Introduction

Functional integral equations (FIEs) are powerful tools used in a range of fields, such as mathematics [20, 27,
31], engineering [4, 20], bio-engineering [24, 33, 39], and applied sciences [15, 37]. The IEs are increasingly
popular because they can accurately model complex phenomena. In recent years, there has been significant
interest in both applied and pure analysis in FIEs, including ordinary and partial equations [1, 10, 19, 35].

In 2002, Butzer et al. [6] presented a novel approach to differentiation and integration on (0,∞) of the
form

Jσ0+;cv(r) =

∫ r

0

(
τ
r

)c (
log r

τ

)σ−1 v(τ)
τγ(σ) dτ, σ > 0, c ∈ R,

in terms of classical Mellin transform (TM)M of function v : R>0 → C given by

TM(v(r)) =

∫ ∞
0

τ r−1v(τ)dτ, r = c+ it, c, t ∈ R,

which was a generalization of Hadamard’s article [14], for more instances, see [18, 34]. Das et al. studied the
existence of solution of generalized IEs of fractional order with two variables and proved a new fixed point
theorem applying the measure of noncompactness (M.N.C) and a new contraction operator which generalized
the Darbo’s fixed point theorem (D-theorem) [10]. Paul et al. investigated the existence, uniqueness, stabil-
ities of Hyers-Ulam-Rassias and Hyers-Ulam, and local stability of the solutions of the following nonlinear
Volterra-Fredholm IE involving the Erdélyi-Kober fractional integral operator, for r ∈ R>0,

v(r) = w(r) + y1(r)

∫ r

0

µγ(rρ−τρ)
γ(δ) f1 (r, µ, v(τ)) dτ + y2(r)

∫ s

0

µγ(rρ−τρ)
γ(δ) f2 (r, µ, v(τ)) dτ,
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with s ∈ R>0, the function w, y1, y2 : R≥0 → R, where r, µ, ρ, δ ∈ R≥0 and fi ∈ C
(
R≥0 ×R≥0 ×R

)
[28]. They

established the existence and uniqueness, and analyzed stabilities of Hyers-Ulam-Rassias and Hyers-Ulam of
the solution for the nonlinear IE in the case of the Riemann-Liouville fractional operator of the form

v(r) = w(r) + y(r)

∫ r

0

(r−τ)σ
γ(σ) η(τ)f (v(τ)) dτ, r ∈ ∆` := [0, `],

where σ ∈ R>0 with the continuous functions f : C(∆`) → R and , w, y, η : ∆` → R, based on the Leray-
Schauder alternative and Banach’s fixed point theorem [29]. Researchers have focused on studying the
existence of solutions for FIEs, particularly those involving weakly singular IEs (WSIEs). One of the most
commonly used methods is the concept of M.N.C. The root of this concept goes back to the famous work of
Kuratowski [21]. This method plays a vital role in the publications of research [3].

In 1955, Darbo [8] established a ground-breaking theorem that proves the existence of fixed points for
condensing operators using the concept of M.N.C. This theorem has found wide application in various scientific
fields, particularly in finding solutions for both FIEs and differential equations (DEs) [5, 7, 22, 36, 38, 40].
Bhat et al. discussed the numerical solutions and studied the existence of the unique solutions of weakly
singular Volterra and Fredholm IEs, which were used to demonstrate the problems like heat conduction in
engineering and the electrostatic potential theory, based on the modified Lagrange polynomial interpolation
technique combined with the biconjugate gradient stabilized method [5]. Authors [12] obtained results to
existence of solutions for the following nonlinear FIEs,

v(r) =

[
y1
(
r, v(r)

)
+G1

(
r,

∫ r

0

f1
(
r, τ, v(τ)

)
dτ,

∫ r

0

h1
(
r, τ, v(τ)

)
, v(τ)

)]
×
[
y2
(
r, v(r)

