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Abstract

In this paper, we explore a property of polynomial operators related to a question first posed by Walter
Rudin, a distinguished mathematician famous for his textbooks on Mathematical Analysis. The original
question was whether surjective bilinear operators on complex spaces, like their linear counterparts,
are necessarily open at the origin. This question took just over 50 years to be completely answered
(see Introduction), but similar questions remain for the more general class of polynomial operators. In
particular, we show that polynomial operators, unlike their bilinear cousins, do not have an open mapping
theorem, except for the case where the range has dimension 1. We also consider the topic of Repelling
Points for polynomial operators, which is related to the existence or nonexistence of an open mapping
theorem, and see how this notion further distinguishes the general class of polynomial operators from
multilinear operators.

1 Introduction

Walter Rudin was a well-known 20th-century mathematician renowned for his influential textbooks on Math-
ematical Analysis. In 1969, in his book "Function Theory in Polydiscs" [5], he posed an open question
concerning bilinear operators on complex spaces. In particular, he asked if every surjective bilinear operator
must be open at the origin. Several counterexamples were subsequently given [1], [4], but these relied on the
range space having at least 4 dimensions. The question was finally resolved in 2020 [3], where a positive result
was obtained conditional upon the dimension of the range space. In particular, it is shown that surjective
bilinear operators onto spaces of dimension 3 or smaller must be open at the origin.

Also in [3] was an example showing that the positive result cannot be extended to more general polyno-
mials. The example is that of a polynomial onto C3 which has the origin (in the range) as a repelling point,
a certain pathology which excludes the possibility of openness. In fact, the notions of repelling points and
openness at the origin are equivalent for multilinear operators but not for polynomials. We include here the
definition of repelling point and the example mentioned above for convenience. We also mention that while
open and open at the origin are equivalent for linear operators, they are not for bilinear or more general
operators, and we are primarily concerned here with openness at the origin (as in [5]), and so by an open
mapping theorem we mean that continuous surjective operators in that class must be open at the origin.

Definition 1 Let f : X — Y be a function between topological vector spaces. A pointy € Y is a repelling
point for f if no neighborhood of y is the image of a bounded subset of X under f.

We mention that functions which have repelling points are easy to construct if the functions are not
assumed to be continuous or surjective. However, imposing these two conditions makes the existence of
repelling points much more restrictive. In fact, a function with a repelling point cannot be open at any
preimage of that point. In particular, the Open Mapping Theorem for linear operators guarantees that no
surjective linear operator can have a repelling point. Also in [3], it is shown that no surjective bilinear
operator with range of dimension 3 or smaller can have a repelling point either. What made the notion
of repelling points interesting initially was that for multilinear operators (more generally n-homogeneous),
having the origin be a repelling point is equivalent to the operator not being open at the origin. We note
this in the following lemma, :
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Lemma 1 Let f: X — Y be a surjective n-homogeneous operator between normed vector spaces. Then f is
open at the origin if and only if 0 is not a repelling point for f.

Proof. Since f is n-homogeneous, f(0x) = Oy. If f is open at Ox, then Oy is interior to f(Bx(0,1)) and
so Oy is not repelling for f. Now assume that Oy is not repelling for f. Let W be any neighborhood of Ox.
Since Oy is not repelling, there exist M > 0 and € > 0 such that By(0,¢) C f(Bx(0,M)). Let Bx(0,6) C W.
Assume that 6 < 1. Then

n n

F(Bx(0,8)) = F(3 Be(0, M) = 2= F(Bx(0,M)) 2 Lo By(0,0)

|

The example mentioned above of a surjective polynomial which has the origin as a repelling point is given
below. Note that the complement of the set of repelling points in the range of an operator is easily seen to
be an open set, so that the set of repelling points is closed.

