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Abstract

Two fixed point theorems for α-admissible mappings satisfying contractive conditions of integral type
with w-distance in a complete metric space are demonstrated. The results obtained in this paper improve
and generalize some well-known results in the literature. An example is given.

1 Introduction and Preliminaries

Throughout this paper, N denotes the set of all positive integers, N0 = {0} ∪ N, R+ = [0,+∞), R =
(−∞,+∞). Let

Φ1 =

{
ϕ : R+ → R+, ϕ is Lebesgue integrable,

summable on each compact subset of R+ and
∫ ε

0

ϕ(t)dt > 0, ∀ε > 0

}
,

Φ2 =

{
ϕ : ϕ belongs to Φ1 and satisfies

∫ u+v

0

ϕ(t)dt ≤
∫ u

0

ϕ(t)dt+

∫ v

0

ϕ(t)dt, ∀u, v > 0

}
,

Φ3 =

{
ϕ : ϕ : R+ → R+ is nondecreasing in R+ and

∞∑
n=1

ϕn(t) < +∞, ∀t > 0

}
.

It is well known that the Banach fixed point theorem has many generalizations. In 2002, Branciari [7]
extended the Banach fixed point theorem by giving contractive mappings of integral type and established a
fixed point theorem as follows.

Theorem 1 ([7]) Let (X, d) be a complete metric space, ϕ ∈ Φ1, c ∈ (0, 1) and T : X → X be a mapping
satisfying ∫ d(Tx,Ty)

0

ϕ(t)dt ≤ c
∫ d(x,y)

0

ϕ(t)dt, ∀x, y ∈ X. (1)

Then T has a unique fixed point a ∈ X such that limn→∞ Tnx = a for each x ∈ X.

Since then, many fixed point theorems which satisfy different contractive inequalities have been proved
in metric spaces. Particularly, in 2012, Samet et al. [16] introduced the concept of α-ψ-contractive mappings
and proved the following theorems for such mappings.
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140 Fixed Point Results for α-Admissible Mappings

Definition 1 ([16]) Let (X, d) be a metric space, α : X×X → R+ and T : X → X be two given mappings.
If

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1, ∀x, y ∈ X,

then T is called an α-admissible mapping.

Theorem 2 ([16]) Let (X, d) be a complete metric space, α : X ×X → R+, ψ ∈ Φ3 and T : X → X be an
α-ψ-contractive mapping, that is,

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), ∀x, y ∈ X. (2)

Suppose that

(a1) T is α-admissible, that is, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1, ∀x, y ∈ X;

(a2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(a3) T is continuous.

Then T has a fixed point.

Theorem 3 ([16]) Let (X, d) be a complete metric space, α : X ×X → R+, ψ ∈ Φ3 and T : X → X be a
mapping satisfying (2), (a1), (a2) and

(a4) if {xn}n∈N0 is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn → x ∈ X as n→∞,
then α(xn, x) ≥ 1 for all n ∈ N0.

Then T has a fixed point.

In 1996, Kada et al. [12] introduced the concept of w-distance in metric spaces and proved some fixed
point theorems for some contractive mappings under w-distance. Later on, in 2016, Lakzian et al. [14]
introduced the notion of generalized (α-ψ-p)-contractive mappings and proved fixed point results for these
mappings, which extend Theorems 2 and 3.

Definition 2 ([12]) A function p : X ×X → R+ is called a w-distance in X if it satisfies the following:

(p1) p(x, z) ≤ p(x, y) + p(y, z),∀x, y, z ∈ X;

(p2) for each x ∈ X, a mapping p(x, ·) : X → R+ is lower semicontinuous, that is, if {yn}n∈N is a sequence
in X with lim n→∞yn = y ∈ X, then p(x, y) ≤ lim infn→∞ p(x, yn);

(p3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Theorem 4 ([14]) Let p be a w-distance on a complete metric space (X, d), α : X ×X → R+, ψ ∈ Φ3 and
T : X → X be an (α-ψ-p)-contractive mapping, that is,

α(x, y)p(Tx, Ty) ≤ ψ(p(x, y)), ∀x, y ∈ X.

