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Abstract

In this paper, we introduce the notion of a rectangular Sb-metric space which extends the rectangular
metric space given by Branciari [3]. We establish some fixed point theorems in this new structure. We
provide some applications of our results in differential and integral equations.

1 Introduction

Fréchet [6] introduced the concept of metric spaces, laying the groundwork for a pivotal area of mathematical
research. Banach [2] further advanced this field by establishing the fixed point theorem, which is regarded
as one of the most significant results in analysis and the primary foundation of metric fixed point theory.
This theorem has been generalized in numerous directions, demonstrating its extensive applicability. Since
then, metric spaces have become integral to various branches of mathematics, including functional analysis,
nonlinear analysis, and topology. The structure of metric spaces has been extensively generalized by many
researchers.
The concept of the b-metric space was introduced by Czerwik [4], while Sedghi et al. [13] developed

the notion of the S-metric space. Various fixed point theorems for different contractive mappings have
been established within these spaces. Dhanraj et al. [5] proved fixed point theorems using an orthogonal
Geraghty-type contraction in Branciari b-metric spaces. Gnanaprakasam et al. [8] introduced orthogonal
α-almost Istraţscu contractions and proved fixed point results in b-metric spaces. Gholidahneh et al. [7]
extended modular b-metric spaces and derived fixed point results for αν̂-Meir-Keeler contractions. Iqbal
et al. [9] introduced a generalized multivalued (α,L)-almost contraction in b-metric spaces and proved the
existence and uniqueness of a fixed point. Iqbal et al. [10] introduced generalized weak contractions and
established fixed point results in b-metric spaces. Mani et al. [11] obtained fixed point results in bicomplex
valued b-metric spaces. Prakasam et al. [12] proved fixed point theorems for O-generalized contractions,
generalizing known results and demonstrating the existence of solutions to integral equations.
Building on this foundation, Souayah and Mlaiki [14] introduced a novel structure known as the Sb-metric

space, which is defined using b-metric and S-metric spaces. Motivated by these generalizations, this paper
introduces the concept of a rectangular Sb-metric space, which extends the idea of a rectangular metric space.
It also presents several fixed point theorems for various contractive mappings within a complete rectangular
Sb-metric space. Branciari [3] defined a rectangular metric space as follows.

Definition 1 ([3]) Let X be a non-empty set and d : X ×X → [0,∞) be a mapping satisfying the following
properties:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for x, y ∈ X and distinct u, v ∈ X\{x, y}.
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Then d is called a rectangular metric on X and (X, d) is called a rectangular metric space.

Czerwik [4] defined b-metric space as follows.

Definition 2 ([4]) Let X be a non-empty set and d : X ×X → [0,∞) be a mapping satisfying the following
properties:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a b-metric on X and the ordered pair (X, d) is called a b-metric space with coeffi cient s.

Sedghi et al. [13] introduced the notion of an S-metric space which is defined as follows.

Definition 3 ([13]) Let X be a non-empty set and S : X × X × X → [0,∞) be a mapping satisfying the
following properties;

(i) S(x, y, z) = 0 if and only if x = y = z;

(ii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a), for all a, x, y, z ∈ X (rectangle inequality).

Then (X,S) is called a S-metric space.

Adewale and Iluno [1] introduced the notion of rectangular S-metric space as follows.

Definition 4 ([1]) Let X be a non-empty set and S : X × X × X → [0,∞) be a mapping satisfying the
following properties;

(i) S(x, y, z) = 0 if and only if x = y = z;

(ii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for x, y, z ∈ X and distinct a ∈ X\{x, y, z}.

Then (X,S) is called a rectangular S-metric space.

Example 1 ([1]) Let X = N ∪ {0} and define S : X ×X ×X → R+ ∪ {0} by

S(x, y, z) =

{
0, if x = y = z,

xyz, otherwise.

Then (X,S) is called a rectangular S-metric space.

Souayah et al. [14] combined the concept of a b-metric space and an S-metric space, and introduced a
new metric space, called an Sb-metric space, as follows.

Definition 5 ([14]) Let X be a non-empty set and s ≥ 1 be a given real number. Then a mapping Sb :
X ×X ×X → [0,∞) is said to be Sb-metric on X, if following properties are satisfied;

(i) Sb(x, y, z) = 0 if and only if x = y = z;

(ii) Sb(x, x, y) = Sb(y, y, x) for all x, y ∈ X;

(iii) Sb(x, y, z) ≤ s
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
for all x, y, z, a ∈ X.
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Then (X,Sb) is called a Sb-metric space.

Definition 6 Let X be a non-empty set and s ≥ 1 be a given real number. A function Sb : X ×X ×X →
[0,∞) is said to be a rectangular Sb-metric on X, if

(i) Sb(x, y, z) = 0 if and only if x = y = z;

(ii) Sb(x, x, y) = Sb(y, y, x) for all x, y ∈ X;

(iii) Sb(x, y, z) ≤ s
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
for all x, y, z ∈ X and distinct a ∈ X\{x, y, z}.

A pair (X,Sb) is called a rectangular Sb-metric space.

Example 2 Let X be a non-empty set and card (X) ≥ 5. Let P = X1, X2 be a partition of X such that
card (X1) ≥ 4. Let s ≥ 1. Define Sb : X ×X ×X → R+ ∪ {0} by

Sb(x, y, z) =


0, if x = y = z,

4s, if (x, y, z) ∈ X3
1 ,

2, if (x, y, z) /∈ X3
1 .

