

Fixed Point Results For α -Admissible Mappings Of Integral Type With w -Distance*

Xiangshuai Zhang[†], Yali Zhao[‡]

Received 17 March 2025

Abstract

Two fixed point theorems for α -admissible mappings satisfying contractive conditions of integral type with w -distance in a complete metric space are demonstrated. The results obtained in this paper improve and generalize some well-known results in the literature. An example is given.

1 Introduction and Preliminaries

Throughout this paper, \mathbb{N} denotes the set of all positive integers, $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$, $\mathbb{R}^+ = [0, +\infty)$, $\mathbb{R} = (-\infty, +\infty)$. Let

$$\begin{aligned} \Phi_1 &= \left\{ \varphi : \mathbb{R}^+ \rightarrow \mathbb{R}^+, \varphi \text{ is Lebesgue integrable,} \right. \\ &\quad \left. \text{summable on each compact subset of } \mathbb{R}^+ \text{ and } \int_0^\varepsilon \varphi(t) dt > 0, \forall \varepsilon > 0 \right\}, \\ \Phi_2 &= \left\{ \varphi : \varphi \text{ belongs to } \Phi_1 \text{ and satisfies } \int_0^{u+v} \varphi(t) dt \leq \int_0^u \varphi(t) dt + \int_0^v \varphi(t) dt, \forall u, v > 0 \right\}, \\ \Phi_3 &= \left\{ \varphi : \varphi : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \text{ is nondecreasing in } \mathbb{R}^+ \text{ and } \sum_{n=1}^{\infty} \varphi^n(t) < +\infty, \forall t > 0 \right\}. \end{aligned}$$

It is well known that the Banach fixed point theorem has many generalizations. In 2002, Branciari [7] extended the Banach fixed point theorem by giving contractive mappings of integral type and established a fixed point theorem as follows.

Theorem 1 ([7]) *Let (X, d) be a complete metric space, $\varphi \in \Phi_1$, $c \in (0, 1)$ and $T : X \rightarrow X$ be a mapping satisfying*

$$\int_0^{d(Tx, Ty)} \varphi(t) dt \leq c \int_0^{d(x, y)} \varphi(t) dt, \quad \forall x, y \in X. \quad (1)$$

Then T has a unique fixed point $a \in X$ such that $\lim_{n \rightarrow \infty} T^n x = a$ for each $x \in X$.

Since then, many fixed point theorems which satisfy different contractive inequalities have been proved in metric spaces. Particularly, in 2012, Samet et al. [16] introduced the concept of α - ψ -contractive mappings and proved the following theorems for such mappings.

*Mathematics Subject Classifications: 54H25.

[†]Department of Mathematical Sciences, Bohai University, Jinzhou, Liaoning 121013, P. R. China

[‡]Department of Mathematical Sciences, Bohai University, Jinzhou, Liaoning 121013, P. R. China

Definition 1 ([16]) Let (X, d) be a metric space, $\alpha : X \times X \rightarrow \mathbb{R}^+$ and $T : X \rightarrow X$ be two given mappings. If

$$\alpha(x, y) \geq 1 \implies \alpha(Tx, Ty) \geq 1, \quad \forall x, y \in X,$$

then T is called an α -admissible mapping.

Theorem 2 ([16]) Let (X, d) be a complete metric space, $\alpha : X \times X \rightarrow \mathbb{R}^+$, $\psi \in \Phi_3$ and $T : X \rightarrow X$ be an α - ψ -contractive mapping, that is,

$$\alpha(x, y)d(Tx, Ty) \leq \psi(d(x, y)), \quad \forall x, y \in X. \quad (2)$$

Suppose that

- (a1) T is α -admissible, that is, $\alpha(x, y) \geq 1 \implies \alpha(Tx, Ty) \geq 1, \quad \forall x, y \in X$;
- (a2) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$;
- (a3) T is continuous.

Then T has a fixed point.

Theorem 3 ([16]) Let (X, d) be a complete metric space, $\alpha : X \times X \rightarrow \mathbb{R}^+$, $\psi \in \Phi_3$ and $T : X \rightarrow X$ be a mapping satisfying (2), (a1), (a2) and

- (a4) if $\{x_n\}_{n \in \mathbb{N}_0}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \geq 1$ for all $n \in \mathbb{N}_0$ and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha(x_n, x) \geq 1$ for all $n \in \mathbb{N}_0$.

