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Abstract

In this paper, we introduce the notion of a rectangular S,-metric space which extends the rectangular
metric space given by Branciari [3]. We establish some fixed point theorems in this new structure. We
provide some applications of our results in differential and integral equations.

1 Introduction

Fréchet [6] introduced the concept of metric spaces, laying the groundwork for a pivotal area of mathematical
research. Banach [2] further advanced this field by establishing the fixed point theorem, which is regarded
as one of the most significant results in analysis and the primary foundation of metric fixed point theory.
This theorem has been generalized in numerous directions, demonstrating its extensive applicability. Since
then, metric spaces have become integral to various branches of mathematics, including functional analysis,
nonlinear analysis, and topology. The structure of metric spaces has been extensively generalized by many
researchers.

The concept of the b-metric space was introduced by Czerwik [4], while Sedghi et al. [13] developed
the notion of the S-metric space. Various fixed point theorems for different contractive mappings have
been established within these spaces. Dhanraj et al. [5] proved fixed point theorems using an orthogonal
Geraghty-type contraction in Branciari b-metric spaces. Gnanaprakasam et al. [8] introduced orthogonal
a-almost Istratscu contractions and proved fixed point results in b-metric spaces. Gholidahneh et al. [7]
extended modular b-metric spaces and derived fixed point results for ar-Meir-Keeler contractions. Igbal
et al. [9] introduced a generalized multivalued («, L)-almost contraction in b-metric spaces and proved the
existence and uniqueness of a fixed point. Igbal et al. [10] introduced generalized weak contractions and
established fixed point results in b-metric spaces. Mani et al. [11] obtained fixed point results in bicomplex
valued b-metric spaces. Prakasam et al. [12] proved fixed point theorems for O-generalized contractions,
generalizing known results and demonstrating the existence of solutions to integral equations.

Building on this foundation, Souayah and Mlaiki [14] introduced a novel structure known as the Sp-metric
space, which is defined using b-metric and S-metric spaces. Motivated by these generalizations, this paper
introduces the concept of a rectangular Sp-metric space, which extends the idea of a rectangular metric space.
It also presents several fixed point theorems for various contractive mappings within a complete rectangular
Sp-metric space. Branciari [3] defined a rectangular metric space as follows.

Definition 1 ([3]) Let X be a non-empty set and d : X x X — [0,00) be a mapping satisfying the following
properties:

(i) d(z,y) =0 if and only if x = y;
(ii) d(z,y) = d(y, ) for all 2,y € X;

(i) d(z,y) < d(z,u) + d(u,v) + d(v,y) for z,y € X and distinct u,v € X\{z,y}.
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Then d is called a rectangular metric on X and (X, d) is called a rectangular metric space.

Crerwik [4] defined b-metric space as follows.

Definition 2 ([4]) Let X be a non-empty set and d : X x X — [0,00) be a mapping satisfying the following
properties:

(i) d(z,y) =0 if and only if x = y;
(i) d(z,y) = d(y,z) for all z,y € X;
(iii) there exists a real number s > 1 such that

d(z,y) < sld(z, z) +d(z,y)] forallxz,y,z € X.

Then d is called a b-metric on X and the ordered pair (X, d) is called a b-metric space with coefficient s.
Sedghi et al. [13] introduced the notion of an S-metric space which is defined as follows.

Definition 3 ([13]) Let X be a non-empty set and S : X x X x X — [0,00) be a mapping satisfying the
following properties;

(i) S(x,y,2) =0 if and only if v =y = 2;
(ii) S(z,y,z) < S(z,x,a) + S(y,y,a) + S(z,2,a), for all a,x,y,z € X (rectangle inequality).
Then (X, S) is called a S-metric space.
Adewale and Iluno [1] introduced the notion of rectangular S-metric space as follows.

Definition 4 ([1]) Let X be a non-empty set and S : X x X x X — [0,00) be a mapping satisfying the
following properties;

(i) S(xz,y,z) =0 if and only if x =y = z;
(ii) S(z,y,z) < S(z,z,a) + S(y,y,a) + S(z,2,a) for z,y,z € X and distinct a € X\{z,y,z}.
Then (X, S) is called a rectangular S-metric space.

Example 1 ([1]) Let X = NU{0} and define S: X x X x X = Rt U {0} by

S(x,y,z):{o’ ij,’:y:,z,

xyz, otherwise.

Then (X, S) is called a rectangular S-metric space.

Souayah et al. [14] combined the concept of a b-metric space and an S-metric space, and introduced a
new metric space, called an Sp-metric space, as follows.

Definition 5 ([14]) Let X be a non-empty set and s > 1 be a given real number. Then a mapping Sp :
X X X x X —[0,00) is said to be Sp-metric on X, if following properties are satisfied;

(i) Sp(x,y,2) =0 if and only if v =y = 2;
(”) E)(x,x,y) = E(y,y,m) forallz,y € X;

(iii) Sp(w,y,2) < s[ Sp(z, 2, a) + Sp(y,y, ) + Sy(2,2,a)] for all v,y,z,a € X.
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Then (X, Sp) is called a Sy-metric space.

