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Abstract

In this study, we aim to convert a given doubly substochastic matrix A into a semi doubly stochastic
matrix D by adding some columns. We show that by adding a minimum (cardinal) number of columns, a
doubly substochastic matrix A is transformed into a semi doubly stochastic matrix D. Such a minimum
cardinality is called the semi sub-defect of A. Additionally, we obtain a general formula for the semi
sub-defect of I×J doubly substochastic matrices. Our findings also demonstrate that for any increasable
matrix A, the semi sub-defects of A and its transpose, At, are equal.

1 Introduction

An n× n non-negative matrix A = [aij ] is called doubly stochastic if

n∑
i=1

aij = 1, and
n∑
j=1

aij = 1, ∀i, j = 1, . . . , n. (1)

Doubly substochastic matrices are defined by replacing the equalities in (1) by the inequalities
∑n
i=1 aij ≤ 1

and
∑n
j=1 aij ≤ 1.

Let {xi : i ∈ I} be a class of non-negative real numbers. The sum of the xi is defined by

∑
i∈I

xi = sup

{∑
i∈F

xi : F is a finite subset of I

}
.

This allows us to extend doubly (sub) stochastic matrices to infinity as the following definition states.

Definition 1 ([5, 6, 11, 13]) Let I, J be two non-empty sets. An I×J non-negative matrix A = [aij ]i∈I,j∈J
is called

(i) doubly stochastic if
∑
j∈J aij = 1 for all i ∈ I, and

∑
i∈I aij = 1 for all j ∈ J ,

(ii) doubly substochastic if
∑
j∈J aij ≤ 1 for all i ∈ I, and

∑
i∈I aij ≤ 1 for all j ∈ J ,

(iii) semi doubly stochastic if
∑
j∈J aij = 1 for all i ∈ I and

∑
i∈I aij ≤ 1 for all j ∈ J .

The sets of all I × J doubly stochastic, doubly substochastic, and semi doubly stochastic matrices are
denoted respectively by DS(I, J), DSS(I, J) and SDS(I, J). It is clear that

DS(I, J) ⊆ SDS(I, J) ⊆ DSS(I, J).
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60 Minimal Semi Completion of D. S. S. Matrices

In the remainder of this paper, we will briefly write d.s. and d.s.s. respectively for doubly stochastic and
doubly substochastic matrices.
We note that d.s. matrices are all square. More precisely, if I and J are arbitrary sets and DS(I, J) 6= ∅,

then card (I) = card (J); ([5, Theorem 2.2] and [1]). Therefore, in the study of d.s. matrices we can limit
ourselves to DS(I, I) := DS(I, I), the set of all d.s. square matrices. Nevertheless, it is clear that d.s.s.
matrices are not necessarily square and more precisely, there is no relationship between the (cardinal) number
of rows and columns of a d.s.s. matrix, because the zero I × J matrix is a d.s.s. matrix. The next theorem
guarantees that every (finitely) d.s.s. matrix is a sub-matrix of a d.s. matrix.

Theorem 1 ([10]) Let A ∈ Mn(R) be a given matrix with non-negative entries. Then A is d.s.s. if and
only if A has a completion, that is, A is an upper left principal sub-matrix of a d.s. matrix.

In [10], for a given d.s.s. matrix A, a question was discussed regarding the minimum size of a d.s. matrix
which contains A as a sub-matrix. This minimum size is known as the sub-defect of A and is denoted by
sd(A). In fact, the sub-defect of A is the smallest integer k so that by adding k rows and columns, A becomes
a d.s. matrix.

Definition 2 (b1, subdefect of product of) Let A = [aij ] be an I × J non-negative (real) matrix.

(i) The summation of A, denoted by sum(A), is defined as sum(A) =
∑
i∈I,j∈J aij. A is called summable

if sum(A) <∞.

(ii) The row summation of A is the function rA : I → [0,∞] which is defined by rA(i) =
∑
j∈J aij;

(iii) The column summation of A is the function cA : J → [0,∞] which is defined by cA(j) =
∑
i∈I aij.