)
+G2

(
r,

∫ r

0

f2
(
r, τ, v(τ)

)
dτ,

∫ r

0

h2
(
r, τ, v(τ)

)
, v(τ)

)]
,

for r ∈ ∆` where yi ∈ C
(
∆` × R2

)
, Gi ∈ C

(
∆` × R3

)
, i = 1, 2. Metwali and Mishra in [23], proved a new

compactness criterion in the Lebesgue spaces Lp
(
R>0

)
, 1 ≤ p < ∞ and used such criteria to construct a

M.N.C in the mentioned spaces and applied such M.N.C with a modified version of D-theorem in proving the
existence of monotonic integrable solutions for a product of n-Hammerstein IEs, n ≥ 2, is given by,

v(r) = y
(
r, v(r)

)
+

n∏
i=1

(
fi
(
r, v(r)

)
+ hi

(
r, v(r)

)
· |v(r)|p/qi

∫ ∞
0

Ki(r, τ)ui
(
τ, v(τ)

)
dτ

)
,

where p < qi <∞. Nashine et al. investigated the solutions of a system of FIE is expressed by,
v(r) = G

(
r, v(r), q(r),

∫ r
0
f
(
r, τ, v(τ), q(τ)

)
dτ

)
,

q(r) = G

(
r, q(r), v(r),

∫ r
0
f
(
r, τ, q(τ), v(τ)

)
dτ

)
,

in the setting of M.N.C on real-valued bounded and continuous Banach space by using Darbo type fixed and
coupled fixed point results for µ-set (ω, ϑ)-contraction operator and arbitrary M.N.C in this spaces, where
G ∈ C

(
R≥0 × R3

)
along with the some conditions [25]. The D-theorem offers a significant advantage over

Schauder’s theorem by relaxing the requirement of compactness for the operator’s domain [2]. This flexibility
makes it suitable for studying solvability in different types of equations, including implicit DEs, I-DEs, and
equations arising in controllability problems for dynamical systems [9, 11].

Although D-theorem is highly effective in this field, the method is still criticized for its tendency to
impose many conditions on the problem, which is seen as a significant weakness. In 2016, by the assistance
of M.N.C and fixed point theorem of Petryshyn (P-theorem), Kazemi et al. established that the sub-linear
conditions in D-theorem is an additional condition [16, 32].

This article analyzes the existence result for the following WSIE,

v(r) = g

(
r,

s

f
i=1
v(βi(r))

)
+ f

(
r,

m

f
j=1

v(αj(r))

)∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

v(γk(r))

)
dτ, (1)
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for r, τ ∈ ∆`, with fqp=1v(η̂p(·)) :=
(
v (η̂1(·)) , v (η̂2(·)) , . . . , v (η̂q(·))

)
, where

W1) functions βi, αj and γk ∈ C(∆`) with 1 ≤ i ≤ s, 1 ≤ j ≤ m and 1 ≤ k ≤ n.

In the following, we consider the outline of the paper. In Section 2, we collect some definitions, lemmas
and theorems, which are essential to prove our main results. In Section 3, we establish and prove a new
existence theorem by utilizing the P-theorem for WSIE (1). In Section 4, we also give few examples to
support our main theorem. Finally, In Section 5, concludes the paper.

2 Auxiliary Facts and Notations

In this section, we will review several definitions and theorems, providing additional facts to enhance under-
standing.

Definition 1 ([13, 21]) Let B be a bounded subset of a Banach space F. The M.N.C types of Kuratowski
and Hausdroff are expressed by,

mK(B) = inf
{
�> 0 : A may be covered by finitely multiple sets of diameter ≤�

}
,

mH(B) = inf
{
�> 0 : there is a finite � -net for B ∈ F

}
. (2)

Theorem 1 ([30]) Let B, B̃ ∈ F and λ ∈ R. Then

i) m
H

(B) = 0 iff B is relatively-compact;

ii) B ⊆ B̃ =⇒ m
H
≤ m

H
(B̃);

iii) m
H

(B̄) = m
H

(conv B) = m
H

(B);

iv) m
H

(B ∪ B̃) = max
{
m

H
(B), m

H
(B̃)

}
;

v) m
H

(λB) = |λ|m
H

(B);

vi) m
H

(B + B̃) ≤ m
H

(B) + m
H

(B̃).