Definition 6 Let X be a non-empty set and s > 1 be a given real number. A function Sy : X x X x X —
[0,00) is said to be a rectangular Sy-metric on X, if

(1) Sp(z,y,2) =0 if and only if c =y = 2;

(i6) Sy, ) = Su(y>9,2) for all 7,y € X;
(1it) Sp(z,y,2) <s [&(m,x, a) + Su(y,y,a) + Sp(z, 2, a)] for all z,y,z € X and distinct a € X\{z,y, z}.
A pair (X, Sy) is called a rectangular Sy-metric space.

Example 2 Let X be a non-empty set and card (X) > 5. Let P = X1, Xo be a partition of X such that
card (X1) > 4. Let s > 1. Define Sp : X x X x X — RT U{0} by

0, ifr=y=z
&(m,y,z) = 487 Zf (.’L‘,y,Z) € X%’
2, if (z,y,2) ¢ X3

Then Sy is a rectangular Sy-metric on X with coefficient s > 1.

Proof. The conditions (i) and (ii) in the Definition 6 are obviously satisfied. We now prove only the triangle
inequality,
Sp(,y,2) < s [Sy(x,2,a) + Sp(y,y, a) + Sp(2, 2,0)] , (1)

for all z,y,z € X and distinct a € X\{x,y, z}.
Case 1: Let (v,y,2) € X{. Then z,y, 2z € X;. This implies that
Sp(x,y,z) = 4s. (2)

Since a € X\{z,y, z}, two sub-cases arise:

Case (i) If @ € X1, then x,y, 2,a € X1, which implies that (z,z,a), (y,y,a) and (z,2,a) € X;. Hence, by
the definition of Sy, we have

Sp(z,2,a) = Sp(y,y,a) = Sp(z,2,a) = 4s. (3)
Using (2) and (3), the condition (1) is satisfied (4s < 1252, s > 1).
Case (ii) If a ¢ X1, then z,y,2 € X; and a ¢ X7, which implies that (x,z,a), (y,y,a) and (z,z,a) ¢ X3.
Hence, by the definition of Sy, we have
&(wwfaa) :&(y’yva) :&(zvzaa) =2 (4)
Using (2) and (4), the condition (1) is satisfied (4s < 6s, s > 1).

Case 2: Let (7,y,2) ¢ X3. Then at least one of z,y,2 ¢ X;. Without loss of generality, suppose that
xz ¢ Xy and y, 2z € X;. By the definition of S, we have

Sb(‘x?yvz) =2. (5)

Since a € X\{z,y, z}, two sub-cases arise:

Case (i) If a € Xy, then (z,2,a) ¢ X} but (y,y,a) and (z, z,a) € X}. By the definition of S,, we obtain
that
&(m,x,a) :27 i(yvyaa) :&(2’72,@) = 4s. (6)

Using (5) and (6), the condition (1) is satisfied (2 < 2s + 8s%, s > 1).
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Case (ii) If a ¢ X1, then (z,z,a), (y,y,a), (2, z,2) ¢ X}. By the definition of Sy, we have that
S4(2,,0) = Sy, @) = Sy(z, ) = 2 7
Using (5) and (7), the condition (1) is satisfied (2 < 6s, s > 1).
[

Example 3 Let X = NU{0}. Define S, : X x X x X — Rt U{0} by

Sb(waya Z) =

O, fo =Yy =5,
2t, YVt € N, otherwise.

Then Sy is a rectangular Sy-metric on X with coefficient s > 1.

Proof. The conditions (i) and (ii) in the Definition 6 are obviously satisfied. We now prove only the triangle
inequality (1). We have, for all x,y, 2z € X with at least one of x,y, z # 0,

Sp(x,y,2) = 2a. (8)

Let a € X\{z,y, z}. Then
Sp(@,2,a) = Sp(y,y,a) = Sp(2,2,a) = 2t. (9)

Using (8) and (9), the condition (1) is satisfied (2t < 6st, s > 1). ®
Example 4 Let X =R (the set of real numbers) and define S, : X x X x X — RT U{0} by

Sb(x,y,z) = \m—y|+|y—z|—|—|z—x|

Then Sy is a rectangular Sy-metric on X with coefficient s > 1.
Proof. Here

(i) Sp(z,y,2) =0if and only if x =y = 2.

(i) Sp(z,,y) = o —a|+ |z —y[+ |y — 2| = 2l —y| = Sp(y, y, ).
(iii) Let a € R\{z,y,z}. Then

Sp(@,y,2) =z —yl+ |y — 2| + |z — 2|
=l@-—a)+(a—y)|+ [y —a)+(a—2)+|(z—a)+ (a— )]
<@ =a)+(a-y)l+(y—a)l+(a—2)+]|(z—a)+|(a—=2)
=2|x —a|+ 2|y — a| + 2|z — 4|
= Sp(z,z,a) + Su(y, v, a) + Sp(z, 2, a).

Therefore
Sp(z,y,2) <s [&(m,x,a} + Su(y,y,a) —i—i(z,z,a)] , since s > 1.

Thus, S satisfies all the conditions in the Definition 6. Hence, S, is a rectangular Sp-metric on X with
coefficient s > 1. m

Example 5 Let X = [0, 1] (the closed interval of real numbers between 0 and 1) and define Sp : X x X x X —
RT U {0} by
Sp(z,y,z) =max{|z —yl|, |y — 2|, |z — z|} .