Then Sb is a rectangular Sb-metric on X with coeffi cient s ≥ 1.

Proof. The conditions (i) and (ii) in the Definition 6 are obviously satisfied. We now prove only the triangle
inequality,

Sb(x, y, z) ≤ s
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
, (1)

for all x, y, z ∈ X and distinct a ∈ X\{x, y, z}.

Case 1: Let (x, y, z) ∈ X3
1 . Then x, y, z ∈ X1. This implies that

Sb(x, y, z) = 4s. (2)

Since a ∈ X\{x, y, z}, two sub-cases arise:

Case (i) If a ∈ X1, then x, y, z, a ∈ X1, which implies that (x, x, a), (y, y, a) and (z, z, a) ∈ X3
1 . Hence, by

the definition of Sb, we have

Sb(x, x, a) = Sb(y, y, a) = Sb(z, z, a) = 4s. (3)

Using (2) and (3), the condition (1) is satisfied (4s ≤ 12s2, s ≥ 1).
Case (ii) If a /∈ X1, then x, y, z ∈ X1 and a /∈ X1, which implies that (x, x, a), (y, y, a) and (z, z, a) /∈ X3

1 .
Hence, by the definition of Sb, we have

Sb(x, x, a) = Sb(y, y, a) = Sb(z, z, a) = 2. (4)

Using (2) and (4), the condition (1) is satisfied (4s ≤ 6s, s ≥ 1).

Case 2: Let (x, y, z) /∈ X3
1 . Then at least one of x, y, z /∈ X1. Without loss of generality, suppose that

x /∈ X1 and y, z ∈ X1. By the definition of Sb, we have

Sb(x, y, z) = 2. (5)

Since a ∈ X\{x, y, z}, two sub-cases arise:

Case (i) If a ∈ X1, then (x, x, a) /∈ X3
1 but (y, y, a) and (z, z, a) ∈ X3

1 . By the definition of Sb, we obtain
that

Sb(x, x, a) = 2, Sb(y, y, a) = Sb(z, z, a) = 4s. (6)

Using (5) and (6), the condition (1) is satisfied (2 ≤ 2s+ 8s2, s ≥ 1).
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Case (ii) If a /∈ X1, then (x, x, a), (y, y, a), (z, z, z) /∈ X3
1 . By the definition of Sb, we have that

Sb(x, x, a) = Sb(y, y, a) = Sb(z, z, a) = 2. (7)

Using (5) and (7), the condition (1) is satisfied (2 ≤ 6s, s ≥ 1).

Example 3 Let X = N ∪ {0}. Define Sb : X ×X ×X → R+ ∪ {0} by

Sb(x, y, z) =

{
0, if x = y = z,

2t, ∀t ∈ N, otherwise.

Then Sb is a rectangular Sb-metric on X with coeffi cient s ≥ 1.

Proof. The conditions (i) and (ii) in the Definition 6 are obviously satisfied. We now prove only the triangle
inequality (1). We have, for all x, y, z ∈ X with at least one of x, y, z 6= 0,

Sb(x, y, z) = 2a. (8)

Let a ∈ X\{x, y, z}. Then
Sb(x, x, a) = Sb(y, y, a) = Sb(z, z, a) = 2t. (9)

Using (8) and (9), the condition (1) is satisfied (2t ≤ 6st, s ≥ 1).

Example 4 Let X = R (the set of real numbers) and define Sb : X ×X ×X → R+ ∪ {0} by

Sb(x, y, z) = |x− y|+ |y − z|+ |z − x|.

Then Sb is a rectangular Sb-metric on X with coeffi cient s ≥ 1.

Proof. Here

(i) Sb(x, y, z) = 0 if and only if x = y = z.

(ii) Sb(x, x, y) = |x− x|+ |x− y|+ |y − x| = 2|x− y| = Sb(y, y, x).

(iii) Let a ∈ R\{x, y, z}. Then

Sb(x, y, z) = |x− y|+ |y − z|+ |z − x|
= |(x− a) + (a− y)|+ |(y − a) + (a− z)|+ |(z − a) + (a− x)|
≤ |(x− a)|+ |(a− y)|+ |(y − a)|+ (a− z)|+ |(z − a)|+ |(a− x)|
= 2|x− a|+ 2|y − a|+ 2|z − a|
= Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a).

Therefore
Sb(x, y, z) ≤ s

[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
, since s ≥ 1.

Thus, Sb satisfies all the conditions in the Definition 6. Hence, Sb is a rectangular Sb-metric on X with
coeffi cient s ≥ 1.

Example 5 Let X = [0, 1] (the closed interval of real numbers between 0 and 1) and define Sb : X×X×X →
R+ ∪ {0} by

Sb(x, y, z) = max {|x− y|, |y − z|, |z − x|} .

Then Sb is a rectangular Sb-metric on X with coeffi cient s ≥ 2.
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Proof. Here

(i) Sb(x, y, z) = 0 if and only if x = y = z.

(ii) Sb(x, x, y) = max {|x− x|, |x− y|, |y − x|} = |x− y| = Sb(y, y, x).

(iii) Let a ∈ X\{x, y, z}. Then

Sb(x, y, z) = max {|x− y|, |y − z|, |z − x|}
= max {|(x− a) + (a− y)|, |(y − a) + (a− z)|, |(z − a) + (a− x)|}
≤ max {|x− a|+ |a− y|, |y − a|+ |a− z|, |z − a|+ |a− x|}
≤ max {|x− a|, |y − a|, |z − a|}+max {|a− y|, |a− z|, |a− x|}
= 2max {|x− a|, |y − a|, |z − a|} .