Suppose that

(b1) T is α-admissible, that is, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1, ∀x, y ∈ X;

(b2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(b3) either T is continuous or, for any sequence {xn}n∈N0 in X if α(xn, xn+1) ≥ 1 for all n ∈ N0 and
xn → x ∈ X as n→∞, then α(xn, x) ≥ 1 for all n ∈ N0.

Then there exists a point u ∈ X such that Tu = u. Moreover, if α(u, u) ≥ 1, then p(u, u) = 0.
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Inspired by the ideas in the literature [1-16], especially those in [7] and [14], we give two fixed point
theorems for α-admissible mappings of integral type with w-distance in metric spaces. The results presented
herein extend Theorems 1—4. An example is constructed to support the obtained main results.
The following lemmas play a key role in this paper.

Lemma 1 ([15]) Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn

0

ϕ(t)dt = 0⇐⇒ lim
n→∞

rn = 0.

Lemma 2 ([16]) Let ϕ ∈ Φ3. Then for each t > 0, limn→∞ ϕn(t) = 0 implies ϕ(t) < t.

2 Main Results

In this section, we prove the existence of fixed points and iterative approximations for two new α-admissible
contractive mappings of integral type in a complete metric space with w-distance. The results obtained in
this paper improve and extend Theorems 1—4 mentioned in the previous section.
Our main results are as follows.

Definition 3 A mapping T from a complete metric space (X, d) into itself is said to be a generalized (α-ψ-
p)-contraction of type (A) if there exist α : X × X → R+ and a w-distance p on X and (ϕ,ψ) ∈ Φ2 × Φ3
satisfying

α(x, y)

∫ p(Tx,Ty)

0

ϕ(t)dt ≤ ψ
(∫ M1(x,y)

0

ϕ(t)dt

)
, ∀x, y ∈ X, (3)

where

M1(x, y) = max

{
p(x, y), p(x, Tx),

p(x, y)[1 + p(x, Tx)]

1 + p(x, y)
,
p(x, Tx)[1 + p(x, y)]

1 + p(x, Tx)

}
. (4)

Theorem 5 Let (X, d) be a complete metric space and T : X → X be a generalized (α-ψ-p)-contraction of
type (A) such that

(c1) T is α-admissible, that is, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1, ∀x, y ∈ X;

(c2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

if one of the following conditions holds:

(c3) T is continuous;

(c4) for any sequence {xn}n∈N0 in X if α(xn, xn+1) ≥ 1 for all n ∈ N0 and xn → x ∈ X as n → ∞, then
α(xn, x) ≥ 1 for all n ∈ N0.

Then there exists a point u ∈ X such that Tu = u. Moreover, if α(u, u) ≥ 1, then p(u, u) = 0.

Proof. Let x0 be an arbitrary point in X. Define a sequence {xn}n∈N0 in X by xn+1 = Txn for all
n ∈ N0, where x0 satisfies (c2). Suppose that xn0 = xn0+1 for some n0 ∈ N0. Clearly, xn0 = Txn0 and
limn→∞ Tnx0 = xn0 .
Now, we suppose that xn 6= xn+1 for all n ∈ N0. In light of (c1) and (c2), we obtain that

α(x0, x1) = α(x0, Tx0) ≥ 1 =⇒ α(x1, x2) = α(Tx0, Tx1) ≥ 1. (5)

It is obvious that
α(xn, xn+1) ≥ 1, ∀n ∈ N. (6)
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On the basis of (3), (4), (6) and (ϕ,ψ) ∈ Φ2 × Φ3, we infer that

M1(xn−1, xn) = max

{
p(xn−1, xn), p(xn−1, Txn−1),

p(xn−1, xn)[1 + p(xn−1, Txn−1)]

1 + p(xn−1, xn)
,

p(xn−1, Txn−1)[1 + p(xn−1, xn)]

1 + p(xn−1, Txn−1)

}
= max

{
p(xn−1, xn), p(xn−1, xn),

p(xn−1, xn)[1 + p(xn−1, xn)]

1 + p(xn−1, xn)
,

p(xn−1, xn)[1 + p(xn−1, xn)]