Then Sy is a rectangular Sy-metric on X with coefficient s > 2.
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Proof. Here
(i) Sp(z,y,2) =0if and only if x =y = 2.
(i) Sp(z,z,y) = max{[z —z|, |z —y[, |y — [} = |z —y| = Sp(y, ¥, 7).
(iii) Let a € X\{z,y,z}. Then

Sp(x,y, 2) = max {|z —y|, [y — 2|, |z — =[}

= max {[(z —a) + (e —y)|;[(y —a) + (e = 2)|,[(z — @) + (a — @)}
<max{|z —a|+]a—yl,ly —a| +]a—z[,|z —a| +|a - 2[}
< max{|z —al,|y —al,|z — a|} + max{la —yl, |a - 2|, |a — z[}

=2max {|z —al, |y —al,|z —al}.
Now, three cases arise here:
Case 1: If max{|z —al, |y — al,|z — a|} = |x — al, then

&(x,y,z) S 2|£L'— (I| S 2“1’— (I| + |y_a’| + |Z - (1,” =2 [&(Z&II},G) +&(yay,a) —l—i(z,z,a)] .

Case 2: If max{|z —al|,|y — al|,|z — a|} = |y — al, then

&(‘Tayvz) §2|y—(1| §2[|x—a|—|—|y—a|+\z—a|] :2@(w,x,a)—&-&(y,y,a)—l—i(z,z,a)] .

Case 3: If max{|z —a|, |y — al,|z — a|} = |z — a], then

&(m,y,z) S 2|Z 70" S 2“‘% 70" + |y7 a| + |Z 7&” =2 [&(x,x,a) +i(yayaa) +i(zvz7a)] .

By Cases 1-3, we have
Sp(@,y,2) < 2[Sp(z,2,a) + Sb(y,y, a) + Su(z, 2,0)] .

Thus, Sy satisfies all the conditions in the Definition 6. Hence, Sp is a rectangular Sp-metric on X with
coefficient s > 2. m

Example 6 Let X = C([0,T1), the space of continuous functions on [0,T], and define Sp : X x X x X —
RT U {0} by

Se(z,y,2) = sup (|lz(t) —y@)] + |y(t) — 2(¢)| + [2(t) — z(2)]) .
t€[0,T]

Then Sy is a rectangular Sy-metric on X with coefficient s > 1.
Proof. Here
(i) Su(z,y,2) =0if and only if x =y = 2.
(i)
Sp(x, x,y) = sup {la(t) —2z@)] + |2(@t) —y(@)] + [y(t) — z(t)[}

T te[0,T)

=2 sup |z(t) — y(t)| = Sp(y, y, v).
te[0,T]
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(iii) Let a € X\{z,y,z}. Then
Sp(x,y,2) = S (lz(8) =y + [y(t) — 2(O)] + [2(2) — 2(8)])

= sup (|(z(t) —a(t) + (a(t) —y()] + [(y(t) — a(t)) + (a(t) — 2(1))]

te[0,T)
®)l)

+[(z(t) = a(t)) + (a(t) — =
2 sup (|z(t) —a(®)]) +2 sup (ly(t) —a(®)]) +2 sup ([2(2) - a(?)])

t€[0,T] t€[0,T] t€[0,T]
= &(x,x,a)Jr@(y,y,a)+&(z,z,a)
< s [S(w,x,a) + Sp(y,y,a) + Sp(2,2,0)] (s> 1).

IN

Thus, Sy satisfies all the conditions in the Definition 6.
Hence, S; is a rectangular Sp-metric on X with coefficient s > 1. m
Definition 7 Let (X, Sy) be a rectangular Sy-metric space and {x,} be a sequence in X. Then

(i) A sequence {xy} is called convergent if and only if there exists z € X such that Sy (xy,xrn,2) — 0 as
n — oo. In this case, we write lim,, _, o T, = z.

(ii) A sequence {x,} is called a Cauchy sequence if and only if Sy (Tpn, Tm, 1) — 0 as n,m,l — oco.

(i) (X, Sy) is said to be a complete rectangular Sy-metric space if every Cauchy sequence {xy} converges
to a point x € X.

2 Main Results

Theorem 1 Let X be a complete rectangular Sy-metric space and T : X — X be a self map. If there exists
a real number k satisfying 0 < k < 2=, where s > 1 is a real number, such that for every z,y,z € X,

2s7
Sp(Tz, Ty, Tz) < kSy(z,y, 2). (10)

Then T has a unique fixed point in X.