The following theorem gives us the value of the sub-defect for all n× n d.s.s. matrices.

Theorem 2 ([10]) Let A = [aij ] be an n × n d.s.s. matrix. Then, the sub-defect of A is sd(A) = dn −
sum(A)e, where dxe is the ceiling of x, that is the smallest integer greater than or equal to x.

The notion of sub-defect has been generalized to arbitrary (finite or infinite) I × I d.s.s. matrices. For
an I × I d.s.s. matrix A, the sub-defect of A, denoted by sd(A), is defined as the minimum cardinal number
α such that A has a completion D ∈ DS(I ∪ J), where J is a set of cardinality α which is disjoint from I.
We refer to [3, 7, 8, 9], for more details about the sub-defect of d.s.s. matrices. In the remainder of this
paper, by using cardinal numbers, we establish the semi sub-defect of arbitrary I × J d.s.s. matrices. For
this purpose, the following two theorems are required.

Theorem 3 (Theorem 11, Ch. 8, [12]) Let α be an arbitrary ordinal number. Then the set of all ordinal
numbers β such that β < α is a well-ordered set whose ordinal number is α.

Theorem 4 (Theorem 12, Ch. 8, [12]) Any set of ordinal numbers is well-ordered.

We organize this paper as follows. Section 2 discusses the existence of a semi completion, minimal semi
completion and semi sub-defect of an arbitrary d.s.s. matrix. In Section 3, for any arbitrary d.s.s. matrix A
we obtain a formula for ssd(A), the semi sub-defect of A. Then, based on this formula, we get some relevant
results about the semi sub-defect of d.s.s. matrices.

2 Minimal Semi Completion of D.S.S. Matrices

In this section, we first show any arbitrary (square or non-square, finite or infinite) d.s.s. matrix can be
converted into a semi d.s. matrix by adding a (cardinal) number of columns. We then show the number of
added columns can be considered minimal.
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Definition 3 Suppose that A = [aij ]i∈I,j∈J is an I × J d.s.s. matrix. A semi d.s. matrix D is called
a semi completion of A if there is an index set (of columns) J0 with J0 ∩ J = ∅ and an I × J0 d.s.s.
matrix B = [aij ]i∈I,j∈J0 such that D = [aij ]i∈I,j∈J∪J0 . The cardinality of J0 is called the order of the semi
completion D.

Theorem 5 Every I × J d.s.s. matrix A = [aij ]i∈I,j∈J has a semi completion of order α = card (I).

Proof. Assume that J0 is a set disjoint to J and card (J0) = card (I). Let θ : I → J0 be a bijection and aij
is defined for each i ∈ I and j ∈ J0 by

aij = (1− rA(i))δθ(i),j ,

where δr,s denotes the Kronecker delta, which is equal to one if r = s and zero otherwise. Now if we set
B = [aij ]i∈I,j∈J0 , and D = [aij ]i∈I,j∈J∪J0 , then D = [aij ]i∈I,j∈J∪J0 is a semi completion of A which is of
order card (J0) = card (I).

Example 1 Let A be a d.s.s. matrix

A =



1
2 0 0 0 · · ·
1
2 0 0 0 · · ·
0 1

3 0 0 · · ·
0 1

3 0 1 · · ·
0 0 1

4 0 · · ·
0 0 1

4 0 · · ·
...

...
...

...
. . .


.

Then both of the matrices

D1 =



· · · 0 0 0 0 0 1
2

· · · 0 0 0 0 1
2 0

· · · 0 0 1
3

1
3 0 0

· · · 1
3

1
3 0 0 0 0

· · · 0 0 0 0 0 0
· · · 0 0 0 0 0 0

···
...

...
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2 0 0 0 · · ·
1
2 0 0 0 · · ·
0 1

3 0 0 · · ·
0 1

3 0 0 · · ·
0 0 1

4 0 · · ·
0 0 1

4 0 · · ·
...