Now, three cases arise here:

Case 1: If max {|x− a|, |y − a|, |z − a|} = |x− a|, then

Sb(x, y, z) ≤ 2|x− a| ≤ 2 [|x− a|+ |y − a|+ |z − a|] = 2
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
.

Case 2: If max {|x− a|, |y − a|, |z − a|} = |y − a|, then

Sb(x, y, z) ≤ 2|y − a| ≤ 2 [|x− a|+ |y − a|+ |z − a|] = 2
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
.

Case 3: If max {|x− a|, |y − a|, |z − a|} = |z − a|, then

Sb(x, y, z) ≤ 2|z − a| ≤ 2 [|x− a|+ |y − a|+ |z − a|] = 2
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
.

By Cases 1—3, we have
Sb(x, y, z) ≤ 2

[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
.

Thus, Sb satisfies all the conditions in the Definition 6. Hence, Sb is a rectangular Sb-metric on X with
coeffi cient s ≥ 2.

Example 6 Let X = C([0, T ]), the space of continuous functions on [0, T ], and define Sb : X ×X ×X →
R+ ∪ {0} by

Sb(x, y, z) = sup
t∈[0,T ]

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|) .

Then Sb is a rectangular Sb-metric on X with coeffi cient s ≥ 1.

Proof. Here

(i) Sb(x, y, z) = 0 if and only if x = y = z.

(ii)

Sb(x, x, y) = sup
t∈[0,T ]

{|x(t)− x(t)|+ |x(t)− y(t)|+ |y(t)− x(t)|}

= 2 sup
t∈[0,T ]

|x(t)− y(t)| = Sb(y, y, x).
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(iii) Let a ∈ X\{x, y, z}. Then

Sb(x, y, z) = sup
t∈[0,T ]

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|)

= sup
t∈[0,T ]

(
|(x(t)− a(t)) + (a(t)− y(t))|+ |(y(t)− a(t)) + (a(t)− z(t))|

+|(z(t)− a(t)) + (a(t)− x(t))|
)

≤ 2 sup
t∈[0,T ]

(|x(t)− a(t)|) + 2 sup
t∈[0,T ]

(|y(t)− a(t)|) + 2 sup
t∈[0,T ]

(|z(t)− a(t)|)

= Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

≤ s
[
Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)

]
(∵ s ≥ 1).

Thus, Sb satisfies all the conditions in the Definition 6.

Hence, Sb is a rectangular Sb-metric on X with coeffi cient s ≥ 1.

Definition 7 Let (X,Sb) be a rectangular Sb-metric space and {xn} be a sequence in X. Then

(i) A sequence {xn} is called convergent if and only if there exists z ∈ X such that Sb (xn, xn, z) → 0 as
n→∞. In this case, we write limn→∞ xn = z.

(ii) A sequence {xn} is called a Cauchy sequence if and only if Sb (xn, xm, xl)→ 0 as n,m, l→∞.

(iii) (X,Sb) is said to be a complete rectangular Sb-metric space if every Cauchy sequence {xn} converges
to a point x ∈ X.

2 Main Results

Theorem 1 Let X be a complete rectangular Sb-metric space and T : X → X be a self map. If there exists
a real number k satisfying 0 ≤ k < 1

2s , where s ≥ 1 is a real number, such that for every x, y, z ∈ X,

Sb(Tx, Ty, Tz) ≤ kSb(x, y, z). (10)

Then T has a unique fixed point in X.

Proof. From inequality (10), we have

Sb(Tx, Ty, Ty) ≤ kSb(x, y, y). (11)

Suppose that T satisfies condition (11) and for an arbitrary point x0 ∈ X, define a sequence {xn} by
xn = Tnx0. Then

Sb(xn, xn, xn+1) = Sb(Txn−1, Txn−1, Txn) ≤ kSb(xn−1, xn−1, xn).

Setting Sn = Sb(xn, xn, xn+1), we have, Sn ≤ kSn−1 and hence, we obtain Sn ≤ knS0 for all n. Suppose
that there exists n ∈ N such that x0 = xn. Then

Sb(x0, x0, Tx0) = Sb(xn, xn, Txn) = Sb(xn, xn, xn+1),

S0 = Sn ≤ knS0,

which is a contradiction. Since k < 1
2s , s ≥ 1 implies that k < 1. Hence, for all n ∈ N, we have x0 6= xn.

Using the same argument, we have xn 6= xm for all n,m ∈ N with n 6= m. Therefore, the terms of {xn} are
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distinct. Using condition (iii) from Definition 6, we have for all m,n ∈ N with m > n,

Sb(xn, xm, xm) ≤ s
[
Sb(xn, xn, xn+1) + Sb(xm, xm, xn+1) + Sb(xm, xm, xn+1)

]
= s

[
Sb(xn, xn, xn+1) + 2Sb(xm, xm, xn+1)

]
≤ s

[
Sn + 2

(
s
(
Sb(xm, xm, xn+2) + Sb(xm, xm, xn+2)

+Sb(xn+1, xn+1, xn+2)
))]

= s

[
Sn + 2s · Sn+1 + 22 · sSb(xm, xm, xn+2)

]
≤ s

[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·+ (2s)m−n−1Sm−1
]

≤ s

[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·
]

≤ s

[
knS0 + (2S)k

n+1S0 + (2s)
2kn+2S0 + · · ·

]
(∵ Sn ≤ knS0,∀ n ∈ N)

= skn
[
1 + (2sk) + (2sk)2 + · · ·

]
S0

= skn
(

1

1− 2sk

)
S0 (∵ 0 ≤ k <

1

2s
implies that 2sk < 1).

