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Abstract

The dynamics of CD4"T cells and infected virus particles are described by a system of nonlinear
ordinary differential equations and that mathematical model describes the behaviour of states for HIV
infections in the presence of immune boosting nutrition and antiretroviral drugs. In this study, the
constant control strategies are introduced for comparison with the optimal control strategy to minimize
the treatment cost of HIV infections. The aim of this paper is to find the optimal immunotherapeutic
treatment and compare them to various treatment strategies of HIV infections.

1 Introduction

The HIV response across Asia and the Pacific is not progressing as planned due to notable disparities
and varying epidemic trajectories. The HIV pandemic in the area disproportionately impacts members of
important demographics, particularly youth (1524 years old) and their sexual partners [UNAIDS 2023].
Worldwide, HIV infection continues to be a serious public health concern. The human immunodeficiency
virus (HIV) is respounsible for causing acquired immunodeficiency syndrome (AIDS), which was first detected
in the United States during the spring of 1981. AIDS is characterized by a severe reduction in CD4™T cells,
which means an infected person’s immune system deteriorates and becomes vulnerable to contracting life-
threatening infections. The presence of HIV in a person can be measured with the numbers of CD4+T
cells (i.e. white blood cells) and infected virus particles. The CD4TT cell count is typically above 950 in
a healthy individual. In 1995, a combination drug treatment known as the AIDS “Cocktail”, referred to
as highly active antiretroviral therapy (HAART), was introduced. HAART treatment helps maintain a low
viral load and a normal CD4"T cell count. However, this treatment does not cure the virus of an HIV-
infected person. It can reduce the number of infected virus particles. Since it is a long-term treatment for
HIV infections, the minimization of treatment cost and maximization of CD4T T cells are necessitated. Now,
mathematical modeling is a very useful tool to describe and analyze the dynamics of biomedical systems
[6, 8, 15]. Joshi (2023) [10] conducted an initial study on immunological interactions between HIV and
T-cells, determining the uniqueness of optimal control pairs and numerically solving the resulting optimality
system with a fourth-order Runge-Kutta algorithm. Following that, Akudibillah et al. (2019) [1] proposed
a mathematical model incorporating the WHQO’s 5-stage classification of HIV/AIDS disease progression to
analyze the best treatment distribution and this study revealed that initiating treatment during Stages
IT and IIT is beneficial in reducing infection-years and new infections, whereas treatment during Stages
IIT and IV is more effective in cost reduction and preventing deaths. A more effective approach to the
challenges of HIV immunotherapy was proposed in a study by Biswas et al. (2019) [3] that implemented
the Pontryagin maximum principle and a state constraint to develop an optimal treatment strategy for
designing and implementing antiretroviral therapy for HIV infections aimed at maximizing CD4TT cell
count while reducing side effects and cost. Biswas et al. (2022) [4] investigated the transmission dynamics of
HIV/AIDS, tuberculosis, and their co-infections, emphasizing the efficacy of optimal treatment-vaccination
combinations. They stress the importance of counseling for HIV-TB co-infected individuals, early detection,
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treatment accessibility, and strategic plans to reduce transmission for effective disease management. After
that, Mallick et al. (2023) [14] introduced a mathematical model for determining an optimal treatment
approach applying target-oriented-treatment (TOT) for HIV infections. It is shown how the virus behaves
when taking an antiretroviral medication and immune-boosting nutrition, and they observed that the number
of infected particles can be reduced to almost nothing if the number of CD4T cells does not decrease during
treatment. Recently, some researchers used fractional calculus to model HIV infections, capturing the virus’s
intricate dynamics and its interaction with the immune system to better represent the infection process and
demonstrate how chaotic parameters can control system chaos [9]. Besides, in order to study the system’s
behavior over the long term, Ahmad et al. (2023) [2] investigate both qualitative analysis and computer
modeling, focusing on a fractional-order HIV model that uses the Caputo fractional differential operator.
Here, a system of nonlinear ordinary differential equations describe the change of CD4*T cells count and
the infected virus particles for HIV infections similar to the models of Kirschner [13], Webb [11], Serbin [12],
Biswas [3, 5] and Perelson [20]. These models describe the interactions between CD4TT cells (i.e. white
blood cells) and infected virus particles of a person. Let us consider T'(t) and V' (¢) to represent the virus free
CD4™T cells and infected virus particles respectively. Then, the present model is represented by a system
of nonlinear ordinary differential equations below:

