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Abstract

In this paper, we have established fixed point theorem employing the Meir-Keeler type contractions
in a metric space endowed with a generalized interpolative. Our findings have also led to the deduction
of certain related fixed point results. We also illustrate our results by an example.

1 Introduction/Preliminaries

The most important discovery in fixed point theory was developed in 1922 by Polish mathematician Banach
[4], known as the Banach contraction principle. It states that every contraction mapping on a complete
metric space has a single fixed point. In 1976, Jungck [8] introduced the coincidence point and common
fixed point theorems as a generalization of the Banach contraction principle. In recent years, researchers
have introduced weaker versions of commuting maps, resulting in exciting common fixed point outcomes (see
[5, 14]). On the other hand, generalizations of the underlying space have been trending since some decades.
One of such important generalizations was initiated by Turinici [17, 18] in 1986, where he proved fixed
point results in a partial ordered set. In this continuation, Alam and Imdad [1, 2] generalized the Banach
contraction principle using a binary relation. Since then, many relation-theoretic fixed point theorems are
being studied regularly, see [2, 6] and references therein. Several researchers reported numerous fixed point
results employing relatively more generalized contractions. One of the most important contributions to
metric fixed point theory after Banach’s well-known fixed point theorem [4] was made by Kannan [9, 10].
Later on, it was discovered that the Kannan and Banach contractions are separate entities [4]. However,
Meir-Keeler [13] presented an intriguing contraction inequality that is referred to as a uniform contraction
in another context. The Meir-Keeler fixed point theorem proved in 1969 [13], is a significant result in the
fixed point literature. This theorem has far-reaching implications in various fields including:

e differential equations- for finding the existence and uniqueness of solutions,
e integral equations- for finding the existence and uniqueness of solutions,

e optimization problems- for checking the existence of optimal solutions.

The Meir-keeler fixed point theorem is a powerful tool for establishing the existence and uniqueness of
fixed points in various mathematical contexts. Many researchers have been attracted to the direction of the
Meir-Keeler fixed point theorem and its generalized forms [3, 7, 15, 16, 12]. This work explores a modified
variant of the Meir-Keeler type contraction, which involves merging generalized interpolative contractions.
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2 Preliminaries
We first recall the basic definitions and results.

Definition 1 ([13]) Let (X,d) be a complete metric space. A mapping T: X — X is said to be a Meir-
Keeler contraction on X, if for every € > 0, there exists § > 0 such that

e <d(a,b) <e+6 = d(Ta,Tb) <e, Va,be X. (1)
We call (1) the MK-contraction.

Theorem 1 ([13]) On a complete metric space (X, d), any MK-contraction T: X — X has a unique fized
point.

Definition 2 ([11]) Let (X,d) be a complete metric space. A mapping T: X — X is said to be an inter-
polative Kannan type contraction on X, if there exists u € [0,1) and o € (0,1) such that

d(Ta,Tb) < pld(a, Ta)]*[d(b, Th)]* 2, (2)
for every a,b € X \ Fiz(T), where Fiz(T) = {a € X|Ta = a}.

Theorem 2 ([11]) On a complete metric space (X,d), any interpolative Kannan-contraction T: X — X
has a fixed point.

Definition 3 ([12]) Let (X, d) be a complete metric space. A mapping T : X — X is said to be an interpola-
tive Kannan-Meir-Keeler type contraction on X, if there exists p € [0,1) such that for every a,b € X\ Fix(T)
we have

(1) for e >0, there exists § > 0 such that

€ < [d(a, Ta)]*[d(b, TV "> < e+ = d(Ta,Ta) <e, (3)

(2)
d(Ta,Tb) < pld(a, Ta)]*[d(b, Th)]* 2. (4)

We call this the KMK-interpolative contraction condition. Now, we define a generalized interpolative condi-
tion in the following way;

Definition 4 Let (X,d) be a complete metric space. A mapping T: X — X is said to be a generalized
interpolative type contraction on X, if there exist u € [0,1) and o, B € (0,1) such that

d(Ta, Th) < uld(a, Ta)|[d(b, TH))?, (5)

for every a,b € X \ Fiz(T), where Fiz(T) = {a € X|Ta = a}.

3 Main Results

We start this section with the definition of generalized interpolative Meir-Keeler type contraction.

Definition 5 Let (X,d) be a complete metric space. A mapping T: X — X is said to be a generalized
interpolative Meir-Keeler type contraction on X, if there exists p € [0,1) such that for every a,b € X\ Fix(T)
we have

(1) for e >0, there exists 6 > 0 such that

€ < [d(a, Ta)]®[d(b,Th)]’ <e+6 = d(Ta,Ta)<e, (6)
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(2) for a,8 € (0,1) with a+ 5 < 1,
d(Ta,Th) < pld(a, Ta)]*[d(b, Th)]". (7)

Theorem 3 On a complete metric space (X,d), any generalized interpolative Meir-Keeler type contraction
T: X — X has a fixed point.