Then T has a fixed point.

In 1996, Kada et al. [12] introduced the concept of w -distance in metric spaces and proved some fixed point theorems for some contractive mappings under w -distance. Later on, in 2016, Lakzian et al. [14] introduced the notion of generalized $(\alpha$ - ψ - p)-contractive mappings and proved fixed point results for these mappings, which extend Theorems 2 and 3.

Definition 2 ([12]) A function $p : X \times X \rightarrow \mathbb{R}^+$ is called a w -distance in X if it satisfies the following:

- (p1) $p(x, z) \leq p(x, y) + p(y, z), \forall x, y, z \in X$;
- (p2) for each $x \in X$, a mapping $p(x, \cdot) : X \rightarrow \mathbb{R}^+$ is lower semicontinuous, that is, if $\{y_n\}_{n \in \mathbb{N}}$ is a sequence in X with $\lim_{n \rightarrow \infty} y_n = y \in X$, then $p(x, y) \leq \liminf_{n \rightarrow \infty} p(x, y_n)$;
- (p3) for any $\varepsilon > 0$, there exists $\delta > 0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \varepsilon$.

Theorem 4 ([14]) Let p be a w -distance on a complete metric space (X, d) , $\alpha : X \times X \rightarrow \mathbb{R}^+$, $\psi \in \Phi_3$ and $T : X \rightarrow X$ be an $(\alpha$ - ψ - p)-contractive mapping, that is,

$$\alpha(x, y)p(Tx, Ty) \leq \psi(p(x, y)), \quad \forall x, y \in X.$$

Suppose that

- (b1) T is α -admissible, that is, $\alpha(x, y) \geq 1 \implies \alpha(Tx, Ty) \geq 1, \quad \forall x, y \in X$;
- (b2) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$;
- (b3) either T is continuous or, for any sequence $\{x_n\}_{n \in \mathbb{N}_0}$ in X if $\alpha(x_n, x_{n+1}) \geq 1$ for all $n \in \mathbb{N}_0$ and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha(x_n, x) \geq 1$ for all $n \in \mathbb{N}_0$.

Then there exists a point $u \in X$ such that $Tu = u$. Moreover, if $\alpha(u, u) \geq 1$, then $p(u, u) = 0$.

Inspired by the ideas in the literature [1-16], especially those in [7] and [14], we give two fixed point theorems for α -admissible mappings of integral type with w -distance in metric spaces. The results presented herein extend Theorems 1-4. An example is constructed to support the obtained main results.

The following lemmas play a key role in this paper.

Lemma 1 ([15]) *Let $\varphi \in \Phi_1$ and $\{r_n\}_{n \in \mathbb{N}}$ be a nonnegative sequence. Then*

$$\lim_{n \rightarrow \infty} \int_0^{r_n} \varphi(t) dt = 0 \iff \lim_{n \rightarrow \infty} r_n = 0.$$

Lemma 2 ([16]) *Let $\varphi \in \Phi_3$. Then for each $t > 0$, $\lim_{n \rightarrow \infty} \varphi^n(t) = 0$ implies $\varphi(t) < t$.*

2 Main Results

In this section, we prove the existence of fixed points and iterative approximations for two new α -admissible contractive mappings of integral type in a complete metric space with w -distance. The results obtained in this paper improve and extend Theorems 1-4 mentioned in the previous section.

Our main results are as follows.

Definition 3 *A mapping T from a complete metric space (X, d) into itself is said to be a generalized $(\alpha\text{-}\psi\text{-}p)$ -contraction of type (A) if there exist $\alpha : X \times X \rightarrow \mathbb{R}^+$ and a w -distance p on X and $(\varphi, \psi) \in \Phi_2 \times \Phi_3$ satisfying*

$$\alpha(x, y) \int_0^{p(Tx, Ty)} \varphi(t) dt \leq \psi \left(\int_0^{M_1(x, y)} \varphi(t) dt \right), \quad \forall x, y \in X, \quad (3)$$

where

$$M_1(x, y) = \max \left\{ p(x, y), p(x, Tx), \frac{p(x, y)[1 + p(x, Tx)]}{1 + p(x, y)}, \frac{p(x, Tx)[1 + p(x, y)]}{1 + p(x, Tx)} \right\}. \quad (4)$$