Proof. From inequality (10), we have

Sy(Tx, Ty, Ty) < kSp(z,y,y)- (11)

Suppose that T satisfies condition (11) and for an arbitrary point zg € X, define a sequence {z,} by
T, = T"xg. Then

&(-Tnaxnvxn—i-l) - &(Txn—laTxn—laTxn) S k&(l‘n—lvxn—laxn)-

Setting S, = Su(Zn, Zn, Tnt1), we have, S, < kS,,_; and hence, we obtain S,, < k™S, for all n. Suppose
that there exists n € N such that xy = z,,. Then

i(l’o,xo,T.’Eo) = &(xn,xn,T:cn) = &(xTL?xn,xn-‘rl)?
SO = Sn < anO;

which is a contradiction. Since k < %, s > 1 implies that k£ < 1. Hence, for all n € N, we have zg # x,,.
Using the same argument, we have z,, # x,, for all n,m € N with n # m. Therefore, the terms of {z,} are
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distinct. Using condition (iii) from Definition 6, we have for all m,n € N with m > n,

Sb(xn7xm7$m) S S @(xn7xn7mn+l) +&(xm7wm7xn+1) +&(.’L’m7fl]m,$n+1)]

= 3 {Sb(xn,xn, Znt1) + 255 (@, xm,:cm_l)}

< s {Sn +2 <s (&(:z:m, T, Tnt2) + Sp(Tm, T, Trya)
+Sb(Tnt1, Tnt1, $n+2))>}
= s -Sn +25- 8,41 +2%- $Sb(Tmy T xn+2)}
< s _Sn +(28)Snt1 + (25)2Sp 40 + - + (Qs)mnlsml]
< s _Sn +(28)Snt1 + (25)2Sp 40 + - }
< s —k”So + (29)k" 1Sy + (25)%k" 128y + - - } (S, <k™Sp,V neN)

= sk" {1 + (2sk) + (25k)? + - - -}so

1 1
== n . < = . .
sk (1 —2sk>50 (-0<k< 5% implies that 2sk < 1)

Taking the limit as n, m — oo, we get

lim  Sy(zn, Tm, Tm) =0 ( k < 1 implies that lim k" = 0).

n,m—0o0 n—oo

Therefore, for n,m,l € N with n > m > [, we have

Sb(xna xmaxl) S S |:Sb($na xnw%'nfl) +&(xm7xm7$nfl) + i(xlu Z, xnl):| .

Taking the limit as n,m,l — 0o, we get

lm  Sy(xn, Tm,x;) = 0.
n,m,l—oo
This shows that {z,} is an Sp-Cauchy sequence in X. Since X is a complete rectangular S,-metric space,
there exists u € X such that {z,,} converges to u. Now, we will show that w is a fixed point of T i.e. Tu = u.
Consider
Sp(xp, Tu, Tu) < kSp(n—1,u,u).

Taking the limit as n — oo, we get
Sp(u, Tu, Tu) < kSp(u,u,u) = Sp(u,Tu,Tu) <0.

Since Sp(u, Tw, Tw) > 0, Sp(u, Tu, Tw) = 0 which implies 7w = w. Thus, u is a fixed point of T'. Now, to show
uniqueness, suppose there exists v € X such that v # u and Tv = v. Then, Sy(Tu, Tv,Tv) < kSp(u,v,v)
gives that Sy(u,v,v) < kSp(u,v,v) which is a contradiction unless Sy(u,v,v) = 0, since k < 1. Therefore,
we have u = v. This completes the uniqueness. m
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Theorem 2 Let X be a complete rectangular Sy-metric space and T : X — X be a mapping for which there
exists a real number b satisfying 0 < b < ==, where s > 1 is a real number, such that for all x,y,z € X,

)
Sp(Tx, Ty, Tz) < b|Sp(z, Tz, Tx)+ Sp(y, Ty, Ty) + Sp(2,T2,Tz)|. (12)
Then T has a unique fized point in X.
Proof. From inequality (12), we have
Sp(Tx, Ty, Ty) <b {Sb(a:, Tz, Tx) + Sp(y, Ty, Ty) + Sp(z, Tz, Tz)] (13)

Suppose T satisfies (13). Let 29 € X be an arbitrary point in X. We define a sequence {x,,} by x,, = T" ().
Consider

Sb(xn; Tn, mn-{-l) S b |:Sb(xn—13 Tn—1, 1771,) + &(xn—la Tn—1, 1771,) + &(xvu Tn, x71,+1)j| .

It gives that

2b
i(xmfﬂnaﬂﬁmrl) S 1_ b&(xnflaxnfhxn)'

Put p = f—_bb. Since b <

_1
4s+17

we see that p < % Then, we have
&(xna Tn, xn+l) S p&(xn—la Tn—1, xn)

Continuing this, we obtain
i(mmxmxwrl) < p"i(wo,xo, T1).
Let S, = Sy(n, Tn, Tn41). Then the above inequality implies
S, < p"Sy. (14)
Suppose there exists n € N such that o = x,,. Then

Sb(fEO,l’O,TﬁUO = Sb(mnvxnyTxn)7

) =5
i(l‘o,l‘o,Ti‘o) = Sb(xnvxnvxn+1)7
So =

3

So, we see that

SO < anOa

which is a contradiction since p < % Hence, for all n € N, we have zy # z,. Repeating the same argument,
for all n,m € N with n # m, we have x,, # z,,. Thus, the terms of {z,} are distinct. By repeated use of
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(iii) in the Definition 6 for all distinct @41, Tni2,:** , Tm—1, With m > n, we have

Sb(xn; xmw%'m) S S i(xn; xnaanrl) +i(xm7$maxn+l) + Sb(xmyxmaanrl):|

=5|S(Tn, Tn, Try1) + 2Sb(xm,xm,xn+1)]