1 + p(xn−1, xn)

}
= p(xn−1, xn)

and

0 ≤
∫ p(xn,xn+1)

0

ϕ(t)dt =

∫ p(Txn−1,Txn)

0

ϕ(t)dt

≤ α(xn−1, xn)

∫ p(Txn−1,Txn)

0

ϕ(t)dt ≤ ψ
(∫ M1(xn−1,xn)

0

ϕ(t)dt

)
= ψ

(∫ p(xn−1,xn)

0

ϕ(t)dt

)
≤ ψn

(∫ p(x0,x1)

0

ϕ(t)dt

)
−→ 0 as n −→∞, (7)

which yields that

lim
n→∞

∫ p(xn,xn+1)

0

ϕ(t)dt = 0. (8)

On account of (8) and Lemma 1, we obtain that

lim
n→∞

p(xn, xn+1) = 0. (9)

Let ε > 0 and δ be defined by (p3). Note that
∑∞
n=1 ψ

n
( ∫ p(x0,x1)

0
ϕ(t)dt

)
< +∞, which implies that there

exists n0 ∈ N such that
∞∑

k=n0

ψk
(∫ p(x0,x1)

0

ϕ(t)dt

)
<

∫ δ

0

ϕ(t)dt. (10)

Next, we show that {xn}n∈N0 is a Cauchy sequence in X. Using (3), (4), (7), (10), (p1) and (ϕ,ψ) ∈
Φ2 × Φ3, we get that∫ p(xn,xm)

0

ϕ(t)dt ≤
∫ ∑m−1

k=n p(xk,xk+1)

0

ϕ(t)dt ≤
m−1∑
k=n

∫ p(xk,xk+1)

0

ϕ(t)dt

≤
m−1∑
k=n

ψk
(∫ p(x0,x1)

0

ϕ(t)dt

)

<

∫ δ

0

ϕ(t)dt, ∀m,n ∈ N with m > n ≥ n0, (11)

which means that
p(xn, xm) < δ, ∀m,n ∈ N with m > n ≥ n0, (12)
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and
p(xn0 , xn) < δ and p(xn0 , xm) < δ, ∀m,n ∈ N with m > n ≥ n0. (13)

In virtue of (13) and (p3), we deduce that

d(xn, xm) < ε, ∀m,n ∈ N with m > n ≥ n0. (14)

Therefore, {xn}n∈N0 is a Cauchy sequence in X. Since (X, d) is complete, there exists a point u ∈ X with

lim
n→∞

xn = u. (15)

Suppose that (c3) holds. By (15) and (c3), we conclude that

u = lim
n→∞

xn+1 = lim
n→∞

Txn = T
(

lim
n→∞

xn
)

= Tu. (16)

Assume that (c4) holds. By means of (6), (15), and (c4), we have

α(xn, u) ≥ 1, ∀n ∈ N0. (17)

Arguing similarly to the proofs of (10)—(12), we get that for arbitrary ε1 > 0 there exists n1 ∈ N satisfying

0 ≤ p(xn, xm) < ε1, ∀m,n ∈ N0 with m > n ≥ n1. (18)

Combining with (p2) and (15), we obtain that

0 ≤ p(xn, u) ≤ lim inf
m→∞

p(xn, xm) ≤ ε1, ∀n ∈ N0 with n ≥ n1, (19)

that is,
lim
n→∞

p(xn, u) = 0. (20)

In view of (3), (4), (9), (17), (20), (ϕ,ψ) ∈ Φ2 × Φ3 and Lemma 2, we receive that

lim
n→∞

M1(xn, u) = lim
n→∞

max

{
p(xn, u), p(xn, Txn),

p(xn, u)[1 + p(xn, Txn)]

1 + p(xn, u)
,

p(xn, Txn)[1 + p(xn, u)]

1 + p(xn, Txn)

}
= lim

n→∞
max

{
p(xn, u), p(xn, xn+1),

p(xn, u)[1 + p(xn, xn+1)]

1 + p(xn, u)
,

p(xn, xn+1)[1 + p(xn, u)]