...
...

...
. . .


and

D2 =



· · · 0 0 0 0 0 1
2

· · · 0 0 0 0 1
2 0

· · · 0 0 0 2
3 0 0

· · · 0 0 2
3 0 0 0

· · · 0 3
4 0 0 0 0

· · · 3
4 0 0 0 0 0

···
...

...
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2 0 0 0 · · ·
1
2 0 0 0 · · ·
0 1

3 0 0 · · ·
0 1

3 0 0 · · ·
0 0 1

4 0 · · ·
0 0 1

4 0 · · ·
...

...
...

...
. . .


are semi completions of A. As can be seen, the matrix D2 is obtained by the construction presented in the
proof of Theorem 5, while the matrix D1 is not. This example shows that the semi completion of a doubly
substochastic matrix is not necessarily unique.

Example 2 Let D = [aij ] be an n×n d.s.s. matrix and A = diag(D, 1, 1, 1, . . .). Then both of the following
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matrices

D1 =



· · · 0 0 · · · 0 1− rD(1)
· · · 0 0 · · · 1− rD(2) 0

...
...

...
...

· · · 0 1− rD(n) · · · 0 0
· · · 0 0 · · · 0 0
· · · 0 0 · · · 0 0

···
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n 0 0 · · ·
a21 · · · a2n 0 0 · · ·
...

...
...
...

an1 · · · ann 0 0 · · ·
0 · · · 0 1 0 · · ·
0 · · · 0 0 1 · · ·
...

...
...
...
. . .


,

and

D2 =



0 · · · 0 1− rD(1)
0 · · · 1− rD(2) 0
...

...
...

1− rD(n) · · · 0 0
0 · · · 0 0
0 · · · 0 0
...

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n 0 0 · · ·
a21 · · · a2n 0 0 · · ·
...

... 0 0 · · ·
an1 · · · ann 0 0 · · ·
0 · · · 0 1 0 · · ·
0 · · · 0 0 1 · · ·
...

...
...
...
. . .


,

are semi completions of A. Moreover, the semi completion D1 is of order ℵ0, while D2 is of order n.

In the remainder of this section, we will show that every I×J d.s.s matrix has a minimal semi completion.

Theorem 6 Let A ∈ DSS(I, J). Then there exists a (unique) minimum cardinal number α such that A has
a semi completion of order α. Furthermore, α ≤ card(I).

Proof. According to Theorem 5, by adding some columns to A (that is card(I)), it becomes a semi d.s.
matrix. Now let ג be the class of all cardinal numbers β with β ≤ card(I) and such that A has a semi
completion of order β. Since every cardinal number is an ordinal number, it follows from Theorems 3 and 4
that ג is a (non-empty) well-ordered set. Therefore, ג has a unique minimum element α.

Definition 4 Let A ∈ DSS(I, J). The semi sub-defect of A, denoted by ssd(A), is defined as the minimum
cardinal number α such that A has a semi completion of order α; i.e.,

ssd(A) = min{card(K) : D = [dij ]I×(J∪K) is a semi completion of A}.

We say the semi sub-defect of A is finite (infinite) if ssd(A) < (≥)ℵ0. A semi completion of order α = ssd(A)
is called a minimal semi completion of A.

Remark 1 It is clear that for A,B ∈ DSS(I, J) and λ ∈ [0, 1] the following assertions hold:

• ssd(A) is finite, if and only if A has a semi completion of order n ∈ N ∪ {0}.

• If A has a semi completion of order α and β > α, then A has a semi completion of order β.

• ssd(λA+ (1− λ)B) ≤ max{ssd(A), ssd(B)}.

• If I = J , then ssd(A) ≤ sd(A).

From Theorem 6 the minimal completion always exists, however as we will show in Example 3, it is not
necessarily unique.

Theorem 7 If A is an I × J d.s.s. matrix, then ssd(A) ≤ card(I).