S S Sn + Q(S(Sb(mmaxm,,xn—&-Q) +&(IM7xm; $n+2) +Sb(xn+17xn+17wn+2))>:|

=s|S, +2s- Sn—i—l + 22. si(xm, Ty x7z+2):|

< 5[Sn +(28)Sn41 + (25)2Sn 0 4+ + (23)7”_"_157,11}

< 5[ S+ (25)Sn11 + (25)2Sn4n + - }

< s|p"So + (29)p" 1Sy + (25)*p" 28, + - - } (Since S,, < p™Sp,Vn € N)

= sp" [1 + (2sp) + (2sp?) + - -}SO

1
= sp”™ (1 — 2sp)~"Sp. ( Since b <
sp™( sp)~So ( ince P

implies that 2sp < 1>.

Taking the limit as n,m — oo, we get

lm  Sp(zn, Tm,Tm) = 0. (15)

n,m—oo

For n,m,l € N, with n > m > [, we have
i(xna xmaxl) S S &(7;7“ mnaxn—l) "‘V‘&('x’rrux’maxn—l + &(Z‘l, xlamn—l) .

Taking the limit as n,m,l — oo and using equation (15), we get

lm  Sy(xn, Tm,x;) = 0.

n,m,l—oo

Therefore, {z,} is an Sp-Cauchy sequence in X. Since (X, 5,) is complete, there exists u € X such that
{z,} is Sp-convergent to u. Now, we will show that u is a fixed point of T', i.e. Tu = u. Consider

Sp(n, Tu, Tu) < {Sb(xn_l, T, Ty) + Sp(u, Tu, Tw) + Sp(u, Tu, Tu)]
= {Sb(xn_l, T, Tn) + 28 (u, Ty, Tu)} .
Taking the limit as n — oo and since 1" is Sp-continuous in its variables, we get

Sp(u, Tu, Tu) <b [Sb(u, u,u) + 25 (u, Ty, Tu)} .

So Sy(u, Tu, Tu) < 2bSy(u, Tu, Tw). It implies that

Sp(u, Tu, Tu) <0.
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Since Sy(u, Tu,Tu) > 0, Sp(u, Tu,Tu) = 0 which implies that Tu = u. Therefore, u is a fixed point of T'.
Now, to show uniqueness, suppose there exists v € X such that v # u and Tv = v. Then

Sp(Tu, Tv, Tv) <b [Sb(u, Tu,Tu) + Sp(v, Tv, Tv) + Sp(v, Tv, Tv)] .

Since Tu = u and T'v = v, we obtain

Sp(u,v,v) < b[Sb(u,u, u) + Sp(v,v,v) + Sp(v, v, v)] .
It implies that
&(U,U,’U) S 07

which is a contradiction. Hence, we have © = v. This proves the uniqueness. m

Theorem 3 Let (X, Sy) be a complete rectangular Sy-metric space and T : X — X be a mapping for which
there exist real numbers a, b, ¢ satisfying 0 < a < %, 0<b< % and 0 < ¢ < ==, where s > 1 is a real

25
number with
b 0, ift=0
§ = max {a, e C} and $(t) =4, Zf ’
1-b"1-¢ 5, ft#0,

such that for each x, y, z € X,

Sp(Tx, Ty, Tz) < ¢(6Ss(w,y, 2) + 265y (x,z, Tx)). (16)
Then T has a unique fized point in X.
Proof. From inequality (16), we have

Sp(Tz, Ty, Ty) < ¢(5&($,y,y) + 25@($,$,Tx)). (17)
Suppose that T satisfies (17) and for an arbitrary point 2y € X, define a sequence {x,,} by x,, = T"xg. Then

&(xnvwn,mn%»l) = i(TxnflvTxnflaTxn)
S ¢(5i($n71, Tn—1, wn) + 26&(‘%77,71; Tn—1, mn))

= d)(?)(‘)‘&(l'n,l, Tn—1, mn))
= 5@(1'71717 Tn—1, xn)

Therefore
&(.ﬁn, Tn, xn-&-l) S 6&(3;71—17 Tn—1, -Tn)

Let S, = Sp(Tn, Zn, Tny1). We get S, < 05,1 and deduce that
Sy <0"Sp, Vn e N.
Suppose that there exists n € N such that zo = x,,. Then
Sp(xo, o, Txo) = Sp(Tn, T, TTy)

and
&(Z‘Oammxl) = &('rnvxnvxn—ﬁ-l)-

So Sg = S,,. It implies that
So < 6"So,
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which is a contradiction since § < % Hence, xg # x, for n,m € N. Using the same argument for all
n,m € NU {0} with n # m and z,, # z,, the terms of {z,} are distinct. By repeated use of (iii) in the
Definition 6 for all distinct z,, 11, Tni2, "+, Tm—_1, With m > n, we have

Sp(Tns Tmy Tm) < 8| Sp(Tn, Tny Tng1) + So(Tm, Ty Tng1) +Sb(xm,xm,wn+1)}

=S &(zn; ‘rnaxn-i-l) + 2Sb(l‘m,$m,$n+1):|

IA
»

Sp+2 (3 (i(frnu Tm s xn—&-Z) + i(xnu T s xn+2) + &(xn—kh Tn+1, $7z+2))>:|

I
®

Sn +2s- SnJrl + 22 . S&(Z’m, T, mn+2):|

= 5|8y + (25)Sps1 + (25)2Spgn + - + (28)’”_1S’m1}

INA
»

Sp +(25)Sn1 + (28)2Sn+2 + .. }

< 5(0™Sp + (25)6" TSy + (25)26™ 28 + - - } (Since S,, < ™Sy, ¥n € NU{0})

= 50" |1+ (2s0) + (250)* + - -}So
= 56" (1 —256) " S.