In the following, we will operate in the space C(∆`) endowed with the norm ‖v‖ = sup{|v(r)| : r ∈ ∆`}.
Recall that the modulus of continuity of a function v ∈ C(∆`) is defined as,

ω(v, �) = sup
{
|v(r)− v(r̃)| : |r − r̃| ≤�

}
.

Theorem 2 ([17]) For all bounded sets B ⊂ C(∆`), the M.N.C (2) is equivalent to,

m
H

(B) = lim
�→0

sup
v∈B

ω(v, �).

Definition 2 ([26]) Assume that W : F→ F be a continuous mapping of F. W is called a k-set contraction
if for all bounded subset B ⊂ F, W(B) is bounded and m

K
(W(B)) ≤ km

K
(B), 0 < k < 1. If m

K
(W(B) <

m
K

(B), for each m
K

(H) > 0, then W is called densifying (or condensing) map.

Theorem 3 (P-theorem [30]) Assume that W : B̄r◦ → F be a condensing mapping which satisfies the
boundary condition, W(v) = kv, for some v in ∂Br◦ with k ≤ 1, then the set of fixed points of W in B̄r◦
is non-empty, where B̄r◦ and ∂B̄r◦ are closed ball at center 0 and sphere in F around 0, respectively with
radius r◦ > 0.



Kazemi et al. 125

3 An Existence Theorem Based on P-theorem

We consider the essential assumptions to verify the existence of a solution for FWSIE (1):

M1) g ∈ C(∆` × Rs) and f ∈ C(∆` × Rm) and there exist qi, λj for 1 ≤ i ≤ s, 1 ≤ j ≤ m such that

∣∣g(r, v1, v2, . . . , vs)− g(r, ṽ1, ṽ2, . . . , ṽs)
∣∣ ≤ s∑

i=1

qi
∣∣vi − ṽi∣∣

∣∣f(r, v1, v2, . . . , vm)− f(r, ṽ1, ṽ2, . . . , ṽm)
∣∣ ≤ m∑

j=1

λj
∣∣vj − ṽj∣∣,

M2) There exists r◦ > 0 such that

sup

∣∣∣∣g(r, s

f
i=1
v(βi(r))

)
+ f

(
r,

m

f
j=1

v(αj(r))

)∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

v(γk(r))

)
dτ

∣∣∣∣ ≤ r◦,
with

∑s
i=1 qi + Ω

∑m
j=1 λj < 1, where

Ω = sup
{∣∣u(r, τ, v1, v2, . . . , vn)

∣∣ : r, τ ∈ ∆`, vi ∈ [−r◦, r◦], 1 ≤ i ≤ n
}
.

Theorem 4 Assume that (M1) and (M2) hold. Then FWSIE (1) has at least one solution in C(∆`).

Proof. Define the operator O : Br◦ → C(∆`) as follows

(Ov)(r) = g

(
r,

s

f
i=1
v(βi(r))

)
+ f

(
r,

m

f
j=1

v(αj(r))

)∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

v(γk(r))

)
dτ,

where Br◦ =
{
v ∈ C(∆`) : ‖v‖ ≤ r◦

}
. We divide the proof into several steps.