T == 52— T (o) - KV T )
TN - s - v @

with the initial conditions
T(0) =To, V(0) =V (3)
where s; — ﬁir‘fét&) represents the proliferation of virus free CD4TT cells and pT'(t) is the natural death
of CD4™T cells, kV (¢)T(t) is the reduction of CD4™T cells by virus infections, BZX‘(/t()t) is the growth of

infected virus particles and aV (¢)T'(t) is the depletion of virus by CD4"T cells and the descriptions of
parameters were presented in Table 1 [4, 10]. Joshi [10] introduced the two control variables u; and ug which
represent the control of immune boosting nutrition and antiretroviral drugs respectively in the following two
compartmental dynamics of the optimal controlled model with the uniqueness of optimality system. The
existence of the optimal control pair can be obtained by Fleming and Rishel [7].

d%(f) =51- m —pI'(t) = kV()T(t) +w ()T'(t), (4)
dv(t) _ (L —uw@)V({E)
it~ BV VOT(E) (5)

with the same initial conditions (3). Here, u; = 0 indicates no immune boosting nutrition, us = 0 means no
antiretroviral drugs and w; = 0.02 indicates maximum food for immune boosting nutrition, us = 0.9 means
the maximum doses of antiretroviral drugs. 0 < u; < 0.02 and 0 < us < 0.9 means the optimal control for
the following objective functional satisfying the state system (4)—(5) with the initial conditions (3).

maximize J(us (£), us(t)) = /0 (T() = Bun2(t) — Bous?(t))dt (6)

where B; and By are the balancing parameters to find for an optimal solution. In this study, we analyze the
model for different control strategies such as i) only immune boosting nutrition (no antiretroviral drugs), ii)
only antiretroviral drugs (no immune boosting nutrition), iii) control of antiretroviral drugs with maximum
food for immune boosting nutrition, iv) control of immune boosting nutrition with maximum doses of an-
tiretroviral drugs, v) no control of immune boosting nutrition and antiretroviral drugs, vi) optimal control of
immune boosting nutrition and antiretroviral drugs etc. We also observe the importance of immune boosting
nutrition and antiretroviral drugs for HIV infections. We will find the answer of the question “what is better
of immune boosting nutrition and antiretroviral drugs for HIV infections?”.
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2 Mathematical Analysis

2.1 Existence and Uniqueness of the Model Solution

Theorem 1 (Existence and uniqueness of the model solution) Let D be the domain defined in such
a way that Lipschitz conditions are satisfied. Then, for all non-negative initial conditions, the solutions of
the system exist and they are also unique at the same time for all time T > 0 in the domain D.

Proof. It has come to light that the proposed theorem mentioned in [16, 22] needs to be followed, which
suggests that the Lipschitz criterion for the existence and uniqueness of a solution must be followed in a
region D. Let

dT 82V
T, V)= " = — —uT - KVT,
f(’ ) dt 81 Bl+v /‘L
av NV
TV)= — = —aVT.
9TV =G =g 7v —°

Using the above system’s equation, the partial derivative of f, g, with respect to compartments T,V are
obtained as:
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Hence we have shown that all the partial derivatives are continuous and bounded. Therefore, Lipschitz’s
conditions are satisfied. Hence by theorem discussed in [22], there exists a unique solution of considering a
system in the region D. m

2.2 Equilibrium Analysis

To obtain the equilibrium point of the system, we have to solve the following algebraic equations

s V*
- T —kV*T* =0, 7
o1 b1+ V* H (7)
’YV* ik
— L —aV*T* =0. 8
Bg +V* “ ®

Solving (7) and (8), we get the unique nonnegative equilibrium point (T*,V*) = (%, O). This nonnegative
equilibrium point indicates the necessity of highly active antiretroviral therapy (HAART) to decrease the
virus.