Taking the limit as n,m→∞, we get

lim
n,m→∞

Sb(xn, xm, xm) = 0

(
∵ k < 1 implies that lim

n→∞
kn = 0

)
.

Therefore, for n,m, l ∈ N with n > m > l, we have

Sb(xn, xm, xl) ≤ s
[
Sb(xn, xn, xn−1) + Sb(xm, xm, xn−1) + Sb(xl, xl, xn−1)

]
.

Taking the limit as n,m, l→∞, we get

lim
n,m,l→∞

Sb(xn, xm, xl) = 0.

This shows that {xn} is an Sb-Cauchy sequence in X. Since X is a complete rectangular Sb-metric space,
there exists u ∈ X such that {xn} converges to u. Now, we will show that u is a fixed point of T, i.e. Tu = u.
Consider

Sb(xn, Tu, Tu) ≤ kSb(xn−1, u, u).

Taking the limit as n→∞, we get

Sb(u, Tu, Tu) ≤ kSb(u, u, u) =⇒ Sb(u, Tu, Tu) ≤ 0.

Since Sb(u, Tu, Tu) ≥ 0, Sb(u, Tu, Tu) = 0 which implies Tu = u. Thus, u is a fixed point of T . Now, to show
uniqueness, suppose there exists v ∈ X such that v 6= u and Tv = v. Then, Sb(Tu, Tv, Tv) ≤ kSb(u, v, v)
gives that Sb(u, v, v) ≤ kSb(u, v, v) which is a contradiction unless Sb(u, v, v) = 0, since k < 1. Therefore,
we have u = v. This completes the uniqueness.
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Theorem 2 Let X be a complete rectangular Sb-metric space and T : X → X be a mapping for which there
exists a real number b satisfying 0 ≤ b < 1

4s+1 , where s ≥ 1 is a real number, such that for all x, y, z ∈ X,

Sb(Tx, Ty, Tz) ≤ b
[
Sb(x, Tx, Tx) + Sb(y, Ty, Ty) + Sb(z, Tz, Tz)

]
. (12)

Then T has a unique fixed point in X.

Proof. From inequality (12), we have

Sb(Tx, Ty, Ty) ≤ b
[
Sb(x, Tx, Tx) + Sb(y, Ty, Ty) + Sb(z, Tz, Tz)

]
. (13)

Suppose T satisfies (13). Let x0 ∈ X be an arbitrary point in X. We define a sequence {xn} by xn = Tn(x0).
Consider

Sb(xn, xn, xn+1) ≤ b
[
Sb(xn−1, xn−1, xn) + Sb(xn−1, xn−1, xn) + Sb(xn, xn, xn+1)

]
.

It gives that

Sb(xn, xn, xn+1) ≤
2b

1− bSb(xn−1, xn−1, xn).

Put p = 2b
1−b . Since b <

1
4s+1 , we see that p <

1
2 . Then, we have

Sb(xn, xn, xn+1) ≤ pSb(xn−1, xn−1, xn).

Continuing this, we obtain

Sb(xn, xn, xn+1) ≤ pnSb(x0, x0, x1).

Let Sn = Sb(xn, xn, xn+1). Then the above inequality implies

Sn ≤ pnS0. (14)

Suppose there exists n ∈ N such that x0 = xn. Then

Sb(x0, x0, Tx0) = Sb(xn, xn, Txn),

Sb(x0, x0, Tx0) = Sb(xn, xn, xn+1),

S0 = Sn.

So, we see that

S0 ≤ pnS0,

which is a contradiction since p < 1
2 . Hence, for all n ∈ N, we have x0 6= xn. Repeating the same argument,

for all n,m ∈ N with n 6= m, we have xn 6= xm. Thus, the terms of {xn} are distinct. By repeated use of
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(iii) in the Definition 6 for all distinct xn+1, xn+2, · · · , xm−1, with m > n, we have

Sb(xn, xm, xm) ≤ s
[
Sb(xn, xn, xn+1) + Sb(xm, xm, xn+1) + Sb(xm, xm, xn+1)

]
= s

[
Sb(xn, xn, xn+1) + 2Sb(xm, xm, xn+1)

]
≤ s
[
Sn + 2

(
s
(
Sb(xm, xm, xn+2) + Sb(xm, xm, xn+2) + Sb(xn+1, xn+1, xn+2)

))]
= s

[
Sn + 2s · Sn+1 + 22 · sSb(xm, xm, xn+2)

]
≤ s
[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·+ (2s)m−n−1Sm−1
]

≤ s
[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·
]

≤ s
[
pnS0 + (2S)p

n+1S0 + (2s)
2pn+2S0 + · · ·

] (
Since Sn ≤ pnS0,∀n ∈ N

)
= spn

[
1 + (2sp) + (2sp2) + · · ·

]
S0

= spn(1− 2sp)−1S0.
(
Since b <

1

4s+ 1
implies that 2sp < 1

)
.

Taking the limit as n,m→∞, we get

lim
n,m→∞

Sb(xn, xm, xm) = 0. (15)

For n,m, l ∈ N, with n > m > l, we have

Sb(xn, xm, xl) ≤ s
[
Sb(xn, xn, xn−1) + Sb(xm, xm, xn−1 + Sb(xl, xl, xn−1)

]
.