Proof. Let ag € X be an arbitrary point in X. We build the sequence {a,} by the following rule:
Ta, = apt1, for all n € N. Thus, by (7), we have a = a,, b = a,—1 and
d(an+17an) = d(TanaTan—l) S ,Uf[d(anaTan)}a[d(an—l,,]-an—l)]ﬁ
S ,U'[d(ana an-‘rl)]a[d(an—h a'n)]ﬁ-

This implies that

[d(an—&-laan)](lia) < N[d(an—l»an)]ﬁv
ie.,

1 B
d(an-i-lv an) < pi-e [d(@n_l, an)] i1-e,

provided % < 1. ie, 4+ a < 1. Then, the sequence {d(a,,ans+1)} is strictly decreasing and since
d(an,ant1) > 0, for every n € NU {0}, it follows that the sequence {d(an, an+1)} converges to some 2 < 0.
We claim that Q = 0. Indeed, if we suppose that €2 > 0, we can find n € N, such that

Q < d(an,ant1) < Q+5(Q),
for any n < N. Then, since
Q < d(an, an+1) < [d(an-1,an)]"[d(an, an+1)]B7

keeping in mind (6), it follows that d(an,, an+1) < Q, for any n < N. This is a contradiction, and that’s why
we get @ = 0. In order to show that {a,} is a Cauchy sequence, let € > 0 be fixed and we can consider
that d(e) can be chosen such that d(e) < e. Since lim, oo d(an, ant1) = 0, we can find I € N such that
d(an,any1) < §, for n > 1, and we claim that

d(an, antp) <, (8)

for any p € N. Of course, the above inequality (8) holds for p = 1. Suppose that for some p, (8) holds, we
will prove it for p + 1. Indeed, using the triangle inequality, together with (7) we have

d(an, anypr1) < dan,ant1) + d(@nti, Gnppi1)
= d(ana an+1) + d(Tan, Tan-i—p)

< d(an, an+1) + [d(an, ant1)]* [d(an1p, an+p+1)]6
€ €
< 5 + 5 = €.

Therefore, the sequence {a,} is Cauchy and by the completeness of the space X it follows that there exists
p € X such that
lim a, = p. (9)

n— oo

We shall show that p = 7 p. Supposing on the contrary, that p # 7 p, by (7) we have

d(p7 TP) < d(p7 an—i—l) + d(a'n-i-h T,O) = d(p: a’n—i—l) + d(Tanv Tp)
d(p7 anJrl) + [d(anaTan]a[d(pv TP)]ﬁ as p < 1a
[d(an, Tan)*[d(p, Tp)]® — 0 as n — oo.

0

VANV

Therefore, d(p, T p) = 0, that is, p is a fixed point of the mapping 7. m
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4 Numerical Example

Example 1 Let X = R? and A = {P,Q, R, S}, where P = (2,0), Q@ = (0,1), R = (3,0), S = (3,1). Let
d: X x X — Rt be defined by

d(A,B) = /(a1 — b1)2 + (ag — by)?
for any A,B € X, A = (a1,az2), B = (b1,b2), with aj,a2,b1,ba € R. Define the mapping 7: X — X as
follows TP=TR=TS=P, TQ =S and Tp=p for pe X \ 2.

For A, B € X, we evaluate the metric d in the following table. We show that a suitable p exists for which
(6) and (7) are satisfied for all A, B € X \ Fix(T).

A[TA[B|TB | d(A,TA) [ dB,TB) [ d(AB) | d(A,TA)*.d(B,TB)?
Q| S |[R| P 3 1 V10 3@

Q| S |[Ss| P 3 V2 2 3028/2

R| P |[S]| P 1 V2 1 26/2

For first pair Q, R € X \ Fiz(T) and for given ¢ > 0, we have (6)
€e<3°(V2)f <e+6 = d(TQ,TR)=d(S,P)=v2<e

and (7) yields d(TQ, TR) = v/2 < p3*(v/2)?, which is valid for all x> %2 and p € (2, 1).
For second pair @, S € X \ Fiz(7) and for given € > 0, we have (7)

€<3*<e+d = d(TQ,TS)=d(S,P)=+v2<e

and (7) yields d(7Q,TS) = V2 < u3%(v/2)?, which is valid for all values p > 3—\/5 and p € (%, V?2).
For third pair R,S € X \ Fiz(7T) and for given € > 0, we have (6)

€<2% <e+d = d(TR,TS)=d(P,P)=0<c

and (7) yields d(TR,TS) = 0 < uu(+/2)? which is valid for all values y > 0.
Thus for all values of u, for which

S (?» Hn (g, V2)N(0,1) = (?» 1).

Example 1 satisfies all the conditions (6) and (7) of Theorem 3 with suitable values of p € (?, 1) C (0,1).
This validates our Theorem 3. Note that P = (2,0) € R? is the unique fixed point of X.
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