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Abstract
Two fixed point theorems for a-admissible mappings satisfying contractive conditions of integral type

with w-distance in a complete metric space are demonstrated. The results obtained in this paper improve
and generalize some well-known results in the literature. An example is given.

1 Introduction and Preliminaries
Throughout this paper, N denotes the set of all positive integers, Ny = {0} UN, RT = [0,4+00), R =
(—00, +00). Let

¢ = {tp :RT — RT, ¢ is Lebesgue integrable,

1>
summable on each compact subset of R™ and / p(t)dt >0, Ve > O} ,
0

utv u v
Dy = {<p :  belongs to ®; and satisfies / p(t)dt < / o(t)dt +/ e(t)dt, Yu,v > O} )
0 0 0

Oy = {@ : ¢ :RT — R" is nondecreasing in R™ and Z P"(t) < o0, Vit > O} )

n=1

It is well known that the Banach fixed point theorem has many generalizations. In 2002, Branciari [7]
extended the Banach fixed point theorem by giving contractive mappings of integral type and established a
fixed point theorem as follows.

Theorem 1 ([7]) Let (X,d) be a complete metric space, ¢ € ®1, c € (0,1) and T : X — X be a mapping
satisfying

d(Tx,Ty) d(z,y)
/ p(t)dt < c/ p(t)dt, Vz,ye X. (1)
0 0
Then T has a unique fixed point a € X such that lim,, ., T™"x = a for each x € X.

Since then, many fixed point theorems which satisfy different contractive inequalities have been proved
in metric spaces. Particularly, in 2012, Samet et al. [16] introduced the concept of a-1)-contractive mappings
and proved the following theorems for such mappings.
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140 Fixed Point Results for a-Admissible Mappings

Definition 1 ([16]) Let (X,d) be a metric space, a: X x X — RT and T : X — X be two given mappings.

If
a(z,y) > 1= a(Tz,Ty) > 1, Vz,ycX,

then T is called an a-admissible mapping.

Theorem 2 ([16]) Let (X,d) be a complete metric space, a: X x X =R, ¢p € @3 and T : X — X be an
a--contractive mapping, that is,

a(z,y)d(Tz, Ty) <¢(d(z,y)), Ve,yeX. (2)
Suppose that
(al) T is a-admissible, that is, a(x,y) > 1 = o(Tx,Ty) > 1, Vz,y < X;
(a2) there exists xg € X such that a(zo, Txo) > 1;
(a3) T is continuous.
Then T has a fized point.

Theorem 3 ([16]) Let (X,d) be a complete metric space, « : X x X = R, ) € D3 and T : X — X be a
mapping satisfying (2), (al), (a2) and

(a4) if {zn}nen, 8 a sequence in X such that oLy, Tny1) > 1 for alln € Ng and z, — x € X as n — oo,
then a(xzy,x) > 1 for all n € Ny.

Then T has a fized point.

In 1996, Kada et al. [12] introduced the concept of w-distance in metric spaces and proved some fixed
point theorems for some contractive mappings under w-distance. Later on, in 2016, Lakzian et al. [14]
introduced the notion of generalized (a-1¢-p)-contractive mappings and proved fixed point results for these
mappings, which extend Theorems 2 and 3.

Definition 2 ([12]) A function p: X x X — R is called a w-distance in X if it satisfies the following:

(p1) p(x,2) < plw,y) +py, 2), Ve, y, 2 € X;

(p2) for each x € X, a mapping p(z,-) : X — R is lower semicontinuous, that is, if {yn }nen is a sequence
in X with im ,,00yn =y € X, then p(z,y) < liminf, . p(z,yn);

(p3) for any e > 0, there exists 6 > 0 such that p(z,x) < § and p(z,y) <6 imply d(x,y) < e.

Theorem 4 ([14]) Let p be a w-distance on a complete metric space (X,d), a: X x X — RT, ¢ € ®3 and
T:X — X be an (a-1-p)-contractive mapping, that is,

a(z,y)p(Tz, Ty) < ¢(p(e,y)), Yo,y X.
Suppose that
(b1) T is a-admissible, that is, a(z,y) > 1 = a(Tx,Ty) > 1, Vz,ye X;
(b2) there exists xy € X such that a(xzo, Txg) > 1;

(b3) either T is continuous or, for any sequence {Tp}nen, 1 X if a(Tn,Tni1) > 1 for all n € Ny and
Tp —x € X asn — oo, then a(xy,x) > 1 for all n € Ny.