Taking the limit as n,m, l→∞ and using equation (15), we get

lim
n,m,l→∞

Sb(xn, xm, xl) = 0.

Therefore, {xn} is an Sb-Cauchy sequence in X. Since (X,Sb) is complete, there exists u ∈ X such that
{xn} is Sb-convergent to u. Now, we will show that u is a fixed point of T , i.e. Tu = u. Consider

Sb(xn, Tu, Tu) ≤
[
Sb(xn−1, xn, xn) + Sb(u, Tu, Tu) + Sb(u, Tu, Tu)

]
=

[
Sb(xn−1, xn, xn) + 2Sb(u, Tu, Tu)

]
.

Taking the limit as n→∞ and since T is Sb-continuous in its variables, we get

Sb(u, Tu, Tu) ≤ b
[
Sb(u, u, u) + 2Sb(u, Tu, Tu)

]
.

So Sb(u, Tu, Tu) ≤ 2bSb(u, Tu, Tu). It implies that

Sb(u, Tu, Tu) ≤ 0.
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Since Sb(u, Tu, Tu) ≥ 0, Sb(u, Tu, Tu) = 0 which implies that Tu = u. Therefore, u is a fixed point of T .
Now, to show uniqueness, suppose there exists v ∈ X such that v 6= u and Tv = v. Then

Sb(Tu, Tv, Tv) ≤ b
[
Sb(u, Tu, Tu) + Sb(v, Tv, Tv) + Sb(v, Tv, Tv)

]
.

Since Tu = u and Tv = v, we obtain

Sb(u, v, v) ≤ b
[
Sb(u, u, u) + Sb(v, v, v) + Sb(v, v, v)

]
.

It implies that
Sb(u, v, v) ≤ 0,

which is a contradiction. Hence, we have u = v. This proves the uniqueness.

Theorem 3 Let (X,Sb) be a complete rectangular Sb-metric space and T : X → X be a mapping for which
there exist real numbers a, b, c satisfying 0 ≤ a < 1

2s , 0 ≤ b < 1
2s and 0 ≤ c < 1

2s , where s ≥ 1 is a real
number with

δ = max

{
a,

b

1− b ,
c

1− c

}
and φ(t) =

{
0, if t = 0,
t
3 , if t 6= 0,

such that for each x, y, z ∈ X,

Sb(Tx, Ty, Tz) ≤ φ
(
δSb(x, y, z) + 2δSb(x, x, Tx)

)
. (16)

Then T has a unique fixed point in X.

Proof. From inequality (16), we have

Sb(Tx, Ty, Ty) ≤ φ
(
δSb(x, y, y) + 2δSb(x, x, Tx)

)
. (17)

Suppose that T satisfies (17) and for an arbitrary point x0 ∈ X, define a sequence {xn} by xn = Tnx0. Then

Sb(xn, xn, xn+1) = Sb(Txn−1, Txn−1, Txn)

≤ φ
(
δSb(xn−1, xn−1, xn) + 2δSb(xn−1, xn−1, xn)

)
= φ

(
3δSb(xn−1, xn−1, xn)

)
= δSb(xn−1, xn−1, xn).

Therefore
Sb(xn, xn, xn+1) ≤ δSb(xn−1, xn−1, xn).

Let Sn = Sb(xn, xn, xn+1). We get Sn ≤ δSn−1 and deduce that

Sn ≤ δnS0, ∀n ∈ N.

Suppose that there exists n ∈ N such that x0 = xn. Then

Sb(x0, x0, Tx0) = Sb(xn, xn, Txn)

and
Sb(x0, x0, x1) = Sb(xn, xn, xn+1).

So S0 = Sn. It implies that
S0 ≤ δnS0,
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which is a contradiction since δ < 1
2 . Hence, x0 6= xn for n,m ∈ N. Using the same argument for all

n,m ∈ N ∪ {0} with n 6= m and xn 6= xm, the terms of {xn} are distinct. By repeated use of (iii) in the
Definition 6 for all distinct xn+1, xn+2, · · · , xm−1, with m > n, we have

Sb(xn, xm, xm) ≤ s
[
Sb(xn, xn, xn+1) + Sb(xm, xm, xn+1) + Sb(xm, xm, xn+1)

]
= s

[
Sb(xn, xn, xn+1) + 2Sb(xm, xm, xn+1)

]
≤ s
[
Sn + 2

(
s
(
Sb(xm, xm, xn+2) + Sb(xm, xm, xn+2) + Sb(xn+1, xn+1, xn+2)

))]
= s

[
Sn + 2s · Sn+1 + 22 · sSb(xm, xm, xn+2)

]
= s

[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·+ (2s)m−1Sm−1
]

≤ s
[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·
]

≤ s
[
δnS0 + (2s)δ

n+1S0 + (2s)
2δn+2S0 + · · ·

](
Since Sn ≤ δnS0,∀n ∈ N ∪ {0}

)
= sδn

[
1 + (2sδ) + (2sδ)2 + · · ·

]
S0

= sδn(1− 2sδ)−1S0.

Therefore
Sb(xn, xm, xm) ≤ sδn(1− 2sδ)−1S0.

Taking the limit as n,m→∞, we get

lim
n,m→∞

Sb(xn, xm, xm) = 0. (18)

For n,m, l ∈ N ∪ {0} with n > m > l, we have

Sb(xn, xm, xl) ≤ s
[
Sb(xn, xn, xn−1) + Sb(xm, xm, xn−1) + Sb(xl, xl, xn−1)

]
.