Theorem 5 *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a generalized $(\alpha\text{-}\psi\text{-}p)$ -contraction of type (A) such that*

(c1) *T is α -admissible, that is, $\alpha(x, y) \geq 1 \implies \alpha(Tx, Ty) \geq 1$, $\forall x, y \in X$;*

(c2) *there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$;*

if one of the following conditions holds:

(c3) *T is continuous;*

(c4) *for any sequence $\{x_n\}_{n \in \mathbb{N}_0}$ in X if $\alpha(x_n, x_{n+1}) \geq 1$ for all $n \in \mathbb{N}_0$ and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha(x_n, x) \geq 1$ for all $n \in \mathbb{N}_0$.*

Then there exists a point $u \in X$ such that $Tu = u$. Moreover, if $\alpha(u, u) \geq 1$, then $p(u, u) = 0$.

Proof. Let x_0 be an arbitrary point in X . Define a sequence $\{x_n\}_{n \in \mathbb{N}_0}$ in X by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}_0$, where x_0 satisfies (c2). Suppose that $x_{n_0} = x_{n_0+1}$ for some $n_0 \in \mathbb{N}_0$. Clearly, $x_{n_0} = Tx_{n_0}$ and $\lim_{n \rightarrow \infty} T^n x_0 = x_{n_0}$.

Now, we suppose that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}_0$. In light of (c1) and (c2), we obtain that

$$\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \geq 1 \implies \alpha(x_1, x_2) = \alpha(Tx_0, Tx_1) \geq 1. \quad (5)$$

It is obvious that

$$\alpha(x_n, x_{n+1}) \geq 1, \quad \forall n \in \mathbb{N}. \quad (6)$$

On the basis of (3), (4), (6) and $(\varphi, \psi) \in \Phi_2 \times \Phi_3$, we infer that

$$\begin{aligned}
M_1(x_{n-1}, x_n) &= \max \left\{ p(x_{n-1}, x_n), p(x_{n-1}, Tx_{n-1}), \frac{p(x_{n-1}, x_n)[1 + p(x_{n-1}, Tx_{n-1})]}{1 + p(x_{n-1}, x_n)}, \right. \\
&\quad \left. \frac{p(x_{n-1}, Tx_{n-1})[1 + p(x_{n-1}, x_n)]}{1 + p(x_{n-1}, Tx_{n-1})} \right\} \\
&= \max \left\{ p(x_{n-1}, x_n), p(x_{n-1}, x_n), \frac{p(x_{n-1}, x_n)[1 + p(x_{n-1}, x_n)]}{1 + p(x_{n-1}, x_n)}, \right. \\
&\quad \left. \frac{p(x_{n-1}, x_n)[1 + p(x_{n-1}, x_n)]}{1 + p(x_{n-1}, x_n)} \right\} \\
&= p(x_{n-1}, x_n)
\end{aligned}$$

and

$$\begin{aligned}
0 &\leq \int_0^{p(x_n, x_{n+1})} \varphi(t) dt = \int_0^{p(Tx_{n-1}, Tx_n)} \varphi(t) dt \\
&\leq \alpha(x_{n-1}, x_n) \int_0^{p(Tx_{n-1}, Tx_n)} \varphi(t) dt \leq \psi \left(\int_0^{M_1(x_{n-1}, x_n)} \varphi(t) dt \right) \\
&= \psi \left(\int_0^{p(x_{n-1}, x_n)} \varphi(t) dt \right) \\
&\leq \psi^n \left(\int_0^{p(x_0, x_1)} \varphi(t) dt \right) \longrightarrow 0 \text{ as } n \longrightarrow \infty, \tag{7}
\end{aligned}$$

which yields that

$$\lim_{n \rightarrow \infty} \int_0^{p(x_n, x_{n+1})} \varphi(t) dt = 0. \tag{8}$$

On account of (8) and Lemma 1, we obtain that

$$\lim_{n \rightarrow \infty} p(x_n, x_{n+1}) = 0. \tag{9}$$

Let $\varepsilon > 0$ and δ be defined by (p₃). Note that $\sum_{n=1}^{\infty} \psi^n \left(\int_0^{p(x_0, x_1)} \varphi(t) dt \right) < +\infty$, which implies that there exists $n_0 \in \mathbb{N}$ such that

$$\sum_{k=n_0}^{\infty} \psi^k \left(\int_0^{p(x_0, x_1)} \varphi(t) dt \right) < \int_0^{\delta} \varphi(t) dt. \tag{10}$$