Then there exists a point u € X such that Tu = u. Moreover, if a(u,u) > 1, then p(u,u) = 0.
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Inspired by the ideas in the literature [1-16], especially those in [7] and [14], we give two fixed point
theorems for a-admissible mappings of integral type with w-distance in metric spaces. The results presented
herein extend Theorems 1-4. An example is constructed to support the obtained main results.

The following lemmas play a key role in this paper.

Lemma 1 ([15]) Let ¢ € ®1 and {r,}nen be a nonnegative sequence. Then
Tn

lim p(t)dt =0 <= lim r, =0.

n—oo 0 n—oo

Lemma 2 ([16]) Let ¢ € ®35. Then for each t > 0, lim,, o ¢™(t) = 0 implies ¢(t) < t.

2 Main Results

In this section, we prove the existence of fixed points and iterative approximations for two new a-admissible
contractive mappings of integral type in a complete metric space with w-distance. The results obtained in
this paper improve and extend Theorems 1-4 mentioned in the previous section.

Our main results are as follows.

Definition 3 A mapping T from a complete metric space (X, d) into itself is said to be a generalized (c-1)-
p)-contraction of type (A) if there exist a : X x X — R and a w-distance p on X and (p,1) € ®y x P3

satisfying et o)
a(x,y)/o o(t)dt < </O go(t)dt>  VayeX, 3)
where
_ p(z,y)[l + p(x,T2)] p(z,T2)[1 + p(z,y)]
My(o.9) = s {pla. ). pla. 7o), 00 PO ol TG 2 ple )l (@)

Theorem 5 Let (X,d) be a complete metric space and T : X — X be a generalized (a-1p-p)-contraction of
type (A) such that

(c1) T is a-admissible, that is, a(x,y) > 1 = o(Tx,Ty) > 1, Vz,ye€ X;
(c2) there exists xg € X such that oz, Txo) > 1;

if one of the following conditions holds:
(c3) T is continuous;

(c4) for any sequence {xy}nen, 0 X if a(xp,py1) > 1 for alln € Ny and x,, — x € X as n — oo, then
oz, z) > 1 for alln € Ny.

Then there exists a point u € X such that Tu = u. Moreover, if a(u,u) > 1, then p(u,u) = 0.

Proof. Let zy be an arbitrary point in X. Define a sequence {zy}nen, in X by zp11 = Tz, for all
n € Ny, where x satisfies (¢2). Suppose that z,, = 2,41 for some ng € Ny. Clearly, z,, = Tx,, and
limy, oo T @0 = Ty, -

Now, we suppose that x,, # x,1 for all n € Ny. In light of (c1) and (c2), we obtain that

a(zo, 1) = oo, Txo) > 1 = a(x1,22) = a(Txo,Tz1) > 1. (5)

It is obvious that
a(Tn, Tnt1) > 1, VYneN. (6)
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On the basis of (3), (4), (6) and (p, ) € P2 x P35, we infer that

Ml(xnflamn)

and

which yields that

IN

IN

IN

p(xnflv wn)[]- + p(xnfla T$n,1)}
1 + p(xn—ly an)

b

max {p(xnlv xn)vp(xnflv Txnfl)a

p(zn—l) Txn—l)[l +P($n—17 xn)] }
L+ p(@n—1,TTn 1)

p(xn—la xn)[l + p($n—1, :Unﬂ
L+ p(Tp-1,2n)

)

max {p($n—17 x’n)vp(xn—la xn)a

P(Tn—1,70)[1 + p(Trn_1,7n)] }
1 +P($n—17$n)

p(xnflv mn)

p(mTHmn-%—l) p(Tzn—laT:En)
/ oty = [ (1)
0 0
P(TwnflaT'Tn) Ml(l’n—lvwn)
Oé(xnfhmn)/ p(t)dt < ¢</ w(t)di>
0 0

(xnfhwn)
o [T e

P(Io,ﬂh)
1/}"</ go(t)dt) — 0 asn — oo, (7)
0

P(Tn,Tnt1)

lim e(t)dt = 0. (8)

n—oo 0

On account of (8) and Lemma 1, we obtain that

lim p(@, Tpe1) = 0. 9)

n—o0o

Let € > 0 and § be defined by (p3). Note that Y-, wn(fop(mo’zl) ¢(t)dt) < +oo, which implies that there
exists ng € N such that

kio ¢k</0p(m07ml) <p(t)dt> < /05 o(t)dt. (10)