Proof. The proof is obtained by using Theorem 6.
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3 Semi Sub-Defect of D.S.S. Matrices

In this section, we want to obtain the value of ssd(A), the semi sub-defect of A, for an arbitrary d.s.s matrix
A. We also show that for all square n × n d.s.s. matrices, ssd(A) is exactly equal to sd(A), the sub-defect
of A.

Theorem 8 Let A = [aij ] ∈ DSS(I, J). If
∑
i∈I(1−

∑
j∈J aij) <∞, then

ssd(A) = d
∑
i∈I
(1−

∑
j∈J

aij)e <∞. (2)

Proof. To prove the claim, it is suffi cient to show the following assertions:

(i) Every semi completion of A is of order α ≥ d
∑
i∈I(1−

∑
j∈J aij)e.

(ii) There exists a semi completion of A which is of order α = d
∑
i∈I(1−

∑
j∈J aij)e.

(Proof of (i)): Let J1 be an arbitrary set which is disjoint from J and α = card (J1). If D = [aij ]i∈I,j∈J∪J1
is an arbitrary semi completion of A, then we consider the two cases:
Case 1. If α is infinite, then (i) clearly holds.
Case 2. If α = k ≥ 0 is an integer number, then we define B = [aij ]i∈I,j∈J1 and therefore, because D is

a semi d.s. matrix, we have

k =
∑
j∈J1

1 ≥
∑
j∈J1

∑
i∈I

aij = sum(B) =
∑
i∈I

∑
j∈J1

aij =
∑
i∈I
(1−

∑
j∈J

aij),

which follows clearly that k ≥ d
∑
i∈I(1−

∑
j∈J aij)e.

(Proof of (ii)). If α = k = d
∑
i∈I(1 −

∑
j∈J aij)e, then without loss of generality, we can assume that

J1 = {1, . . . , k} and J ∩ J1 = ∅. Now, if aij is defined for each i ∈ I and j ∈ J1 = {1, . . . , k} by

aij =
1− rA(i)

k
,

then it is clear that D = [aij ]i∈I,j∈J∪J1 is a semi d.s. completion of A which is of order α = k.

We note that Theorem 8 contains a constructive proof that provides a minimal semi completion of each
A ∈ DSS(I, J) which satisfies the condition

∑
i∈I(1 −

∑
j∈J aij) < ∞. The following corollary follows

directly from the previous theorem and it can be used to obtain the semi sub-defect of I × J d.s.s. matrices
that contain a finite number of rows.

Corollary 1 Let A be an I × J d.s.s. matrix. If I is assumed a finite set, then

ssd(A) = dcard(I)− sum(A)e.

Using the previous corollary, for every m×n d.s.s matrix A we have ssd(A) = dm− sum(A)e. Moreover,
Theorem 2 together with Corollary 1 imply that for finitely square d.s.s. matrices, the values of both
sub-defect and semi sub-defect are the same. So, we have the following corollary.

Corollary 2 Let A be an m× n d.s.s. matrix. Then the following statements hold.

(i) ssd(A) = dm− sum(A)e;

(ii) If m = n, then ssd(A) = sd(A).
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Example 3 Suppose that

A =

 14 1
8

1
16

1
32

1
64 · · ·

0 1
8

1
16

1
32

1
64 · · ·

0 0 1
16

1
32

1
64 · · ·

 .
Then the matrix A satisfies sum(A) = 7

8 . Thus, by using Theorem 1 we have ssd(A) = d3− 7
8e = d

17
8 e = 3.