Next, we show that $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence in X . Using (3), (4), (7), (10), (p₁) and $(\varphi, \psi) \in \Phi_2 \times \Phi_3$, we get that

$$\begin{aligned}
\int_0^{p(x_n, x_m)} \varphi(t) dt &\leq \int_0^{\sum_{k=n}^{m-1} p(x_k, x_{k+1})} \varphi(t) dt \leq \sum_{k=n}^{m-1} \int_0^{p(x_k, x_{k+1})} \varphi(t) dt \\
&\leq \sum_{k=n}^{m-1} \psi^k \left(\int_0^{p(x_0, x_1)} \varphi(t) dt \right) \\
&< \int_0^{\delta} \varphi(t) dt, \quad \forall m, n \in \mathbb{N} \text{ with } m > n \geq n_0, \tag{11}
\end{aligned}$$

which means that

$$p(x_n, x_m) < \delta, \quad \forall m, n \in \mathbb{N} \text{ with } m > n \geq n_0, \tag{12}$$

and

$$p(x_{n_0}, x_n) < \delta \text{ and } p(x_{n_0}, x_m) < \delta, \quad \forall m, n \in \mathbb{N} \text{ with } m > n \geq n_0. \quad (13)$$

In virtue of (13) and (p_3) , we deduce that

$$d(x_n, x_m) < \varepsilon, \quad \forall m, n \in \mathbb{N} \text{ with } m > n \geq n_0. \quad (14)$$

Therefore, $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence in X . Since (X, d) is complete, there exists a point $u \in X$ with

$$\lim_{n \rightarrow \infty} x_n = u. \quad (15)$$

Suppose that $(c3)$ holds. By (15) and $(c3)$, we conclude that

$$u = \lim_{n \rightarrow \infty} x_{n+1} = \lim_{n \rightarrow \infty} Tx_n = T\left(\lim_{n \rightarrow \infty} x_n\right) = Tu. \quad (16)$$

Assume that $(c4)$ holds. By means of (6), (15), and $(c4)$, we have

$$\alpha(x_n, u) \geq 1, \quad \forall n \in \mathbb{N}_0. \quad (17)$$

Arguing similarly to the proofs of (10)–(12), we get that for arbitrary $\varepsilon_1 > 0$ there exists $n_1 \in \mathbb{N}$ satisfying

$$0 \leq p(x_n, x_m) < \varepsilon_1, \quad \forall m, n \in \mathbb{N}_0 \text{ with } m > n \geq n_1. \quad (18)$$

Combining with (p_2) and (15), we obtain that

$$0 \leq p(x_n, u) \leq \liminf_{m \rightarrow \infty} p(x_n, x_m) \leq \varepsilon_1, \quad \forall n \in \mathbb{N}_0 \text{ with } n \geq n_1, \quad (19)$$

that is,

$$\lim_{n \rightarrow \infty} p(x_n, u) = 0. \quad (20)$$

In view of (3), (4), (9), (17), (20), $(\varphi, \psi) \in \Phi_2 \times \Phi_3$ and Lemma 2, we receive that

$$\begin{aligned} \lim_{n \rightarrow \infty} M_1(x_n, u) &= \lim_{n \rightarrow \infty} \max \left\{ p(x_n, u), p(x_n, Tx_n), \frac{p(x_n, u)[1 + p(x_n, Tx_n)]}{1 + p(x_n, u)}, \right. \\ &\quad \left. \frac{p(x_n, Tx_n)[1 + p(x_n, u)]}{1 + p(x_n, Tx_n)} \right\} \\ &= \lim_{n \rightarrow \infty} \max \left\{ p(x_n, u), p(x_n, x_{n+1}), \frac{p(x_n, u)[1 + p(x_n, x_{n+1})]}{1 + p(x_n, u)}, \right. \\ &\quad \left. \frac{p(x_n, x_{n+1})[1 + p(x_n, u)]}{1 + p(x_n, x_{n+1})} \right\} \\ &= 0 \end{aligned}$$