2.3 Local Stability

Finding equilibrium points (T, V*), the characteristic equation of the system (4)—(5) around its equilibrium
point is calculated as follows:
DiA? 4+ DoA+ D3 =0 (9)
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where
Dy = V*42VP6 + 2V 8y + V2B + AV2B18y + V253 + 2V BBy + 2V 51 B3 + 5163,
Dy = VOk+V*u+ VO + VB + V28 u+ V2B u+ B B + TV a — V** Byy

+2V*B1k + 2V Bok + 2V*3 By + 2V Bopu — BFBay + 2T V*2afy + 2TV *3af,
+4V*3B1 Bok 4 2V* B1 B + 2V * B2 Bop + AV 2By Bop + T*V*2a 1% + T*V*2a 32
+T a3 85 + V' B B3k + 2V 8185k + 2V2 57 ok — 2V 1 Boy + 2TV * b B3
12TV *afi By + AT*V*2 B Ba,

Dy = T*V*au—V*3Byvk — V3aBiss — V2 oy — B Boyp + T*afif3 1 — 2V* B1 faryp
+2T*V*3a61u + 2T*V*3aﬁ2u - V*ﬁ%ﬁyyk - 2V*2B152'y1<: - Vaﬁ1ﬁ332 - 2V*2a51ﬂ252
+T*V*2aB2 4+ T*V*2af2p + 2TV *ap fop + 2T V* a2 Bopi + AT*V*2 a8y Bopu.

Now we consider g—? = N; — Noy and g—i’ = N3 — N4y with respect to the parameter ~, where,

Ny = (VPk+Vu4+ VP38 + VE85k + V28T + V2 B3+ B B+ TV a 4+ 2V 81k
2V Bok 4 2V*3 By + 2V 3 Bopu + 2T*V 3By 4 2TV *3a By + 4V*3 31 Bok + 2V * 1 B2 p
+2V* B2 Bopt + AV2B1 fop + T*V*2aB1% + T*V*2aB2 + T*aB?B2 + V* B2k + 2V *2 3, fak
+2V*2B2 6ok + 2T*V* a1 2 4 2T*V* a2 By + AT*V*2af1B2) / (V4 + 2V*3 5, + 2V "33,
FVI2BY 4 AV BBy + VI BS + 2V Y By + 2V B1 55 + B3,

Ny = (V*2By+ 782+ 2V B1B2) (V™ + 2V By + 2V*3 By + V267 + V231 B2 + V53
+2V* 326y 4 2V* 3152 + B252),
N3 = (T*V*ap—V*3aBisy + T afifipu+ 2TV afip+ 2TV afap — Vap 5 s

—2V*2a B Base + T*V*2aBip + T*V*2afsp + 2T*V*api fap + 2T*V*a B3 Bapu
HAT*V* 201 Bopn) [ (V4 + 2V By + 2V 3 By + V282 + AV*28, By + V*2 52 + 2V* 323,
+2V*B133 + B163),

Ny = (V®Bk + V**Bop+ BiBop — 2V*Br Bop + V* BT Bok + 2V*2 By Bok)
(V4 2V"3B) + 2V By + V2B + AV*2 81 By + V285 + 2V*Bi Ba + 2V B1 83 + B733).

Now using Routh-Hurwitz criterion around equilibrium point, we can state and prove the following theorem
for local asymptotical stability of the system (4)—(5).

Theorem 2 The system will be locally asymptotically stable around the equilibrium point (T*,V*) if

. [ N1 N3 S
min § —, — .
NN ST
Proof. Using Routh-Hurwitz criterion, all eigenvalues of the system (4)—(5) contain the negative real part

at the equilibrium point (7*,V*) if g—f > 0 and g—f > 0. So, M > ~ and % > v. We can write

N2
min {%, %—i} > ~y. Therefore, the system is locally asymptotically stable around the equilibrium point. =

2.4 Characteristics of States for Equilibrium Values with Respect to p

We will discuss the characterization of the equilibrium values of CD8 + T cells and infected virus V' (t) with
respect to p. From the equations (4)—(6) we can obtain two functions of 7%, V*, u as follows:

SQV*

T Vi) = 81— oo —
f( :LL) 51 51+V*

uT* — kV*T, (10)
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g(T*, V¥, pu) = 52%/‘/* —aV*T*, (11)
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Therefore, the both denominator and numerator are negative when yu < asiB2. So, the number of CD4+T
cells will be increased when p increases, satisfying the condition yu < as1f2. From the equation (11), it is
seen that the relation between CD41T cells and virus particles is inversely proportional. Thus, it can be
concluded that the viral load decreases when CD4TT cells increase.