Taking the limit as n,m, l→∞ and using equation (18), we get

lim
n,m,l→∞

Sb(xn, xm, xl) = 0.

Therefore, {xn} is an Sb-Cauchy sequence in X. Since (X,Sb) is complete, there exists u ∈ X such that {xn}
is Sb convergent to u. Now, we show that u is a fixed point of T . Suppose, on the contrary, that Tu 6= u.
Then

Sb(xn, Tu, Tu) ≤ φ
(
δSb(xn−1, u, u) + 2δSb(xn−1, xn−1, xn)

)
.

Taking the limit as n→∞ and since T is Sb-continuous in its variables, we get

Sb(u, Tu, Tu) ≤ φ
(
δSb(u, u, u) + 2δSb(u, u, u)

)
= φ(0) = 0.

Then Sb(u, Tu, Tu) ≤ 0. Since Sb(u, Tu, Tu) ≥ 0, we obtain that Sb(u, Tu, Tu) = 0, i.e. Tu = u. Thus, u is
a fixed point of T . Now, to show uniqueness, suppose there exists v ∈ X such that v 6= u and Tv = v. Then

Sb(Tu, Tv, Tv) ≤ φ
(
δSb(u, v, v) + 2δSb(u, u, Tu)

)
.

Using Tu = u and Tv = v, we get Sb(u, v, v) ≤ 0. Thus Sb(u, v, v) = 0 since Sb(u, v, v) ≥ 0. Hence, we have
u = v. This proves the uniqueness.
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Theorem 4 Let (X,Sb) be a complete rectangular Sb-metric space and T : X → X be a mapping for which
there exist real numbers a, b, c satisfying 0 ≤ a < 1

2s , 0 ≤ b < 1
2s and 0 ≤ c < 1

2s , where s ≥ 1 is a real
number with

δ = max

{
a,

b

1− b ,
c

1− c

}

such that for each x, y, z ∈ X,

Sb(Tx, Ty, Tz) ≤ φ
(
δSb(x, y, z)

)
+ ψ

(
2δSb(x, x, Tx)

)
, (19)

where the functions φ, ψ : R+ → R+ with φ(t) = t
2 and ψ(t) =

t
4 , monotone increasing functions. Then T

has a unique fixed point.

Proof. From (19), we have

Sb(Tx, Ty, Ty) ≤ φ
(
δSb(x, y, y)

)
+ ψ

(
2δSb(x, x, Tx)

)
. (20)

Suppose T satisfies condition (20) and for any arbitrary point x0 ∈ X, define a sequence {xn} by xn = Tnx0.
Then

Sb(xn, xn, xn+1) = Sb(Txn−1, Txn−1, Txn)

≤ φ
(
δSb(xn−1, xn−1, xn)

)
+ ψ

(
2δSb(xn−1, xn−1, xn)

)
.

Thus

Sb(xn, xn, xn+1) ≤ δSb(xn−1, xn−1, xn).

Let Sn = Sb(xn, xn, xn+1). We get

Sn ≤ δSn−1.

Continuing this, we obtain

Sn ≤ δnS0, ∀n ∈ N.

Suppose that there exists n ∈ N such that x0 = xn. Then

Sb(x0, x0, Tx0) = Sb(xn, xn, Txn) and Sb(x0, x0, x1) = Sb(xn, xn, xn+1).

So S0 = Sn. It implies that

S0 ≤ δnS0,

which is a contradiction since δ < 1
2 . Hence, x0 6= xn for n,m ∈ N. Using the same argument for all

n,m ∈ N ∪ {0} with n 6= m and xn 6= xm, the terms of {xn} are distinct. By repeated use of (iii) in the
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Definition 6 for all distinct xn+1, xn+2, · · · , xm−1 with m > n, we have

Sb(xn, xm, xm) ≤ s
[
Sb(xn, xn, xn+1) + Sb(xm, xm, xn+1) + Sb(xm, xm, xn+1)

]
= s

[
Sb(xn, xn, xn+1) + 2Sb(xm, xm, xn+1)

]
≤ s
[
Sn + 2

(
s
(
Sb(xm, xm, xn+2) + Sb(xm, xm, xn+2) + Sb(xn+1, xn+1, xn+2)

))]
= s

[
Sn + 2s · Sn+1 + 22 · sSb(xm, xm, xn+2)

]
≤ s
[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·+ (2s)m−n−1Sm−1
]

≤ s
[
Sn + (2s)Sn+1 + (2s)

2Sn+2 + · · ·
]

≤ s
[
δnS0 + (2s)δ

n+1S0 + (2s)
2δn+2S0 + · · ·

]
· · · (∵ Sn ≤ δnS0,∀ n ∈ N ∪ {0})

= sδn
[
1 + (2sδ) + (2sδ)2 + · · ·

]
S0

= sδn(1− 2sδ)−1S0.

That is Sb(xn, xm, xm) ≤ sδn(1− 2sδ)−1S0. Taking the limit as n,m→∞, we get

lim
n,m→∞

Sb(xn, xm, xm) = 0. (21)

For n,m, l ∈ N, with n > m > l, we have

Sb(xn, xm, xl) ≤ s
[
Sb(xn, xn, xn−1) + Sb(xm, xm, xn−1) + Sb(xl, xl, xn−1)

]
.

Taking the limit as n,m, l→∞ and using equation (21), we get

lim
n,m,l→∞

Sb(xn, xm, xl) = 0.