Step 1. Consider arbitrary v, ṽ ∈ Br◦ and �> 0 such that ‖v − ṽ‖ <�. Then,

|(Ov)(r)− (Oṽ)(r)|

=

∣∣∣∣g(r, s

f
i=1
v(βi(r))

)
+ f

(
r,

m

f
j=1

v(αj(r))

)∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

v(γk(r))
)
dτ

−g
(
r,

s

f
i=1
ṽ(βi(r))

)
− f
(
r,

m

f
j=1

ṽ(αj(r))
) ∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

ṽ(γk(r))

)
dτ

∣∣∣∣
≤

∣∣∣∣g(r, s

f
i=1
v(βi(r))

)
− g

(
r,

s

f
i=1
ṽ(βi(r))

)∣∣∣∣
+

∣∣∣∣[f(r, mfj=1
v(αj(r))

)
− f

(
r,

m

f
j=1

ṽ(αj(r))

)]∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

ṽ(γk(r))

)
dτ

∣∣∣∣
+

∣∣∣∣f(r, mfj=1
v(αj(r))

)∫ r

0

ln |τ − r|
[
u

(
r, τ,

n

f
k=1

v(γk(r))

)
− u

(
r, τ,

n

f
k=1

ṽ(γk(r))

)]
dτ

∣∣∣∣
≤

∣∣∣∣g(r, s

f
i=1
v(βi(r))

)
− g

(
r,

s

f
i=1
ṽ(βi(r))

)∣∣∣∣
+

∣∣∣∣f(r, mfj=1
v(αj(r))

)
− f

(
r,

m

f
j=1

v(αj(r))

)∣∣∣∣ ∫ r

0

ln |τ − r|
∣∣∣∣u(r, τ, n

f
k=1

ṽ(γk(r))

)∣∣∣∣dτ
+

∣∣∣∣f(r, mfj=1
v(αj(r))

)∣∣∣∣ ∫ r

0

ln |τ − r|
∣∣∣∣u(r, τ, n

f
k=1

v(γk(r))

)
− u

(
r, τ,

n

f
k=1

ṽ(γk(r))

)∣∣∣∣ dτ ∣∣∣∣
≤

s∑
i=1

qi
∣∣v(βi(r))− ṽ(βi(r))

∣∣+

m∑
j=1

λj
∣∣v(αj(r))− ṽ(αj(r))

∣∣Ω∣∣`(ln `− 1)
∣∣+ sup(f)

∣∣`(ln `− 1)
∣∣ω(v, �)
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≤
[ s∑
i=1

qi + Ω
∣∣`(ln `− 1)

∣∣ m∑
j=1

λj

]
‖v − ṽ‖+ sup(f)

∣∣`(ln `− 1)
∣∣ω(v, �),

where
sup(f) =

{∣∣f(r, v1, v2, . . . , vm)
∣∣ : r ∈ ∆`, vi ∈ [−r◦, r◦], 1 ≤ i ≤ n

}
and

ω(v, � ) = sup
{∣∣u(r, τ, v1, v2, . . . , vn)− u(r, τ, ṽ1, ṽ2, . . . , ṽn)

∣∣ : r, τ ∈ ∆`,

vi, ṽi ∈ [−r◦, r◦], 1 ≤ i ≤ n, ‖v − ṽ‖ ≤�
}
.

The uniform continuity of û = u(r, τ, v1, v2, . . . , vn) on ∆2
` × [−r◦, r◦]n yields ω(v, �)→ 0 as �→ 0. Then, the

operator O is continuous on Br◦ .
Step 2. We show that the operator O is a condensing map in view of measure mH . For arbitrary �> 0,

v in bounded subset Ψ ⊂ F, and r1, r2 ∈ ∆` with |r2 − r1| ≤�, we obtain∣∣∣(Ov)(r2)− (Ov)(r1)
∣∣∣

=

∣∣∣∣g(r2, s

f
i=1
v(βi(r2))

)
+f

(
r2,

m

f
j=1

v(αj(r2))

)∫ r2

0

ln |τ − r2|u
(
r2, τ,

n

f
k=1

v(γk(τ))

)
dτ − g

(
r1,

s

f
i=1
v(βi(r1))