2.5 Convergence of CD4"T Cells for Constant Level of Virus Particles

If possible, the virus particles are constant [18] using antiretroviral drugs as well as uptaking immune boosting
nutrition. In this situation, we analyze the mathematical model of nonlinear differential equations for HIV
patients where the number of virus particles V, for the above system is constant. From the first equation of

the model, we get,

dT soV,

& -2 T KVT. 12
a B v, F (12)

Taking limit ¢ — oo in the solution of the equation (12) for the initial condition T'(0) = Ty, then we get

S1— BS2V\C/
limsupT(t) = — 21+ Ve

S1— sa Ve
Therefore, the sequence of the number of CD4™T cells {T,(t)} converges to — 74~

3 Characterization of Optimal Control Problem

The model with the objective functional (6) and the states (4)—(5) can be written as an optimal control
problem as follows:

maximize J(uy(t), uz(t)) = /0 f(T(t) — Biuy%(t) — Baus?(t))dt, (13)
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subject to dﬁit) =51 — ﬁ/‘(/t()t) —pT(t) — kV()T(t) +ur(6)T(t), T(0) = Tp, (14)
dvi(t) _ y(1—us(t)V() _
i BV aV()T(t),V(0) =W, (15)

with 0 < w(t) < 0.02 and 0 < wa(t) < 0.9. Let us consider the optimal controls u}(¢), u3(¢) and the
corresponding states T*(¢), V*(t) of the model, using Pontryagin’s maximum principle [21, 23], there exist
adjoint states \;(t), A2(t) satisfying
dX(t)
dt

“a =m0 { G o) - { IR a0 )

Aa(ty) =0, (17)
wi(t) = max {0, min { A12T; (t), 0.02}} , (18)

1

ub(t) Inax{(), min{m, 0.9}}. (19)

These above optimal controls present an optimal treatment strategy for HIV infections with immune boosting
nutrition and antiretroviral drugs.

=1+ ME)(p+EV* () —ui®) + Xe(t)aV*(t), M (tf) =0, (16)

and

4 Numerical Simulations

The system of nonlinear ordinary differential equations with control functions and objective functional has
been solved using the forward-backward sweep method [17, 19]. The fourth order Runge-Kutta method in
forward is used to solve the states and backward is used to solve the adjoints considering the controls are zero.
After each iteration, the controls are updated from the conditions (18)—(19). For the iterative process, 1152
time-grid for 50 days treatment schedule is considered and the increment of time At = 50/1152 = 0.0434
is used. Since the optimal control problem is solved by indirect method, the convergence tolerance of
cost function at 1078 is acceptable. MATLAB(R2014a) is used to run the program using the value of
parameters from Table 1 with the balancing parameters B; = 250000, B, = 75 and initial conditions
T(0) = 400, V(0) = 2. In this section, this optimal controlled problem is solved in the absence of controls
(i.e. u1(t) =0, uz(t) = 0), with no control (maximum doses) of immune boosting nutrition and antiretroviral
drugs (i.e. ui(t) = 0.02, uz(t) = 0.9) and for optimal immunotherapeutic treatment (i.e. 0 < u;(¢) < 0.02,
0 < ug(t) < 0.9). Using these different control strategies, the value of objective functional, infected virus
particles and CD47T cells are calculated and shown in Table 2 which is sorted by the value of objective
functional. In Table 2, u;(t) = 0 and wuz(t) = 0.9 represent the maximum doses of antiretroviral drugs are
recommended in the absence of immune boosting nutrition. Without immune boosting nutrition, the number
of CD4™ T cells is insufficient (4.565 x 10?) in Figure 3 and the number of infected virus particles is very low
(1.100 x 1073) in Figure 4. We know that the HAART treatment does not cure the infected virus particles
but it can reduce the amount of infected virus particles of HIV infections. We see also that the value of
objective functional for that treatment is 1.8386 x 10* (see Table 2). So, without immune boosting nutrition,
only antiretroviral drugs are not good treatment for HIV infections. Similarly, uq () = 0 and ua(t) = 0 mean
without immune boosting nutrition and no antiretroviral drugs. In this situation, the number of CD4+T
cells is very low (3.815 x 10?) in Table 2 and Figure 1 and the infected virus particles are 10.22 in Table 2
and Figure 2. Since the value of objective functional is 1.9548 x 10*. So, without immune boosting nutrition
and no antiretroviral drugs, it is very bad for HIV infections. Now, u;(t) = 0 and 0 < ug(t) < 0.9 mean
optimal control of antiretroviral drugs in the absence of immune boosting nutrition. Figures 9 and 10 show
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Table 1: Value and Description of the parameters and constants