1 + p(xn, xn+1)

}
= 0

and

0 ≤
∫ p(xn+1,Tu)

0

ϕ(t)dt =

∫ p(Txn,Tu)

0

ϕ(t)dt

≤ α(xn, u)

∫ p(Txn,Tu)

0

ϕ(t)dt ≤ ψ
(∫ M1(xn,u)

0

ϕ(t)dt

)
≤

∫ M1(xn,u)

0

ϕ(t)dt

=

∫ max{p(xn,u),p(xn,xn+1)}

0

ϕ(t)dt −→ 0 as n −→∞, (21)



144 Fixed Point Results for α-Admissible Mappings

which together with Lemma 1 yields that

lim
n→∞

p(xn+1, Tu) = 0. (22)

According to (9), (22) and (p1), we obtain that

0 ≤ p(xn, Tu) ≤ p(xn, xn+1) + p(xn+1, Tu) −→ 0 as n −→∞,

that is,
lim
n→∞

p(xn, Tu) = 0. (23)

Let ε2 > 0. It follows from (p3) that there exists δ1 > 0 such that p(u, v) ≤ δ1 and p(u,w) ≤ δ1 imply that
d(v, w) ≤ ε2. By combining (20) and (23), we find that there exists n2 ∈ N such that p(xn, u) ≤ δ1 and
p(xn, Tu) ≤ δ1 for all n ≥ n2. Therefore, d(u, Tu) ≤ ε2. Taking ε2 → 0+, we arrive at

u = Tu. (24)

Lastly, we certify that p(u, u) = 0 if α(u, u) ≥ 1. Assume that p(u, u) > 0. In terms of (3), (4), (24),
(ϕ,ψ) ∈ Φ2 × Φ3 and Lemma 2, we obtain that

M1(u, u) = max

{
p(u, u), p(u, Tu),

p(u, u)[1 + p(u, Tu)]

1 + p(u, u)
,
p(u, Tu)[1 + p(u, u)]

1 + p(u, Tu)

}
= max

{
p(u, u), p(u, u),

p(u, u)[1 + p(u, u)]

1 + p(u, u)
,
p(u, u)[1 + p(u, u)]

1 + p(u, u)

}
= p(u, u)

and

0 <

∫ p(u,u)

0

ϕ(t)dt =

∫ p(Tu,Tu)

0

ϕ(t)dt

≤ α(u, u)

∫ p(Tu,Tu)

0

ϕ(t)dt ≤ ψ
(∫ M1(u,u)

0

ϕ(t)dt

)
= ψ

(∫ p(u,u)

0

ϕ(t)dt

)
<

∫ p(u,u)

0

ϕ(t)dt,

which is a contradiction. Consequently, p(u, u) = 0. This completes the proof.

Definition 4 A mapping T from a complete metric space (X, d) into itself is said to be a generalized (α-ψ-
p)-contraction of type (B) if there exist α : X ×X → R+, a w-distance p in X and (ϕ,ψ) ∈ Φ2 × Φ3 such
that

α(x, y)

∫ p(Tx,Ty)

0

ϕ(t)dt ≤ ψ
(∫ M2(x,y)

0

ϕ(t)dt

)
, ∀x, y ∈ X,

where

M2(x, y) = max

{
p(x, y), p(x, Tx),

p(x, y) + p(x, Tx)

2[1 + p(x, y)]
,
p(x, Tx) + p(x, y)

2[1 + p(x, Tx)]

}
.

Similarly to the proof of Theorem 5, we have the following result and omit its proof.

Theorem 6 Let (X, d) be a complete metric space and T : X → X be a generalized (α-ψ-p)-contraction of
type (B) such that (c1)—(c4), defined in Theorem 5, hold. Then there exists a point u ∈ X such that Tu = u.
Moreover, if α(u, u) ≥ 1, then p(u, u) = 0.
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Remark 1 It is easy to see that Theorems 5 and 6 extend Theorems 1—4. Example 1 below shows that
Theorem 5 is a proper generalization of Theorem 1.