and

$$\begin{aligned} 0 &\leq \int_0^{p(x_{n+1}, Tu)} \varphi(t) dt = \int_0^{p(Tx_n, Tu)} \varphi(t) dt \\ &\leq \alpha(x_n, u) \int_0^{p(Tx_n, Tu)} \varphi(t) dt \leq \psi \left(\int_0^{M_1(x_n, u)} \varphi(t) dt \right) \\ &\leq \int_0^{M_1(x_n, u)} \varphi(t) dt \\ &= \int_0^{\max\{p(x_n, u), p(x_n, x_{n+1})\}} \varphi(t) dt \longrightarrow 0 \text{ as } n \longrightarrow \infty, \end{aligned} \quad (21)$$

which together with Lemma 1 yields that

$$\lim_{n \rightarrow \infty} p(x_{n+1}, Tu) = 0. \quad (22)$$

According to (9), (22) and (p_1) , we obtain that

$$0 \leq p(x_n, Tu) \leq p(x_n, x_{n+1}) + p(x_{n+1}, Tu) \rightarrow 0 \text{ as } n \rightarrow \infty,$$

that is,

$$\lim_{n \rightarrow \infty} p(x_n, Tu) = 0. \quad (23)$$

Let $\varepsilon_2 > 0$. It follows from (p_3) that there exists $\delta_1 > 0$ such that $p(u, v) \leq \delta_1$ and $p(u, w) \leq \delta_1$ imply that $d(v, w) \leq \varepsilon_2$. By combining (20) and (23), we find that there exists $n_2 \in \mathbb{N}$ such that $p(x_n, u) \leq \delta_1$ and $p(x_n, Tu) \leq \delta_1$ for all $n \geq n_2$. Therefore, $d(u, Tu) \leq \varepsilon_2$. Taking $\varepsilon_2 \rightarrow 0^+$, we arrive at

$$u = Tu. \quad (24)$$

Lastly, we certify that $p(u, u) = 0$ if $\alpha(u, u) \geq 1$. Assume that $p(u, u) > 0$. In terms of (3), (4), (24), $(\varphi, \psi) \in \Phi_2 \times \Phi_3$ and Lemma 2, we obtain that

$$\begin{aligned} M_1(u, u) &= \max \left\{ p(u, u), p(u, Tu), \frac{p(u, u)[1 + p(u, Tu)]}{1 + p(u, u)}, \frac{p(u, Tu)[1 + p(u, u)]}{1 + p(u, Tu)} \right\} \\ &= \max \left\{ p(u, u), p(u, u), \frac{p(u, u)[1 + p(u, u)]}{1 + p(u, u)}, \frac{p(u, u)[1 + p(u, u)]}{1 + p(u, u)} \right\} \\ &= p(u, u) \end{aligned}$$

and

$$\begin{aligned} 0 &< \int_0^{p(u, u)} \varphi(t) dt = \int_0^{p(Tu, Tu)} \varphi(t) dt \\ &\leq \alpha(u, u) \int_0^{p(Tu, Tu)} \varphi(t) dt \leq \psi \left(\int_0^{M_1(u, u)} \varphi(t) dt \right) \\ &= \psi \left(\int_0^{p(u, u)} \varphi(t) dt \right) < \int_0^{p(u, u)} \varphi(t) dt, \end{aligned}$$

which is a contradiction. Consequently, $p(u, u) = 0$. This completes the proof. ■

Definition 4 A mapping T from a complete metric space (X, d) into itself is said to be a generalized $(\alpha\text{-}\psi\text{-}p)$ -contraction of type (B) if there exist $\alpha : X \times X \rightarrow \mathbb{R}^+$, a w -distance p in X and $(\varphi, \psi) \in \Phi_2 \times \Phi_3$ such that

$$\alpha(x, y) \int_0^{p(Tx, Ty)} \varphi(t) dt \leq \psi \left(\int_0^{M_2(x, y)} \varphi(t) dt \right), \quad \forall x, y \in X,$$

where

$$M_2(x, y) = \max \left\{ p(x, y), p(x, Tx), \frac{p(x, y) + p(x, Tx)}{2[1 + p(x, y)]}, \frac{p(x, Tx) + p(x, y)}{2[1 + p(x, Tx)]} \right\}.$$

Similarly to the proof of Theorem 5, we have the following result and omit its proof.

Theorem 6 Let (X, d) be a complete metric space and $T : X \rightarrow X$ be a generalized $(\alpha\text{-}\psi\text{-}p)$ -contraction of type (B) such that (c1)–(c4), defined in Theorem 5, hold. Then there exists a point $u \in X$ such that $Tu = u$. Moreover, if $\alpha(u, u) \geq 1$, then $p(u, u) = 0$.