The following two semi d.s. matrices

D1 =

 0 0 1
2

0 1
2

1
4

1
2

1
4

1
8

∣∣∣∣∣∣ A

 =
 0 0 1

2
0 1

2
1
4

1
2

1
4

1
8

∣∣∣∣∣∣
1
4

1
8

1
16

1
32

1
64 · · ·

0 1
8

1
16

1
32

1
64 · · ·

0 0 1
16

1
32

1
64 · · ·


and

D2 =

 1
6

1
6

1
6

1
4

1
4

1
4

7
24

7
24

7
24

∣∣∣∣∣∣ A

 =
 1

6
1
6

1
6

1
4

1
4

1
4

7
24

7
24

7
24

∣∣∣∣∣∣
1
4

1
8

1
16

1
32

1
64 · · ·

0 1
8

1
16

1
32

1
64 · · ·

0 0 1
16

1
32

1
64 · · ·


are both minimal semi completions of A. It is worth noting that

3∑
i=1

(
1−

∞∑
j=1

aij

)
=

(
1− (1

4
+
1

8
+
1

16
+ · · · )

)
+
(
1− (1

8
+
1

16
+
1

32
+ · · · )

)
+
(
1− ( 1

16
+
1

32
+
1

64
+ · · · )

)
=

17

8
<∞,

it follows that the matrix A satisfies the condition of Theorem 8. In fact, D2 is obtained by the construction
presented in the proof of Theorem 8(ii) while D1 is not. This example shows the minimal semi completion
is not necessarily unique.

Theorem 9 If A is an I × J semi d.s. matrix, then card(I) ≤ card(J).

Proof. Suppose that A = [aij ] ∈ SDS(I, J). We consider the following two cases:
Case 1. J is finite. Then we have∑

i∈I
1 =

∑
i∈I

∑
j∈J

aij =
∑
j∈J

∑
i∈I

aij ≤
∑
j∈J

1 = card (J),

which implies that I is a finite set and card (I) ≤ card (J).
Case 2. J is infinite. In this case, if I is a finite set, then clearly card (I) ≤ card (J). Otherwise, if I is

assumed to be an infinite set, then we set

X = {(i, j)|aij > 0},

Xi = {(i, j)|j ∈ J, aij > 0}, for all i ∈ I,

and
Xj = {(i, j)|i ∈ I, aij > 0}, for all j ∈ J.

It is clear that each of the sets Xi and Xj is countable, Xi 6= ∅, and we have⊔
i∈I

Xi = X =
⊔
j∈J

Xj , (3)

where
⊔
denotes the disjoint union of sets.
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Now let θ : I → X =
⊔
i∈I Xi be any choice function; that is a function which satisfies θ(i) ∈ Xi, for all

i ∈ I. It is clear that θ is one-to-one, which implies that

card (I) ≤ card(X). (4)

On the other hand, by using (3), we obtain that

card(X) ≤ ℵ0 card(J) ≤ card(J). (5)

From the relations (4) and (5) we obtain that card(I) ≤ card(J).
The next lemma shows (in the sense of cardinal numbers) that the number of rows and columns of

a d.s.s. matrix are equal under certain conditions. Note that the notation supp(f) is used briefly for
{x ∈ I : f(x) 6= 0}, the support of a function f : I → R and for an I × J matrix A = [aij ], the notation
supp(A) is used when we consider A as the function on I × J with (i, j) 7→ aij .

Lemma 1 Suppose that I and J are arbitrary infinite sets and X = [xij ] ∈ DSS(I, J) is a d.s.s. matrix
so that X does not have any rows or columns that are completely zero. Then card (I) = card (supp(X)) =
card (J).

Proof. For each i ∈ I, suppose that θ(i) ∈ J is such that xiθ(i) 6= 0. Then the function η : I → supp(X)
which is defined by η(i) = (i, θ(i)), is one-to-one. Therefore, we have

card (I) ≤ card (supp(X)). (6)

On the other hand, from the assumptions, X ∈ DSS(I, J), and hence,

R(i) = {j ∈ J |(i, j) ∈ supp(X)}

is a (non-empty) countable subset of J . Also, supp(X) =
⊔
i∈I{i} ×R(i). Thus we have

card (supp(X)) ≤ card (I). (7)

Using the above relations (6) and (7), we see that card (I) = card (supp(X)). In the previous argument if
XT , the transpose of X, is replaced by X, then we obtain that

card (J) = card (supp(XT )) = card (supp(X)),

which completes the proof.
We note that the condition that I and J are both infinite cannot be removed from Lemma 1. As an

example, for each m ∈ N, the following matrix

X =


1
2m

1
2m+1 · · ·

...
...