Example 1 Let X = [0, 12 ] ∪ { 34} ∪ {1} with the usual metric d(x, y) = |x − y| for all x, y ∈ X. Define
p : X ×X → R+, T : X → X, α : X ×X → R+ and ϕ,ψ : R+ → R+ by

p(x, y) = y, ∀x, y ∈ X,

ϕ(t) = 1, ψ(t) =
5

6
t, ∀t ∈ R+,

and

Tx =


3
4x

2, ∀x ∈ [0, 12 ],
1
2 , x = 3

4 ,
3
4 , x = 1,

and α(x, y) =

{
1, ∀x, y ∈ [0, 12 ] ∪ { 34},
0, otherwise.

Obviously, p is a w-distance in X and (ϕ,ψ) ∈ Φ2 × Φ3. Let x, y ∈ X. In order to demonstrate (3), we
need to consider three cases as follows.

Case 1. x ∈ [0, 12 ] ∪ { 34} and y ∈ [0, 12 ]. It is apparent that

α(x, y)

∫ p(Tx,Ty)

0

ϕ(t)dt =

∫ 3
4y

2

0

dt =
3

4
y2 ≤ 5

6
y = ψ(y)

= ψ

(∫ p(x,y)

0

ϕ(t)dt

)
≤ ψ

(∫ M1(x,y)

0

ϕ(t)dt

)
.

Case 2. x ∈ [0, 12 ] ∪ { 34} and y = 3
4 . It is easy to see that

α(x, y)

∫ p(Tx,Ty)

0

ϕ(t)dt =

∫ 1
2

0

dt =
1

2
≤ 5

6
· 3

4
= ψ(

3

4
)

= ψ

(∫ p(x,y)

0

ϕ(t)dt

)
≤ ψ

(∫ M1(x,y)

0

ϕ(t)dt

)
.

Case 3. x /∈ [0, 12 ] ∪ { 34} or y /∈ [0, 12 ] ∪ { 34}. It is obvious that

α(x, y)

∫ p(Tx,Ty)

0

ϕ(t)dt = 0 ≤ ψ
(∫ M1(x,y)

0

ϕ(t)dt

)
.

Therefore, (3) holds. Let x, y ∈ X such that α(x, y) ≥ 1. It follows that x, y ∈ [0, 12 ] ∪ { 34} and

Tx =

{
3
4x

2, ∀x ∈ [0, 12 ],
1
2 , x = 3

4 ,
T y =

{
3
4y
2, ∀y ∈ [0, 12 ],

1
2 , y = 3

4 ,

which mean that Tx ∈ [0, 12 ] and Ty ∈ [0, 12 ], that is, α(Tx, Ty) = 1. Thus, T is an α-admissible mapping.
Taking x0 = 3

4 ∈ X. It is evident that α(x0, Tx0) = α( 34 ,
1
2 ) = 1.

At last, let {xn}n∈N0 be a sequence in X satisfying α(xn, xn+1) ≥ 1,∀n ∈ N0 and xn → x ∈ X as n→∞.
Apparently, xn ∈ [0, 12 ] ∪ { 34},∀n ∈ N0. Because {xn}n∈N0 is a sequence in the closed subset [0, 12 ] ∪ { 34} of
X, we can obtain that the point x belongs to [0, 12 ] ∪ { 34}. Consequently, α(xn, x) = 1 for each n ∈ N0.
That is, the conditions of Theorem 5 are fulfilled. It follows from Theorem 5 that T has a fixed point

0 ∈ X.
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However, Theorem 1 cannot be applied to testify the existence of the fixed point for the mapping T in X.
Assume that the conditions of Theorem 1 are fulfilled. Put y∗ = 3

4 . It is clear that

0 <

∫ 5
16

0

ϕ(t)dt =

∫ d(T 1
2 ,T

3
4 )

0

ϕ(t)dt ≤ c
∫ d( 12 ,

3
4 )

0

ϕ(t)dt <

∫ 1
4

0

ϕ(t)dt ≤
∫ 5

16

0

ϕ(t)dt,

which leads to a contradiction. Hence, we cannot invoke Theorem 1 to verify that the mapping T has a fixed
point in X.
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