Remark 1 It is easy to see that Theorems 5 and 6 extend Theorems 1–4. Example 1 below shows that Theorem 5 is a proper generalization of Theorem 1.

Example 1 Let $X = [0, \frac{1}{2}] \cup \{\frac{3}{4}\} \cup \{1\}$ with the usual metric $d(x, y) = |x - y|$ for all $x, y \in X$. Define $p : X \times X \rightarrow \mathbb{R}^+$, $T : X \rightarrow X$, $\alpha : X \times X \rightarrow \mathbb{R}^+$ and $\varphi, \psi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ by

$$p(x, y) = y, \quad \forall x, y \in X,$$

$$\varphi(t) = 1, \quad \psi(t) = \frac{5}{6}t, \quad \forall t \in \mathbb{R}^+,$$

and

$$Tx = \begin{cases} \frac{3}{4}x^2, & \forall x \in [0, \frac{1}{2}], \\ \frac{1}{2}, & x = \frac{3}{4}, \\ \frac{3}{4}, & x = 1, \end{cases} \quad \text{and} \quad \alpha(x, y) = \begin{cases} 1, & \forall x, y \in [0, \frac{1}{2}] \cup \{\frac{3}{4}\}, \\ 0, & \text{otherwise.} \end{cases}$$

Obviously, p is a w -distance in X and $(\varphi, \psi) \in \Phi_2 \times \Phi_3$. Let $x, y \in X$. In order to demonstrate (3), we need to consider three cases as follows.

Case 1. $x \in [0, \frac{1}{2}] \cup \{\frac{3}{4}\}$ and $y \in [0, \frac{1}{2}]$. It is apparent that

$$\begin{aligned} \alpha(x, y) \int_0^{p(Tx, Ty)} \varphi(t) dt &= \int_0^{\frac{3}{4}y^2} dt = \frac{3}{4}y^2 \leq \frac{5}{6}y = \psi(y) \\ &= \psi \left(\int_0^{p(x, y)} \varphi(t) dt \right) \leq \psi \left(\int_0^{M_1(x, y)} \varphi(t) dt \right). \end{aligned}$$

Case 2. $x \in [0, \frac{1}{2}] \cup \{\frac{3}{4}\}$ and $y = \frac{3}{4}$. It is easy to see that

$$\begin{aligned} \alpha(x, y) \int_0^{p(Tx, Ty)} \varphi(t) dt &= \int_0^{\frac{1}{2}} dt = \frac{1}{2} \leq \frac{5}{6} \cdot \frac{3}{4} = \psi(\frac{3}{4}) \\ &= \psi \left(\int_0^{p(x, y)} \varphi(t) dt \right) \leq \psi \left(\int_0^{M_1(x, y)} \varphi(t) dt \right). \end{aligned}$$

Case 3. $x \notin [0, \frac{1}{2}] \cup \{\frac{3}{4}\}$ or $y \notin [0, \frac{1}{2}] \cup \{\frac{3}{4}\}$. It is obvious that

$$\alpha(x, y) \int_0^{p(Tx, Ty)} \varphi(t) dt = 0 \leq \psi \left(\int_0^{M_1(x, y)} \varphi(t) dt \right).$$

Therefore, (3) holds. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. It follows that $x, y \in [0, \frac{1}{2}] \cup \{\frac{3}{4}\}$ and

$$Tx = \begin{cases} \frac{3}{4}x^2, & \forall x \in [0, \frac{1}{2}], \\ \frac{1}{2}, & x = \frac{3}{4}, \end{cases} \quad Ty = \begin{cases} \frac{3}{4}y^2, & \forall y \in [0, \frac{1}{2}], \\ \frac{1}{2}, & y = \frac{3}{4}, \end{cases}$$

which mean that $Tx \in [0, \frac{1}{2}]$ and $Ty \in [0, \frac{1}{2}]$, that is, $\alpha(Tx, Ty) = 1$. Thus, T is an α -admissible mapping. Taking $x_0 = \frac{3}{4} \in X$. It is evident that $\alpha(x_0, Tx_0) = \alpha(\frac{3}{4}, \frac{1}{2}) = 1$.