Next, we show that {z,}nren, is a Cauchy sequence in X. Using (3), (4), (7), (10), (p1) and (p,v) €

Py x @3, we get that

p(azn,xm)
/ p(t)dt
0

which means that

m—

1 rp(zi,apy1)
o<y [ o
0 P

m—1 p(z0,71)
>t ( /0 s@(t)dt)
k=n

5
/ p(t)dt, Vm,n € N with m > n > ny, (11)
0

IN

/ZZL_; p(zk,Trt1)

IN

N

P(Tn, Tm) <6, VYm,n €N with m >n > ng, (12)
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and
P(Tng,Tn) <0 and p(xny,Tm) <0, Vm,n € N with m >n > ng. (13)

In virtue of (13) and (p3), we deduce that
d(xp,zm) <e, Vm,n € N with m >n > ng. (14)
Therefore, {x, }nen, is a Cauchy sequence in X. Since (X, d) is complete, there exists a point u € X with
lim z, = u. (15)
n—o0

Suppose that (¢3) holds. By (15) and (¢3), we conclude that

u= lim 2,41 = lim Tz, = T( lim xn) =Tu. (16)

n—oo n—oo n—00

Assume that (c¢4) holds. By means of (6), (15), and (c4), we have
a(xn,u) >1, Vn e Ng. (17)
Arguing similarly to the proofs of (10)—(12), we get that for arbitrary €1 > 0 there exists n; € N satisfying
0 < p(xn,zm) <e1, ¥Ym,n € Ny with m >n >n;. (18)

Combining with (p2) and (15), we obtain that

0 < p(ap,u) <liminf p(z,, 2m) <e1, Vn € Ny with n > nq, (19)
that is,
lim p(z,,u) = 0. (20)

In view of (3), (4), (9), (17), (20), (¢,v) € P2 x P53 and Lemma 2, we receive that

p(xn; U)[l + p(xna T.Tn)}
1+ p(an, u)

)

lim Mi(zn,u) = lim max{p(a:n,u),p(xn,Txn),

n—oo n—o0

p(Tn, Txn)[l + p(xm u)] }
1+ p(xy, Txy,)

p(@n, u) [1 + p(xn, xn+1)}
1+ p(xm U)

b
n—oo

P(@n, Tpi1)[1 + p(@n, u)] }
1+ p(l‘n, xn+1)

= lim max {p($n,u),p(ﬂcmmn+1)7

= 0
and
p(Tny1,Tu) p(Txy,Tu)
0 < / @(t)dt:/ o(t)dt
0 0
(T, Tu) M (zp,u)
< atenw) | eazo [T wwa)
0 0
M1 (zp,u)
< [ e
0

max{p(zn,u),p(Tn,Tn+1)}
/ p(t)dt — 0 as n — oo, (21)

0
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which together with Lemma 1 yields that

lim p(z,41,Tu) =0. (22)
n—oo

According to (9), (22) and (p1), we obtain that
0 < p(xn,Tu) < p(Tn, Tni1) + p(Tnt1, Tu) — 0 as n — oo,

that is,
lim p(x,,Tu) = 0. (23)

n—0o0

Let €5 > 0. It follows from (p3) that there exists §; > 0 such that p(u,v) < §; and p(u,w) < §; imply that
d(v,w) < €y. By combining (20) and (23), we find that there exists ng € N such that p(x,,u) < §; and
p(2n, Tu) < 8y for all n > na. Therefore, d(u, Tu) < €3. Taking e5 — 0T, we arrive at

u=Tu. (24)

Lastly, we certify that p(u,u) = 0 if a(u,u) > 1. Assume that p(u,u) > 0. In terms of (3), (4), (24),
(p,¥) € 3 x &3 and Lemma 2, we obtain that

7 p(u, u)[1 + p(u, Tu)] p(u, Tu)[l + p(u, u)]
Mi(u,u) = max {p(u, u), p(u, Tu), 1+ plu, u) , % p(u, Tu) }

p(u, w)[1 + p(u,w)] plu, w)[1 + p(u, u)] }
1+ p(u, ) ’ 1+ p(u,u)