Therefore, {xn} is an Sb-Cauchy sequence in X. Since (X,Sb) is complete, there exists u ∈ X such that
{xn} is Sb-convergent to u. Now, we will show that u is a fixed point of T . Consider

Sb(xn, Tu, Tu) ≤ φ
(
δSb(xn−1, u, u)

)
+ ψ

(
2δSb(xn−1, xn−1, xn)

)
.

Taking the limit as n→∞ and since T is Sb-continuous in its variables, we get

Sb(u, Tu, Tu) ≤ φ
(
δSb(u, u, u)

)
+ ψ

(
2δSb(u, u, u)

)
= φ(0) + ψ(0) = 0.

Then Sb(u, Tu, Tu) ≤ 0. Since Sb(u, Tu, Tu) ≥ 0, we see that Sb(u, Tu, Tu) = 0. Hence, we have Tu = u.
Thus, u is a fixed point of T . Now, to show uniqueness, suppose there exists v ∈ X such that v 6= u and
Tv = v. Then

Sb(Tu, Tv, Tv) ≤ φ
(
δSb(u, v, v)

)
+ ψ

(
2δSb(u, u, Tu)

)
.

Using Tu = u and Tv = v, we get Sb(u, v, v) ≤ 0 which implies that Sb(u, v, v) = 0 as Sb(u, v, v) ≥ 0. Hence,
we have u = v. This proves the uniqueness.
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3 Some Examples for the Main Results

Example 7 Let X = R and define Sb : X ×X ×X → R+ ∪ {0} as follows

Sb(x, y, z) = |x− y|+ |y − z|+ |z − x|.

Then (X,Sb) is a complete rectangular Sb-metric space. Define a map T : X → X by Tx = x
3 . Then

Sb(Tx, Ty, Tz) = Sb

(x
3
,
y

3
,
z

3

)
=
∣∣∣x
3
− y

3

∣∣∣+ ∣∣∣y
3
− z

3

∣∣∣+ ∣∣∣z
3
− x

3

∣∣∣ = 1

3
(|x− y|+ |y − z|+ |z − x|) .

Therefore, Sb(Tx, Ty, Tz) = 1
3Sb(x, y, z). Let k =

1
3 . Since 0 ≤ k <

1
2s (s ≥ 1), all the conditions of Theorem

1 are satisfied. Hence, by Theorem 1, T has a unique fixed point in X. A fixed point x∗ satisfies Tx∗ = x∗.
Solving this, we get x∗ = 0. Thus, the function Tx = x

3 in the complete rectangular Sb-metric space (X,Sb)
has a unique fixed point x = 0.

Example 8 Let X = [0, 1] and define Sb : X ×X ×X → R+ ∪ {0} as follows:

Sb(x, y, z) = max {|x− y|, |y − z|, |z − x|} .

Then (X,Sb) is a complete rectangular-Sb metric space. Define a map T : X → X by Tx = x
5 . Then

Sb(Tx, Ty, Tz) = Sb

(x
5
,
y

5
,
z

5

)
= max

{∣∣∣x
5
− y

5

∣∣∣ , ∣∣∣y
5
− z

5

∣∣∣ , ∣∣∣z
5
− x

5

∣∣∣} = 1

5
max {(|x− y|, |y − z|, |z − x|)} .

Therefore,

Sb(Tx, Ty, Tz) =
1

5
Sb(x, y, z).

Let k = 1
5 . Since 0 ≤ k < 1

2s (s ≥ 1), all the conditions of Theorem 1 are satisfied. Hence, by Theorem 1, T
has a unique fixed point in X. A fixed point x∗ satisfies Tx∗ = x∗. Solving this, we get x∗ = 0. Thus, the
function Tx = x

5 in the complete rectangular Sb-metric space (X,Sb) has a unique fixed point x = 0.

4 Application to Differential Equations

Consider the differential equation
x′(t) = −λx(t) + g(t),

with initial condition x(0) = x0, where λ is a positive constant and g is a continuous function. The equivalent
integral form is

x(t) = x0 +

∫ t

0

(−λx(s) + g(s)) ds.

Define the operator T by

(Tx)(t) = x0 +

∫ t

0

(−λx(s) + g(s)) ds.

Let X = C([0, T ]), the space of continuous functions on [0, T ], and define Sb : X ×X ×X → R+ ∪ {0} by

Sb(x, y, z) = sup
t∈[0,T ]

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|) .

Then Sb is a rectangular Sb-metric on X. For x, y, z ∈ X,

|(Tx)(t)− (Ty)(t)| ≤
∫ t

0

|−λx(s) + λy(s)| ds ≤ λ
∫ t

0

|x(s)− y(s)|ds,
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and similarly,

|(Ty)(t)− (Tz)(t)| ≤ λ
∫ t

0

|y(s)− z(s)|ds

and

|(Tz)(t)− (Tx)(t)| ≤ λ
∫ t

0

|z(s)− x(s)|ds.

Thus,

Sb(Tx, Ty, Tz) = sup
t∈[0,T ]

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|)

≤ sup
t∈[0,T ]

(
λ

∫ t

0

|x(s)− y(s)|ds+ λ
∫ t

0

|y(s)− z(s)|ds+ λ
∫ t

0

|z(s)− x(s)|ds
)

≤ λ
∫ T

0

(
sup
t∈[0,T ]

|x(t)− y(t)|+ sup
t∈[0,T ]

|y(t)− z(t)|+ sup
t∈[0,T ]

|z(t)− x(t)|
)
ds.