1
2m

1
2m+1 · · ·


m×N

is an extremely positive d.s.s. m× N matrix. However, it is clear that m 6= card (N) 6= ℵ0.

Theorem 10 Suppose that A = [aij ] ∈ DSS(I, J). If
∑
i∈I
(
1−
∑
j∈I aij

)
=∞, then ssd(A) = card (supp(1−

rA)).

Proof. Suppose that for some non-negative I×J1 matrix B = [bij ], D = [A|B] is a minimal semi completion
of A. Using the assumption ∑

i∈I

(
1−

∑
j∈I

aij
)
=∞,
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we conclude that I is infinite. Define I1 := supp(1 − rA) and R := [bij ]I1×J1 . Because D = [A|B] is a
minimal semi completion of A, it follows that B does not contain a zero column. It follows that R also has
no zero column. On the other hand, it is clear from the definition of I1 that R also does not contain any
zero row. Moreover, the two sets I1 and J1 are both infinite. So, Using Lemma 1 it follows that

ssd(A) = card (J1) = card (I1) = card (supp(1− rA)).

Now, by combining Theorems 8 and 10, we reach our main result in the following theorem.

Theorem 11 Let A ∈ DSS(I, J). Then

(i) ssd(A) is finite if and only if
∑
i∈I(1−

∑
j∈J aij) converges. In this case we have ssd(A) = d

∑
i∈I(1−∑

j∈J aij)e.

(ii) ssd(A) is infinite if and only if
∑
i∈I(1−

∑
j∈J aij) diverges. In this case we have ssd(A) = card (supp(1−

rA)).

The next result is easily obtained based on the previous theorem.

Corollary 3 The function ssd(·) which takes every A ∈ DSS(I, J) to ssd(A), is order-decreasing, i.e.;
ssd(A) ≥ ssd(B), for all A,B ∈ DSS(I, J) with A ≤ B.

Proof. Suppose that A = [aij ] and B = [bij ] are two I × J d.s.s matrices such that A ≤ B. Then the next
two relations follow from the fact 0 ≤ aij ≤ bij ≤ 1:

supp(1− rA) ⊇ supp(1− rB), (8)

and ∑
i∈I
(1−

∑
j∈J

aij) ≥
∑
i∈I
(1−

∑
j∈J

bij). (9)

Now, we consider the following two cases:
Case 1. ssd(A) is finite. Then, using Theorem 11 the series

∑
i∈I(1 −

∑
j∈J aij) converges, and then,

according to (9),
∑
i∈I(1−

∑
j∈J bij) is also a convergent series. So, we conclude that

ssd(A) = d
∑
i∈I
(1−

∑
j∈J

aij)e ≥ d
∑
i∈I
(1−

∑
j∈J

bij)e = ssd(B).

Case 2. ssd(A) is infinite. If ssd(B) is finite, then it is clear that ssd(A) ≥ ℵ0 > ssd(B). Otherwise, we
assume that ssd(B) is also infinite. Therefore, by using (8) we have

ssd(A) = card (supp(1− rA)) ≥ card (supp(1− rB)) = ssd(B).