Sl. Parameters and Description of Parameters and Constants Values

no. constants

1 s1 Source coefficient of CD4TT Cells 2.0

2 So Source coefficient of infected virus particles 1.5

3 I Rate of natural death of CD4TT Cells 0.002

4 A Rate of infected CD4+T Cells 0.00025

5 vy Source coefficient of external virus particles 30

6 Q@ Death rate of infected virus particles for im- 0.007
mune system

7 51 First half-satuaration constant 14

8 B2 Second half-satuaration constant 1

9 T Days of drug doses for HAART 50

10 T CD4™T Cells before HAART 400

11 Vo Infected virus particles before HAART 2

Table 2: Summary of objective functional and states at final time

Sl.  Status of Controls Objective Virus Concen- T  Cells
no. functional trations Count

T ui(t) =0,us(t) =0.9 1.8386x 107 1.100 x 1073 4.565x 102
2 ui(t)=0,ux(t) =0 1.9548 x10*  1.022 x 10* 3.815%10?
3w () =0 & 0< us(t) <0.9 1.9869x10*  9.642 x 10° 4.018x10?
4 wuy(t) =0.02,us(t) = 0.9 2.7820x 10*  5.134 x 10746 1.145x103
5 0<wu(t) <0.02 & uz(t) =09 2.8136x10*  5.718 x 10745 1.038x103
6 wui(t) =0.02,u(t) =0 2.8434x10*  3.155 x 10° 1.035x103
7 0<wu(t) £0.02 & us(t) =0 2.8784x10*  3.619 x 10° 9.277x10?
8 u(t) =0.02 & 0<wuy(t) <0.9 2.9193x10*  2.920 x 10° 1.096x 103
9 0<u(t)<0.02 & 0<wus(t) <0.9 29522x10* 3.331 x 10° 9.886x 102

the states trajectories for the above control strategy. It is interesting that the value of objective functional
1.9869 x 10* for the optimal strategy (see Figures 13 and 14) is greater than the value of objective functional
1.8386 x 10* for the control strategy u;(t) = 0, uz(t) = 0.9. According to the transversality condition of the
optimal controlled problem, the adjoints of states are zero at final time. So, Figures 11 and 12 satisfy the
completeness of the optimal controlled problem. But the number of CD4™ T cells is very low. So, it is not
an appropriate treatment for HIV infections.