Since
sup
t∈[0,T ]

|x(t)− y(t)|+ sup
t∈[0,T ]

|y(t)− z(t)|+ sup
t∈[0,T ]

|z(t)− x(t)| = Sb(x, y, z),

we have
Sb(Tx, Ty, Tz) ≤ λTSb(x, y, z).

If λT < 1
2s , then by Theorem 1, T has a unique fixed point in X. Consequently, the differential equation

x′(t) = −λx(t) + g(t)

with initial condition x(0) = x0, has a unique solution in the space of continuous functions.

5 Application to Integral Equations

5.1 Application to Fredholm Integral Equations

Consider the Fredholm integral equation

x(t) = λ

∫ b

a

K(t, s)f(s, x(s)) ds,

where λ is a constant, K(t, s) is a given kernel, and f is a continuous function. Define the operator T on a
suitable function space X by

(Tx)(t) = λ

∫ b

a

K(t, s)f(s, x(s)) ds.

Let X = C([a, b]), the space of continuous functions on [a, b], and define Sb : X ×X ×X → R+ ∪ {0} by

Sb(x, y, z) = |x− y|+ |y − z|+ |z − x|.

Then Sb is a rectangular Sb-metric on X. Assume that K(t, s) and f(s, x) are such that for some k ∈
[
0, 12s

)
(with s ≥ 1),

|K(t, s)| ≤M and |f(s, x)− f(s, y)| ≤ L|x− y|

for some constants M and L. Then, for x, y, z ∈ X,

|(Tx)(t)− (Ty)(t)| ≤ λML

∫ b

a

|x(s)− y(s)|ds,
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and similarly,

|(Ty)(t)− (Tz)(t)| ≤ λML

∫ b

a

|y(s)− z(s)|ds

and

|(Tz)(t)− (Tx)(t)| ≤ λML

∫ b

a

|z(s)− x(s)|ds.

Thus,

Sb(Tx, Ty, Tz) = |Tx− Ty|+ |Ty − Tz|+ Tz − Tx|

≤ |λ|ML

(∫ b

a

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|) ds
)
.

Since
|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)| = Sb(x, y, z),

we have

Sb(Tx, Ty, Tz) ≤ |λ|ML

∫ b

a

Sb(x, y, z)ds = |λ|ML(b− a)Sb(x, y, z).

If |λ|ML(b− a) < 1
2s , then by the Theorem 1, T has a unique fixed point in X. Consequently, the integral

equation

x(t) = λ

∫ b

a

K(t, s)f(s, x(s))ds

has a unique solution in the space of continuous functions.

5.2 Application to Volterra Integral Equations

Consider the Volterra integral equation of the second kind

x(t) = g(t) + λ

∫ t

0

K(t, s)f(s, x(s))ds,

where λ is a constant, K(t, s) is a given kernel, g(t) is a known function, and f is a continuous function.
Define the operator T on a suitable function space X by

(Tx)(t) = g(t) + λ

∫ t

0

K(t, s)f(s, x(s))ds.

Let X = C([0, T ]), the space of continuous functions on [0, T ], and define Sb : X ×X ×X → R+ ∪ {0} by

Sb(x, y, z) = sup
t∈[0,T ]

(|x(t)− y(t)|+ |y(t)− z(t)|+ |z(t)− x(t)|) .

Assume that K(t, s) and f(s, x) are such that for some k ∈ [0, 12s ) (with s ≥ 1),

|K(t, s)| ≤M and |f(s, x)− f(s, y)| ≤ L|x− y|,

for some constants M and L. Then, for x, y, z ∈ X,

|(Tx)(t)− (Ty)(t)| =
∣∣∣∣λ ∫ t

0

K(t, s) (f(s, x(s))− f(s, y(s))) ds
∣∣∣∣

≤ λ
∫ t

0

|K(t, s)||f(s, x(s))− f(s, y(s))|ds ≤ λML

∫ t

0

|x(s)− y(s)|ds.
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Since supt∈[0,T ] |x(t)− y(t)| ≤ Sb(x, y, z),

|(Tx)(t)− (Ty)(t)| ≤ λMLTSb(x, y, z).

Similarly,
|(Ty)(t)− (Tz)(t)| ≤ λMLTSb(x, y, z)

and
|(Tz)(t)− (Tx)(t)| ≤ λMLTSb(x, y, z).

Thus,

Sb(Tx, Ty, Tz) = sup
t∈[0,T ]

(|(Tx)(t)− (Ty)(t)|+ |(Ty)(t)− (Tz)(t)|+ |(Tz)(t)− (Tx)(t)|) .

It implies that
Sb(Tx, Ty, Tz) ≤ 3λMLTSb(x, y, z).

If 3λMLT < 1
2s , then by the Theorem 1, T has a unique fixed point in X. Consequently, the Volterra integral

equation

x(t) = g(t) + λ

∫ t

0

K(t, s)f(s, x(s))ds

has a unique solution in the space of continuous functions.

6 Conclusions and Future Works

In this study, we established a fixed-point theorems for self-maps satisfying Banach-type contractive con-
ditions in a complete rectangular Sb-metric space, which extends the traditional metric space framework.
Additionally, we demonstrated the applicability of our results to differential and integral equations.
For future research, a broader exploration of applications in various mathematical and real-world prob-

lems can be pursued. Moreover, there is potential for studying common fixed-point theorems under different
contractive conditions. Extending our results to multivalued mappings and further investigating their appli-
cations will provide new insights and directions for future study.
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