Therefore
S (s Ty ) < 867 (1 — 256) " Sp.

Taking the limit as n, m — oo, we get

lim  Sy(zn, Tm,ZTm) = 0. (18)

n,m—oo ——

For n,m,l € NU{0} with n > m > [, we have
i(xnaxmvxl) <s i(mnaxnaxnfl) +&(xm71'm7xnfl) +i(xlaxlaxnfl) .

Taking the limit as n,m,l — oo and using equation (18), we get

lim  Sp(xn, zm,z1) = 0.

n,m,l—oo

Therefore, {z,} is an Sy-Cauchy sequence in X. Since (X, S,) is complete, there exists u € X such that {z,}
is Sp convergent to u. Now, we show that u is a fixed point of T". Suppose, on the contrary, that T'u # wu.
Then

Sp(xp, Tu, Tu) < qb(é@(xn,l,u, u) + 265y (-1, mn,l,xn)).

Taking the limit as n — oo and since 1" is Sp-continuous in its variables, we get
Sp(u, Tu, Tu) < ¢(0Sp(u, u,w) + 268p(u, u,u)) = ¢(0) = 0.

Then Sp(u, Tu, Tu) < 0. Since Sy(u, T'u, Tu) > 0, we obtain that Sy(u, Tu, Tu) = 0, i.e. Tu = u. Thus, u is
a fixed point of T'. Now, to show uniqueness, suppose there exists v € X such that v # u and Tv = v. Then

Sp(Tu, Tv, Tv) < ¢(5&(u, v,v) + 208 (u, u, Tu))

Using Tu = u and Tv = v, we get Sp(u, v,v) < 0. Thus Sp(u,v,v) = 0 since Sp(u,v,v) > 0. Hence, we have
u = v. This proves the uniqueness. m
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Theorem 4 Let (X,Sy) be a complete rectangular Sy-metric space and T : X — X be a mapping for which
there exist real numbers a, b, ¢ satisfying 0 < a < 2%, 0<b< 21—8 and 0 < ¢ < 2%, where s > 1 is a real

number with
b c
0= max{a, 17_1)7 l—c}

such that for each x,y,z € X,
Sy(T, Ty, Tz) < ¢(6Sy(x,y,2)) + (208 (x, z, Tx)), (19)

where the functions ¢, : RT — RY with ¢(t) = % and P(t) = i, monotone increasing functions. Then T
has a unique fized point.

Proof. From (19), we have
Sp(Tw, Ty, Ty) < ¢(3S(w,y,y)) +(208y(x, 2, Tw)). (20)

Suppose T satisfies condition (20) and for any arbitrary point xg € X, define a sequence {z,} by z, = T"x.
Then

b(Txn—h Txn—la Txn)

Sb(fl?n, T, xn-‘rl) S
Qb((s&(mn—ly Tn—1, xn)) + 7/}(25&(1%—17 Tn—1, mn)) .

<

Thus

&(J?n, Tn, mn-‘rl) S 6&(3;71—17 Tn—1, xn)

Let Sy, = Sp(Tn, Tn, Trny1). We get

Sn S 5Sn71~

Continuing this, we obtain

S, <6"Sy, Vn e N.
Suppose that there exists n € N such that zy = x,,. Then
Se(z0, 0, Txo) = Sp(Tn, Tn, Txn) and Sp(xo, o, 1) = Sp(Tn, Tn, Tni1)-

So Sp = S,,. It implies that

So < 6" So,

which is a contradiction since § < % Hence, o # z, for n,m € N. Using the same argument for all
n,m € NU {0} with n # m and z,, # x,,, the terms of {z,,} are distinct. By repeated use of (iii) in the
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Definition 6 for all distinct @41, Zpt2, - , Tm—1 With m > n, we have

Sb(mn; xmaxm) S S i(xny mnaanrl) +i($m7 xma:anrl) + Sb(xmyxmaanrl):|

=5|S(Tn, Tn, Trny1) + 25’17(acm,xm7mn+1)]

S S Sn + 2(S(Sb(xma Ty wn-&-?) + &(xma LTy xn+2) + &($n+17 Tn+1, wn+2))>:|

=[S, +2s- Sn+1 + 22 Si(xnu Tm s xn+2):|

< 5[Sn +(28)Sny1 + (25)2S 0 4+ + (28)m_”_15m1}

< 5[ S+ (25)Sn 11 + (25)2Sn42 + - }

< 5|68y + (25)0" 1Sy + (25)%6" 28, + - - } (08, <0™So, ¥V n e NU{0})

=56" |1+ (256) + (256)% + - }Sg
= 56" (1 —256) " S.
That is Sp(Tn, Tm, Tm) < 6" (1 — 258) 71 Sp. Taking the limit as n,m — oo, we get

lim Sb(xna LTy xm) =0. (21)

n,m-—oo ——

For n,m,l € N, with n > m > [, we have
&(xnaxmvxl) <s i(mnaxnaxnfl) +&(xm7$m7mnfl) +i(mlaxlaxnfl) .