At last, let $\{x_n\}_{n \in \mathbb{N}_0}$ be a sequence in X satisfying $\alpha(x_n, x_{n+1}) \geq 1, \forall n \in \mathbb{N}_0$ and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$. Apparently, $x_n \in [0, \frac{1}{2}] \cup \{\frac{3}{4}\}, \forall n \in \mathbb{N}_0$. Because $\{x_n\}_{n \in \mathbb{N}_0}$ is a sequence in the closed subset $[0, \frac{1}{2}] \cup \{\frac{3}{4}\}$ of X , we can obtain that the point x belongs to $[0, \frac{1}{2}] \cup \{\frac{3}{4}\}$. Consequently, $\alpha(x_n, x) = 1$ for each $n \in \mathbb{N}_0$.

That is, the conditions of Theorem 5 are fulfilled. It follows from Theorem 5 that T has a fixed point $0 \in X$.

However, Theorem 1 cannot be applied to testify the existence of the fixed point for the mapping T in X . Assume that the conditions of Theorem 1 are fulfilled. Put $y^* = \frac{3}{4}$. It is clear that

$$0 < \int_0^{\frac{5}{16}} \varphi(t) dt = \int_0^{d(T\frac{1}{2}, T\frac{3}{4})} \varphi(t) dt \leq c \int_0^{d(\frac{1}{2}, \frac{3}{4})} \varphi(t) dt < \int_0^{\frac{1}{4}} \varphi(t) dt \leq \int_0^{\frac{5}{16}} \varphi(t) dt,$$

which leads to a contradiction. Hence, we cannot invoke Theorem 1 to verify that the mapping T has a fixed point in X .

References

- [1] M. Azhini and S. Z. Rasouli Keneti, Some fixed point results for w -distance, *Int. Math. Forum.*, 9(2014), 1553–1561.
- [2] M. Arshad, E. Ameer and E. Karapinar, Generalized contractions with triangular α -orbital admissible mapping on Branciari metric spaces, *J. Ineq. Appl.*, 63(2016), 1–21.
- [3] U. Aksoy, E. Karapinar and I. M. Erhan, Fixed points of generalized α -admissible contractions on b -metric spaces with an application to boundary value problems, *J. Nonl. Conv. Anal.*, 17(2016), 1095–1108.
- [4] A. S. S. Alharbi, H. H. Alsulami and E. Karapinar, On the power of simulation and admissible functions in metric fixed point theory, *J. Funct. Spaces*, 2017(2017), 1–7.
- [5] H. Aydi, E. Karapinar and H. Yazidi, Modified F -contractions via α -admissible mappings and application to integral equations, *Filomat*, 31(2017), 1141–1148.
- [6] H. Aydi, E. Karapinar and D. Zhang, A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces, *Resu. Math.*, 71(2017), 73–92.
- [7] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, *Int. J. Math. Math. Sci.*, 29(2002), 531–536.
- [8] K. Hammache, E. Karapinar and A. Ould-Hammouda, On admissible weak contractions in b -metric-like space, *J. Math. Anal.*, 8(2017), 167–180.
- [9] E. Karapinar and B. Samet, Generalized $(\alpha\text{-}\psi)$ contractive type mappings and related fixed point theorems with applications, *Abstr. Appl. Anal.*, 2012(2012), 1–17.
- [10] E. Karapinar, Fixed points results for α -admissible mappings of integral type on generalized metric spaces, *Abstr. Appl. Anal.*, 2015(2015), 1–11.
- [11] E. Karapinar and R. P. Agarwal, *Fixed Point Theory in Generalized Metric Spaces*, Synthe. Lect. Math., 2022.
- [12] O. Kada, T. Suzuki and W. Takahaski, Nonconvex minimizations and fixed point theorems in complete metric, *Math. Japon.*, 44(1996), 381–391.
- [13] H. Lakzian, H. Aydi and B. E. Rhoades, Fixed points for (φ, ψ, p) -weakly contractive mappings in metric spaces with w -distance, *Appl. Math. Comput.*, 219(2013), 6777–6782.
- [14] H. Lakzian, D. Gopal and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, *J. Fixed Point Theory Appl.*, 18(2016), 251–266.

- [15] Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, *Fixed Point Theory Appl.*, 64(2011), 1–16.
- [16] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α - ψ -contractive type mappings, *Nonlinear Anal.*, 75(2012), 2154–2165.