Now we will see that the treatment strategy w;(t) = 0.02 and u2(f) = 0.9 means the maximum doses of
antiretroviral drugs and immune boosting nutrition plays a vital role to reduce the infected virus particles
(5.134 x 10~%¢ are close to zero in Table 2 and Figure 8) and build up the CD4T T cells (1.145 x 103 in Table 2
and Figure 7). So, there is no doubt about doses of antiretroviral drugs and immune boosting nutrition. But
the value of objective functional is 2.7820 x 10* which is not maximum. Therefore, it is clinically favorable
for HIV infection but not optimal. If we control only immune boosting nutrition with maximum doses of
antiretroviral drugs (i.e. 0 < u;(t) < 0.02 and wuz(t) = 0.9), then we get the value of objective functional
2.8136 x 10* which is greater than before. But the number of CD4*T cells (see Figure 27) is less than before
and the number of virus particles (see Figure 28) is near to zero. We know that a normal CD4™T cells count
is between 800 and 1500 cells per mm? for a healthy person. So, we consider CD4TT Cells above 950 cells
per mm? for a better healthy person. For the treatment strategy, controls are shown in Figures 31-32 and for
completeness of optimal solution, the adjoint states are shown in Figures 29-30. So, it is a better treatment
than the previous. Now we see an interesting strategy wi(t) = 0.02 and us(t) = 0 means only immune
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Figure 1: CD4™T Cells are reducing rapidly
when no drugs are recommended for treatment
of HIV in absence of immune-boosting nutrition.
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Figure 3: CD4%T Cells are rapidly grown when
no control of antiretroviral drugs (i.e. maximum
doses) in absence of immune-boosting nutrition.
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Figure 5: CD4*T Cells are grown up quickly
when no control of immune-boosting nutrition in
absence of antiretroviral drugs.
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Figure 2: Infectious virus particles expand
quickly when no drugs are recommended for
treatment of HIV in absence of immune-boosting
nutrition.
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Figure 4: Infectious virus particles are reduced
(tends to zero) when no control of antiretrovi-
ral drugs (i.e. maximum doses) in absence of
immune-boosting nutrition.

10

[or]

~

Virus Concentrations
»

0 10 20 30 40 50
Time (days)

Figure 6: Infectious virus particles increase
rapidly to 2 days but decrease after the time
when no control of immune-boosting nutrition in
absence of antiretroviral drugs.
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Figure 7: CD4"T Cells are increased quickly
when no control of immune-boosting nutrition
and antiretroviral drugs.
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Figure 9: CD4'T Cells increase to 27 days but
are depleted finally when optimal control of an-
tiretroviral drugs applied in absence of immune-
boosting nutrition.
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Figure 8: Infectious virus particles are reduced
(tends to zero) when no control of immune-
boosting nutrition and antiretroviral drugs are
used.
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Figure 10: Infectious virus particles increase
quickly to 1 day and linearly increase after the
time when optimal control of antiretroviral drugs
are applied in absence of immune-boosting nutri-
tion.
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boosting nutrition without any antiretroviral drugs. Here, the value of the objective functional proves that
this strategy is better than wu;(t) = 0 and uz(t) = 0.9. The state trajectories are shown in Figures 5-6 and
the value of states at final time is presented in Table 2. So, we decide that immune boosting nutrition is
better than antiretroviral drugs of HIV infections.

+~ 50 2 0
S s
Q T
g 40 £ -1
= [0]
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: s
(2]
[@)] >
9 20 = -3
° S
£10 £ -4
s 5
©
< ) < -5
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Time (days) Time (days)
Figure 11: Adjoint of CD4" T Cells is zero at Figure 12: Adjoint of infected virus particles is
final time when optimal control of antiretroviral zero at final time for optimal control of antiretro-
drugs are applied in absence of immune boosting viral drugs in absence of immune boosting nutri-
nutrition. tion.

Now, we should check the situation for optimal control of immune boosting in the absence of any an-
tiretroviral drugs (i.e. 0 < uy(t) < 0.02 and ug(t) = 0). Here, the number of CD4"T cells is 9.277 x 10? at
final time in Figure 21 and the infected virus particles are 3.619 at final time in Figure 22. But the value of
objective functional 2.8784 x 10* confirm that the optimization is necessary. The optimal control strategies
are shown in Figures 25-26 and the adjoint states are zero at final time (Figures 23 and 24) that prove
the completeness of optimal solution. Since the CD4"T cells are above 950 for a good healthy person. So,
the solution is an optimum but not a good treatment. If we use the maximum immune boosting nutrition
and control on the antiretroviral drugs (i.e. u1(¢t) = 0.02 and 0 < ua(t) < 0.9), we get better CD4TT cells
(1.096 x 10? in Figure 15) and low infected virus particles (2.920 in Figure 16). That control strategies are
shown in Figures 19-20 and adjoint of states are shown in Figures 17-18. If we observe the value of objective
functional for the treatment strategy, then it is clear that this control strategy outperforms the previously
considered strategies. We now examine the control strategy defined by 0 < u1(¢) < 0.02 and 0 < us(t) < 0.9,
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Figure 13: No immune boosting nutrition is ap- Figure 14: Optimal control of antiretroviral