Taking the limit as n,m,l — oo and using equation (21), we get

lm  Sy(xn, Tm,x;) = 0.

n,m,l—oo

Therefore, {z,} is an Sp-Cauchy sequence in X. Since (X,Sy) is complete, there exists u € X such that
{z,} is Sp-convergent to u. Now, we will show that u is a fixed point of T". Consider

Sp(zp, Tu, Tu) < ¢(5@(xn_1,u,u)) + ¢(26&(a:n_1,xn_1,xn)).
Taking the limit as n — oo and since 1" is Sp-continuous in its variables, we get
Sp(u, Tu, Tu) < ¢(68y(u, u,w)) + 1 (268 (u, u,u)) = ¢(0) +1(0) = 0.
Then Sy(u, Tu,Tu) < 0. Since Sy(u, Tu,Tu) > 0, we see that Sy(u,Tu,Tu) = 0. Hence, we have Tu = u.

Thus, u is a fixed point of T. Now, to show uniqueness, suppose there exists v € X such that v # u and
Tv =wv. Then

Sp(Tu, Tv, Tv) < gb(é&(u,v,v)) + 1/)(25&(u,u,Tu)).

Using Tw = u and T'v = v, we get Sp(u, v,v) < 0 which implies that Sy(u,v,v) = 0 as Sp(u, v,v) > 0. Hence,
we have u = v. This proves the uniqueness. =
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3 Some Examples for the Main Results
Example 7 Let X =R and define Sp : X x X x X — Rt U{0} as follows

Sb(l'7y,z) = \x—y|+|y—z|—|—|z—m|

x

Then (X, Sp) is a complete rectangular Sy-metric space. Define a map T : X — X by Tx = 5. Then

(lz =yl +ly = 2[ + ]z —z[).

5(Tw, Ty, T2) = 8 (5, %,5) = |5 - 4|+ |4 :

z 1
s a3 =5 sl t5 55503
Therefore, Sp(Tx, Ty, Tz) = §S(%,y,2). Let k = 5. Since 0 < k < 5=(s > 1), all the conditions of Theorem
1 are satisfied. Hence, by Theorem 1, T has a unique fixed point in X. A fized point x* satisfies Tx* = z*.
Solving this, we get x* = 0. Thus, the function Tx = 5 in the complete rectangular Sy-metric space (X, Sp)
has a unique fized point x = 0.

Example 8 Let X = (0,1] and define Sp : X x X x X — R* U {0} as follows:

Sb(x7yaz) :max{\m—y|,|y—z\,\z—x\}.

T

Then (X, Sp) is a complete rectangular-Sy, metric space. Define a map T : X — X by Tx = £. Then

1

22 = L (o — gl — 2l |2 — 2}

5 51

Ty z x oy
Tz, Ty, Tz) = (f,f,f): {‘777
Sp(Tx, Ty, Tz) = Sy 5B R max | |+ = ¢

E

Therefore,

1
Sp(Tx, Ty, Tz) = gi(x,y,z)
Let k = % Since 0 < k < i(s > 1), all the conditions of Theorem 1 are satisfied. Hence, by Theorem 1, T

has a unique fized point in X. A fized point x* satisfies Tx* = x*. Solving this, we get * = 0. Thus, the

function Tx = € in the complete rectangular Sy-metric space (X, Sy) has a unique fived point x = 0.

4 Application to Differential Equations

Consider the differential equation
a'(t) = =z (t) + g(t),

with initial condition x(0) = x(, where A is a positive constant and g is a continuous function. The equivalent
integral form is

¢
z(t) = xo —|—/ (=Az(s) + g(s)) ds.
0
Define the operator T' by
¢
(T)(®) =20+ [ (~Da(s) +9()ds.
0
Let X = C(]0,T7), the space of continuous functions on [0, 7], and define S, : X x X x X — R* U {0} by

Sp(@,y,2) = sup (|z(t) —y(t)] + |y(t) — 2(t)] + [2(t) — z(?)]) -
t€[0,T]

Then S is a rectangular Sy-metric on X. For z,y,z € X,

(Ta)(8) — (Ty)(t)] < / |~ Aa(s) + Ay(s)|ds < A / j2(s) — y(s)lds,
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and similarly,

(Ty)(t) — (T2)(1)] < A / ly(s) — =(s)|ds

and .
[(T2)(t) — (Tz)(t)] < A/O |2(s) — x(s)]ds.
Thus,
Sp(Tz,Ty,Tz) = sup (|z(t) —y(®) +[y(t) — z()| + |2(t) — z(£)])
te[0,T]
t t
< sup < / |x(s) —y(s)|ds + )\/ ly(s) — z(s)|ds + )\/ |z(s) — :z:(s)|ds>
tE[O T) 0 0
< )\/ ( sup |z(t) —y(t)|+ sup |y(t) —z()| + sup |z(t) —x(t)|> ds.
t€[0,T] te[0,T] te[0,T]
Since
sup |z(t) —y(t)|+ sup [y(t) —2(t)| + sup [2(t) —z(t)| = Sp(=,y, 2),
t€[0,T] t€[0,T] t€[0,T]
we have
Sp(Tx, Ty, Tz) < AT'Sp(%,y, 2).
If \T < 2g, then by Theorem 1, T has a unique fixed point in X. Consequently, the differential equation

'(t) = —Az(t) +g(t)

with initial condition x(0) = xo, has a unique solution in the space of continuous functions.