= max{p(u,u),p(u,?i%
= p(u,u)

and

p(u,u) p(Tu,Tu)
0 < / o(t)dt = / o(t)dt
0 0

p(Tw,Tu) M (u,u)
au) | (1)t < w( / so(t)dt)

p(u,u) p(u,u)
w( /O so(t)dt) < /0 p(b)dt,

which is a contradiction. Consequently, p(u,u) = 0. This completes the proof. m

IN

Definition 4 A mapping T from a complete metric space (X,d) into itself is said to be a generalized (-1)-
p)-contraction of type (B) if there exist a: X x X — RT, a w-distance p in X and (p,v) € &3 X ®3 such

that
p(Tx,Ty) Mo (z,y)
ate) [ w(t)dt<w( / so(t)dt), Va,y € X,
0 0

where

_ p(z,y) + p(z, Tx) ple,Tz) + p(z, y)
o) = e o).t ), PR Bl PR

Similarly to the proof of Theorem 5, we have the following result and omit its proof.

Theorem 6 Let (X,d) be a complete metric space and T : X — X be a generalized (a-1)-p)-contraction of
type (B) such that (c1)-(c4), defined in Theorem 5, hold. Then there exists a point u € X such that Tu = u.
Moreover, if a(u,u) > 1, then p(u,u) = 0.



X. Zhang and Y. Zhao 145

Remark 1 It is easy to see that Theorems 5 and 6 extend Theorems 1—4. FEzample 1 below shows that
Theorem 5 is a proper generalization of Theorem 1.

Example 1 Let X = [0,2] U {2} U {1} with the usual metric d(z,y) = |z —y| for all z,y € X. Define
p: XXX >R, T:X—X,a: XxX—>R" and p,¢: RT - RT by

p(z,y) =y, Va,yeX

PlH)=1, v(H)=t ViR,

and

1, Vz,y €0, %] U {%},

Tx = ]
0, otherwise.

and «az,y) = {

W00 N[ |0

_ 3
.'13—1,
r=1

Obviously, p is a w-distance in X and (p,) € Oy X ®3. Let x,y € X. In order to demonstrate (3), we
need to consider three cases as follows.

Case 1. z € [0, 3] U{2} and y € [0, 3]. It is apparent that

p(Tz,Ty) 2y2 3, 5
aww) [ i = [T de= Tt < 2= )
0 0

Case 2. z € [0,3]U{2} and y = 3. It is easy to see that

p(Tx,Ty) 1 5 3 3
a(z,y) / / dt=-<—--- -
0 2 6 4 <4)
71/) M (z,y)
= < t)dt | < < gp(t)dt) .

Case 3. x ¢ [0,3]U{3} ory ¢ (0,31 U{3}. It is obvious that

p(Tz,Ty) M (z,y)
oz, y) /0 o)t = 0 < ¢( /0 <p(t)dt>.

Therefore, (3) holds. Let z,y € X such that a(z,y) > 1. It follows that z,y € [0, 3] U {2} and
To — {Zl‘27 Va € [072] Ty— {Zy27 Vye [07 %]7
1 L3 1 s
27 4 29 4
which mean that Tz € [0,3] and Ty € [0, %], that is, oc(Ta: Ty) = 1. Thus, T is an a-admissible mapping.

Taking xg = 3 € X. It is evzdent that a(xO,Txo) = a(i, =1

At last, let {Zn}nen, be a sequence in X satisfying a(zy, Tni1) > 1,Vn € Ng and z,, — z € X asn — 0.
Apparently, z, € [0,4]U{3},Vn € Ny. Because {l’n}neNo is a sequence in the closed subset [0, 2] U {3} of
X, we can obtain that the point x belongs to [0, 3] U {3}. Consequently, a(z,,z) =1 for each n € Ny.

That is, the conditions of Theorem 5 are fulfilled. It follows from Theorem 5 that T has a fized point
0eX.
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However, Theorem 1 cannot be applied to testify the existence of the fived point for the mapping T in X.
Assume that the conditions of Theorem 1 are fulfilled. Put y* = %. It is clear that

% AT3,TY) d(3.%) 3 %
0< / p(t)dt = / p(t)dt < c/ p(t)dt < / p(t)dt < / o(t)dt,
0 0 0 0 0

which leads to a contradiction. Hence, we cannot invoke Theorem 1 to verify that the mapping T has a fized
point in X.
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