)
−f
(
r1,

m

f
j=1

v(αj(r1))

)∫ r1

0

ln |τ − r1|u
(
r1, τ,

n

f
k=1

v(γk(τ))

)
dτ

∣∣∣∣
≤

∣∣∣∣g(r2, s

f
i=1
v(βi(r2))

)
− g

(
r2,

s

f
i=1
v(βi(r1))

)∣∣∣∣
+

∣∣∣∣g(r2, s

f
i=1
v(βi(r1))

)
− g

(
r1,

s

f
i=1
v(βi(r1))

)∣∣∣∣
+

∣∣∣∣f(r2, mfj=1
v(αj(r2))

)∫ r2

0

ln |τ − r2|u
(
r2, τ,

n

f
k=1

v(γk(τ))

)
dτ

−f
(
r1,

m

f
j=1

v(αj(r1))

)∫ r1

0

ln |τ − r1|u
(
r1, τ,

n

f
k=1

v(γk(τ))

)
dτ

∣∣∣∣
≤

∣∣∣∣g(r2, s

f
i=1
v(βi(t2))

)
− g

(
r2,

s

f
i=1
v(βi(r1))

)∣∣∣∣
+

∣∣∣∣g(r2, s

f
i=1
v(βi(r1))

)
− g

(
r1,

s

f
i=1
v(βi(r1))

)∣∣∣∣
+
{∣∣∣f(r2, mf

j=1
v(αj(r2))

)
− f

(
r2,

m

f
j=1

v(αj(r1))

) ∣∣∣
+
∣∣∣f(r2, mf

j=1
v(αj(t1))

)
− f

(
r1,

m

f
j=1

v(αj(r1))

) ∣∣∣} ∫ r2

0

ln |τ − r2|u
(
r2, τ,

n

f
k=1

v(γk(τ))

)
dτ

+

∣∣∣∣f(r1, mfj=1
v(αj(r1))

)∫ r2

0

ln |τ − r2|
[
u

(
r2, τ,

n

f
k=1

v(γk(τ))

)
−u
(
r1, τ,

n

f
k=1

v(γk(τ))

)]
dτ

∣∣∣∣
+

∣∣∣∣f(r1, mfj=1
v(αj(r1))

)∫ r2

0

u

(
r1, τ,

n

f
k=1

v(γk(τ))

)(
ln(τ − r2)− ln(τ − r1)

)
dτ

∣∣∣∣
+

∣∣∣∣f(r1, mfj=1
v(αj(r1))

)∫ r2

r1

ln |τ − r1|u
(
r1, τ,

n

f
k=1

v(γk(τ))

)
dτ

∣∣∣∣
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≤
s∑
i=1

qi
∣∣v(βi(r2))− v(βi(r1))

∣∣+ ωg(� ) +

[ m∑
j=1

λj
∣∣v(αj(r2))− v(αj(r1))

∣∣+ ωf(�)
] ∣∣`(ln `− 1)

∣∣Ω
+ sup(f)

∣∣r2(ln r2 − 1)
∣∣ωu(�) + 2 sup(f)Ω

∣∣`(ln `− 1)
∣∣+ sup(f)Ω

∣∣r2 − r1∣∣,
where for r2, r1 ∈ ∆`, vi ∈ [−r◦, r◦], 1 ≤ i ≤ m, |r2 − r1| ≤�,

ωg(�) = sup
∣∣∣g(r2, v1, v2, . . . , vm)− g(r1, v1, v2, . . . , vm)

∣∣∣,
ωf(�) = sup

∣∣∣f(r2, v1, v2, . . . , vm)− f(r1, v1, v2, . . . , vm)
∣∣∣,

ωu(�) = sup
∣∣∣u(r2, v1, v2, . . . , vm)− u(r1, v1, v2, . . . , vm)

∣∣∣. (3)

From Ineqs. (3), we obtain

ω(Ov, � ) ≤
s∑
i=1

qiω(v, ω(βj , �)) + ωg(ε) +

[ m∑
j=1

λjω(v, ω(αi, �)) + ωf(�)
]∣∣`(ln `− 1)

∣∣Ω
+ sup(f)

∣∣r2(ln r2 − 1)
∣∣ωu(�) + 2 sup(f)Ω

∣∣`(ln `− 1)
∣∣+ sup(f)Ω � .