Corollary 4 If A,B ∈ DSS(I, J) and 0 ≤ λ ≤ 1, then

min{ssd(A), ssd(B)} ≤ ssd
(
λA+ (1− λ)B

)
≤ max{ssd(A), ssd(B)}. (10)

Proof. In the two cases λ = 0 or λ = 1 the claim is obvious. Otherwise, we have 0 < λ < 1, and then

supp(1− rλA+(1−λ)B) = supp(1− rA) ∪ supp(1− rB), (11)

and ∑
i∈I

1−∑
j∈J
(λaij + (1− λ)bij)

 = λ
∑
i∈I

1−∑
j∈J

aij

+ (1− λ)∑
i∈I

1−∑
j∈J

bij

 . (12)



M. Dadkhah and A. B. Eshkaftaki 67

Now, if both of the series ∑
i∈I

1−∑
j∈J

aij

 and
∑
i∈I

1−∑
j∈J

bij


are convergent, then using Theorem 11 and the relation (12) we can obtain the claim. Otherwise, if at least

one of the series
∑
i∈I

(
1−

∑
j∈J aij

)
and

∑
i∈I

(
1−

∑
j∈J bij

)
diverges, then the series

∑
i∈I

1−∑
j∈J
(λaij + (1− λ)bij)


also diverges, which shows, again by Theorem 11, that ssd(λA+ (1− λ)B) is infinite and moreover, by (11)
we have

min{ssd(A), ssd(B)} ≤ card
(
supp(1− rλA+(1−λ)B)

)
= ssd(λA+ (1− λ)B)
= card

(
supp(1− rA) ∪ supp(1− rB)

)
= max{card (supp(1− rA)), card (supp(1− rB))}
= max{ssd(A), ssd(B)}. (13)

Remark 2 Let A,B ∈ DSS(I, J). If 0 < λ < 1 and at least one of the cardinal numbers ssd(A) and ssd(B)
is infinite, then

ssd
(
λA+ (1− λ)B

)
= max{ssd(A), ssd(B)}.

This assertion can be proved by using the relation (13) in the proof of Corollary 4.

Based on Corollary 4, it can be shown that the set of all I × J d.s.s matrices A whose ssd(A) is a fixed
cardinal number is convex. Thus, we have the following result.

Corollary 5 Let α be a cardinal number with 0 ≤ α ≤ card (I). Then Cα := {A ∈ DSS(I, J)|ssd(A) = α}
is a non-empty convex subset of DSS(I, J), and {Cα|0 ≤ α ≤ card (I)} is a partition of DSS(I, J) into
convex sets.

For a square d.s.s. matrix A ∈ DSS(I), it is natural to ask what is the relationship between ssd(A) and
ssd(At). As the next example shows, ssd(A) and ssd(At) are not necessarily equal.

Example 4 Let L : `2 → `2 be the left shift operator, which is defined by Lx = (x2, x3, x4, . . .), for all
x = (xn) ∈ `2. The matrix form of L is equal to

A =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...
...
...
...
. . .

 .
The adjoint of L is the right shift operator R : `2 → `2, with Rx = (0, x1, x2, x3, . . .) for all x = (xn) ∈ `2.
It is clear that the matrix form of R is equal to

B = At =


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...
...
...
. . .

 .



68 Minimal Semi Completion of D. S. S. Matrices

It is clear that both of A and B are square N× N d.s.s matrices. However, according to Theorem 11, we
obtain that ssd(A) = 0 6= 1 = ssd(B) = ssd(At).

Definition 5 ([2]) Let A = [aij ] be an I × I doubly substochastic matrix. Then A is called increasable if
there exists an I × I doubly stochastic matrix D such that A ≤ D.

Theorem 12 (Characterization of increasable d.s.s. matrices, [2]) Let A = [aij ] ∈ DSS(I). Then
the following conditions are equivalent.

(i) A is increasable,

(ii) ‖1−rA‖1 = ‖1−cA‖1
(
i.e.,

∑
i∈I(1−

∑
j∈I aij) =

∑
j∈I(1−

∑
i∈I aij)

)
and if s := ‖1−rA‖1 = ‖1−cA‖1,

then either s <∞ or if s =∞, then card
(
supp(1− rA)

)
= card

(
supp(1− cA)

)
.

As the following corollary states, it follows from Theorems 11 and 12 that the equality ssd(A) = ssd(At)
holds for all increasable d.s.s. matrices:

Theorem 13 If A ∈ DSS(I) is increasable, then ssd(A) = ssd(At).
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