5 Application to Integral Equations

5.1 Application to Fredholm Integral Equations

Consider the Fredholm integral equation

b
2(t) = /\/ K(t5)f(s,2(5)) ds,

where A is a constant, K (¢, s) is a given kernel, and f is a continuous function. Define the operator T on a
suitable function space X by

(T2)(t) = A / " K (6 ) f(s.2(s)) ds.
Let X = C([a, b]), the space of continuous functions on [a, b], and define S, : X x X x X — RT U {0} by
Sp(,y,2) = e =yl + |y — 2| + ]2 — 2|
Then S, is a rectangular Sp-metric on X. Assume that K (¢, s) and f(s,x) are such that for some k € [0, i)

(with s > 1),
|K(t,s)| <M and |f(s,2) = f(s,y)] < Llz -y

for some constants M and L. Then, for z,y,z € X,

b
(T)(t) — (Ty)(t)] < AML / l2(s) — y(s)lds,
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and similarly,

b
[(Ty)(t) = (T2)(1)] < AML/ ly(s) — 2(s)|ds

and ,

(T2)(0) ~ (T2)(0)] < AL [ 12(s) = a(s)lds.
Thus,

Sp(Tx, Ty, Tz) = |Te —Ty|+ [Ty —Tz| + Tz — Tx|
b

< [AIML (/ (lz(t) = y@)] + |y(t) — z()] + [=() — Ji(t)l)d$> :

Since
lz(t) — (O] + [y(t) — 2] + |2() — z()] = Sp(z, y, 2),

we have

b
Sy (T, Ty, Tz) < |/\\ML/ Sy(,y, 2)ds = NML(b — a)Sh(x, y, ).

If INML(b—a) < i, then by the Theorem 1, T" has a unique fixed point in X. Consequently, the integral
equation

b
2(t) = A / K(t,5)f (s, (s))ds
a
has a unique solution in the space of continuous functions.

5.2 Application to Volterra Integral Equations

Consider the Volterra integral equation of the second kind

£(t) = g(t) + A / K(t,3) (s, 2(s))ds,

where A is a constant, K(t,s) is a given kernel, ¢g(¢) is a known function, and f is a continuous function.
Define the operator T on a suitable function space X by

t
(T2)(0) = 90) + A | K(t,9)f(s,2(5))ds.
0
Let X = C([0,T]), the space of continuous functions on [0,77], and define S : X x X x X — RT U {0} by

Sp(2,y,2) = S (lz(8) =y + [y(t) = 2(O)] + [2(2) — 2(D)]) -

Assume that K(t,s) and f(s,z) are such that for some k € [0, 55) (with s > 1),
|K(t,s)| < M and |f(s,2) — f(s,y)| < Llz —yl,

for some constants M and L. Then, for z,y,z € X,

[(T)(t) = (Ty) ()| = '/\/0 K(t,s) (f(s,2(s)) = f(s,y(s5))) ds

<A / K (8, )1 (5, 2(s)) — £(s,y(s))]ds < AML / j2(s) — y(s)\ds.
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Since supye(o, 7y [4(t) — y(t)| < Sp(2,y,2),

|(Tz)(t) — (Ty)(t)] < AMLTSy(x,y, 2).

Similarly,

[(Ty)(t) — (T2)(t)| < AMLTSy(,y, 2)
and

[(T2)(t) = (Tz)(t)| < AMLTSy(x,y, 2).
Thus,

Sp(Ta, Ty, Tz) = e (I(T2)(#) = (Ty) O] + [(Ty)(t) — (T2) D) + [(T2)(t) — (Tz)(B)]) -

It implies that
Sp(Tx, Ty, Tz) < 3NXMLTSy(z,y, 2).

IE3NMLT < %, then by the Theorem 1, T" has a unique fixed point in X. Consequently, the Volterra integral
equation

o) = 9(0) + A [ K(t.5) f(s.0(5)ds

has a unique solution in the space of continuous functions.

6 Conclusions and Future Works

In this study, we established a fixed-point theorems for self-maps satisfying Banach-type contractive con-
ditions in a complete rectangular Sp-metric space, which extends the traditional metric space framework.
Additionally, we demonstrated the applicability of our results to differential and integral equations.

For future research, a broader exploration of applications in various mathematical and real-world prob-
lems can be pursued. Moreover, there is potential for studying common fixed-point theorems under different
contractive conditions. Extending our results to multivalued mappings and further investigating their appli-
cations will provide new insights and directions for future study.
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