By taking the supremum over Ψ and �→ 0, we

m
H

(OΨ) ≤
[ s∑
i=1

qi + Ω

m∑
j=1

λj

]
m

H
(Ψ).

Assumption (M2) together with Definition 2 imply that O is a condensing map.
Step 3. Suppose that v ∈ ∂Br◦ =

{
v ∈ C(∆`) : ‖v‖ = r◦

}
and Ov = ζv. Then we get ‖Ov‖ = ζ‖v‖ =

ζr◦. Thus, (W3) implies that,∣∣(Ov)(r)
∣∣ =

∣∣∣∣g(r, s

f
i=1
v(βi(r))

)
+ f

(
r,

m

f
j=1

v(αj(r))

)∫ r

0

ln |τ − r|u
(
r, τ,

n

f
k=1

v(γk(r))

)
dτ

∣∣∣∣ ≤ r◦, (4)

and so, ‖Ov‖ ≤ r◦ which implies that ζ ≤ 1. Hence, under the assumptions (M1) and (M2), the FWSIE (1)
has at least one solution C(∆`).

Corollary 1 Under the control conditions as follows:

M3) Let g, f ∈ C(∆` × R) and there exists q, λ ∈ R>0 such that,∣∣g(r, v)− g(r, ṽ)
∣∣ ≤ q∣∣v − ỹ∣∣, ∣∣f(r, v)− f(r, ṽ)

∣∣ ≤ λ∣∣v − ỹ∣∣.
M4) There exists r◦ > 0 such that

sup

∣∣∣∣g(r, v(r)
)

+ f
(
r, v(r)

) ∫ r

0

ln |τ − r|u
(
r, τ, v(r)

)
dτ

∣∣∣∣ ≤ r◦,
with q + Ωλ < 1 where

Ω = sup
{∣∣u(r, τ, v)

∣∣ : v, τ ∈ ∆`, v ∈ [−r◦, r◦]
}
,

Then the FWSIE,

v(r) = g
(
r, v(r)

)
+ f
(
r, v(r)

) ∫ r

0

ln |τ − r|u
(
r, τ, v(r)

)
dτ,

has at least one solution in C(∆`).

Proof. The proof is relevant to Theorem 4, so we can exclude the irrelevant parts.
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4 Applications with Numerical Examples

In this part, we give some examples of FWSIE to explain the advantage of our results.

Example 1 Consider the following FWSIE in C(∆`), ` = 1,

v(r) = r4

3(1+r4)

(
v(
√
r) + v(r2)

)
+

r2+v(
√
sin r)

12(1+r)

∫ 1

0

ln |τ − r|
(

3
√
v(τ) + ln

(
1 +

∣∣v (τ2)∣∣))dτ. (5)

Clearly,

� β1(r) =
√
r, β2(r) = r2, α1(r) =

√
sin r, γ1(r) = r, γ2(r) = r2,

� g(r, v1, v2) = r4

3(1+r4)v1 + r4

3(1+r4)v2, f(r, v1) = r2+v1
12(1+r) ,

� u(r, τ, v1, v2) = 3
√
v1 + ln(1 + |v2|).