plied. drugs is applied.
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Figure 15: CD4*T Cells are increased quickly
for optimal control of antiretroviral drugs with
no control of immune boosting nutrition.
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Figure 17: Adjoint of CD4TT Cells is zero at final

time for optimal control of antiretroviral drugs
with no control of immune boosting nutrition.
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Figure 19: Maximum food of immune boosting
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finally for optimal control of antiretroviral drugs
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zero at final time for optimal control of antiretro-
viral drugs with no control of immune boosting
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Figure 20: Optimal control of antiretroviral
drugs is taken.
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Figure 21: CD4*T Cells are increased and fi-
nally behaved asymptotically for optimal control
of immune boosting nutrition in absence of an-
tiretroviral drugs.
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Figure 23: Adjoint of CD4+T Cells is zero at
final time for optimal control of immune boosting
nutrition in absence of antiretroviral drugs.
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Figure 22: Infectious virus particles are increased
rapidly in two days but are decreased quickly for

optimal control of immune boosting nutrition in
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Figure 24: Adjoint of infected virus particles is
zero at final time for optimal control of immune
boosting nutrition in absence of antiretroviral
drugs.
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Figure 27: CD4TT Cells are increased and fi-
nally behaved asymptotically for optimal control
of immune boosting nutrition with no control of
antiretroviral drugs.

Figure 28: Infectious virus particles are reduced
(tends to zero) for optimal control of immune
boosting nutrition with no control of antiretro-
viral drugs.

which corresponds to the optimal control of immune boosting nutrition and antiretroviral drugs. Under this
strategy, the objective functional attains its maximum value 2.9522 x 10% (see Table 2) and the number of
CD4™TT cells reaches 9.886 x 10? (see Table 2 and Figure 33). According to the number of CD4"T cells,
the patient exhibits improved health, while the number of infected virus particles remains low (see Figure
34). These results support the conclusion that the proposed optimal control strategies (see Figures 37-38)
provide the optimal treatment for HIV infection. We observe that the adjoints of states are zero at final time
in Figures 35-36. Hence, the optimal immunotherapeutic treatment (see Figures 37-38) does better health
but no cure for HIV infections.

5 Conclusions

Immune boosting nutrition is more effective than the antiretroviral drugs for HIV infections. It is also an
interesting factor that no treatment of HIV infections is better than the treatment with antiretroviral drugs
in absence of immune boosting nutrition based on the value of objective functional. Therefore, people should
know the knowledge of food and nutrition to control the disease. In this study, the two applied two optimal
control strategies are most useful to control virus in human body based HIV model. So, the numerically
analyzed treatment strategies for HIV infections will be recommended in the world.
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Figure 29: Adjoint of CD4TT Cells is zero at
final time for optimal control of immune boosting
nutrition with no control of antiretroviral drugs.
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Figure 31: Optimal control of immune-boosting
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Figure 33: CD4TT Cells are increased and fi-
nally behaved asymptotically for optimal control
of immune boosting nutrition and antiretroviral
drugs.
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Figure 30: Adjoint of infected virus particles is
zero at final time for optimal control of immune
boosting nutrition with no control of antiretrovi-
ral drugs.
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Figure 32: Maximum doses of antiretroviral
drugs is taken.
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Figure 35: Adjoint of CD4+T Cells is zero at
final time for optimal control of immune boosting
nutrition and antiretroviral drugs.
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Figure 37: Optimal control of immune boosting
nutrition is applied.
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Figure 36: Adjoint of infected virus particles is
zero at final time for optimal control of immune
boosting nutrition and antiretroviral drugs.
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