By taking these data, we have∣∣g(r, v1, v2)− g(v, ṽ1, ṽ2)
∣∣ =

∣∣∣ r4

3(1+r4)v1 + r4

3(1+r4)v2 −
r4

3(1+r4) ṽ1 −
r4

3(1+r4) ṽ2

∣∣∣
≤ 1

3

∣∣v1 − ṽ1∣∣+ 1
3

∣∣v2 − ṽ2∣∣, (6)

and ∣∣f(r, v)− f(r, ṽ)
∣∣ =

∣∣∣ r2+ṽ
12(1+r) −

r2+ṽ
12(1+r)

∣∣∣ ≤ 1
12

∣∣v − ṽ∣∣. (7)

Based on Ineqs. (6) and (7), the assumption (M1) holds when q1 = 1
3 , q2 = 1

3 and λ1 = 1
12 . In order to

verify assumption (M2) observe that the inequality appearing in this assumption has the form,

2
3r◦ + r◦+1

12

(
3
√
r◦ + ln(1 + |r◦|)

)
≤ r◦. (8)

It is easy to verify that the number r◦ ∈ [0.3103, 4.01835] satisfies Ineq. (8). Further, for r◦ = 1, we have
Ω = 1 + ln 2 ≈ 1.6931 and q1 + q2 + Ωλ1 = 0.8077583 < 1. Therefore, all conditions of Theorem 4 are
satisfied. This implies that the FWSIE (5) has at least one solution in C(∆`).

Example 2 Consider FWSIE as form,

v(r) = r2

2(1+r2) +
v(
√
r)

10 + v(sin r)
15 +

3
√
r+v(cos r2)

10

∫ 1

0

ln |τ − r|
(√

v(τ) + τ3

8 + v2(τ)
6

)
dτ, (9)

in C(∆`), ` = 1. It can be seen that β1(r) =
√
r, β2(r) = sin r, α1(r) = cos r, γ1(r) = γ2(r) = τ , α1 = cos r,

g(r, v1, v2) = r2

2(1+r2) + v1
10 + v2

15 , f(r, v1) =
3
√
r+v1
10 and u(r, τ, v1, v2) =

√
v1 + r3

8 +
r22
6 . It is evident that∣∣g(r, v1, v2)− g(r, ṽ1, ṽ2)

∣∣ =
∣∣ v1
10 + v2

15 −
ṽ1
10 −

ṽ2
15

∣∣ ≤ 1
10

∣∣v1 − ṽ1∣∣+ 1
15

∣∣v2 − ṽ2∣∣, (10)

and ∣∣f(r, v)− f(r, ṽ)
∣∣ =

∣∣∣ 3
√
r+v
10 −

3
√
r+ṽ
10

∣∣∣ ≤ 1
10

∣∣v − ṽ∣∣. (11)

Thus, Ineqs. (10) and (11) confirm the assumption (M1) in Theorem 4 satisfies when q1 = 1
10 , q2 = 1

15 and
λ1 = 1

10 . In order to verify assumption (M2) observe that the inequality appearing in this assumption has
the form,

1
2 + r◦

10 + 1
15 + r◦+1

10

(√
r◦ + 1

8 +
r2◦
6

)
≤ r◦.

It is easy to verify that the number r◦ ∈ [0.87808, 5.01871] satisfies the last inequality inequality. Also, for
r◦ = 2.114, we have Ω =

√
2 + 1

8 + 2
3 ≈ 2.20588 and q1 + q2 + Ωλ1 = 0.38725 < 1. Therefore, all conditions

of Theorem 4 are satisfied. This implies that the FWSIE (5) has at least one solution in C(∆`).
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5 Conclusion

The central aim in the theory of integral equations revolves around the existence and uniqueness of solutions.
Therefore, several researchers have shared their findings and methodologies in this field. In alignment with
this, the authors of this paper present a new approach using M.N.C and P-theorem for a nonlinear FWSIE.
This method offers several advantages over similar techniques, including fewer conditions and no need to
confirm the operator’s mapping of a closed convex subset onto itself. The outcomes of this research are
diverse and noteworthy, making it intriguing and deserving of further investigation in subsequent studies.
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