Example 1 Define B : C2 x C x C? — C3 by B(w,y,2) = (x121,T122,T122y + T221). To see that B is
surjective, let (a,b,c) € C3 and first assume that a = b = 0. Then we choose x1 = 0, x5 = 1 and z; = c.
If a =0 and b # 0, then we choose 21 = 0, &1 = 1, zo = b and y = §. Similarly, if a # 0 and b = 0, then
we choose zp = 0, x1 = 1, 21 = a and x2 = <. Finally, if a # 0 and b # 0, then we choose x1 = 1, z1 = a,
29 =b, 13 =0 and y = §. Now, we claim that (0,0,1) is a repelling point for B. To see this, we consider
the path of points (t2,t,1) — (0,0,1) ast — 0. Then B(x,y,z) = (t3,t,1). It implies that 2, = %, 2y = ﬁ
and ty + IQ% = 1. Hence, y + xgxil = % and so Y + Tozo = %, which shows that at least one of y, x2, 22
must be large in norm, and (0,0,1) is a repelling point for B. Moreover, using the same argument as above,
(0,0, ) is a repelling point as well for any fixred nonzero . Finally, as the set of repelling points is closed,

letting oo — 0 we see in fact that (0,0,0) is a repelling point for B and B is not open at the origin.

Note that the construction in Example 1 would be impossible if the operator were bilinear, but the
'y’ coordinate makes the operator not bilinear and this somewhat subtle change allows a pathology like a
repelling point to exist. So we know now that surjective bilinear operators cannot have 0 as a repelling point
if the range is of dimension 3 or smaller, but general polynomials can. Two natural questions thus arise. The
first is what about polynomials whose range is of dimension 2 or smaller and the second is whether Lemma
1 extends to general polynomials, namely, can a polynomial fail to be open at the origin without having a
repelling point there. We address both of these below.

2 Main Results

Lemma 2 below gives an example of a surjective polynomial which is not open at the origin but for which 0
is not a repelling point, showing that unlike their multilinear cousins, these two properties are not equivalent
for general polynomials.

In what follows, for two polynomials P and @ in the variables x,y1,...,y,, we will use the notation
Res®(P, Q) for the resultant of P and @) when viewed as polynomials in z, so that Res” (P, Q) is a polynomial
inyp,...,ys. Also, we will use P* and Q% to refer to P and ) as polynomials in z with polynomial coefficients
in the other variables and P*(yi,...,yr) to mean P* with coefficients evaluated at the values y1, ..., yk.

Lemma 2 There exists a continuous surjective polynomial onto C? which is not open at the origin and for
which 0 is not a repelling point.

Proof. Define f : C?> — C% by f(x,y) = (v?x + >, (y + 1)x + 3% + ). We claim that f is surjective, not
open at the origin but 0 is not a repelling point of f. To see that f is onto, let (z,w) € C2.

Case 1: If z =0, then we choose y = 0 and = = w.

Case 2: If w =0, then we choose y = —1 and =z = z + 1.
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Case 3: If z and w are both nonzero, a preimage of (z,w) will be a pair (z,y) so that x is a common root
of the two polynomials P — z = y?z +y®> —z and Q —w = (y + 1)z + y*> + y — w, where we view P
and @ as polynomials in the variable x with coefficients that are polynomial functions in y. Such a

7
root x exists if y is a root of Res” (P — 2z,Q — w) = —wy? + 2y + z, which has roots y = =2=Yzt1zw W.

Moreover, since z and w are nonzero, y is nonzero, and one can check that either of these choices of y
— 3 . . .
along with z = % gives a preimage of (z,w), and we see that f is onto.

We now show that f is not open at the origin. To see this, consider points of the form (z,0) where z # 0.
Then

.3
Fla,y) = (2,0) = y#£0 — <y+1><zy2y )4 4y =0 = 2(y+1)=0 = y=—1.

In particular, for § < 1, f(Bc2(0,0)) does not contain Bcz(0,¢€) for any € > 0 and we see that f is not open
at the origin.

Finally, we show that preimages of (z,w), as (z,w) ranges over Bcz(0,1), can be chosen in a uniformly
bounded way, which will show that f does not have 0 as a repelling point. For (z,w) € Bez2(0,1), if w =0
then we can let y = —1 and z = z + 1 and thus max{|z|, |y|} < 2. Thus we assume w # 0, so that y # —1
and choose y to be the root

Yzw

met VRN
—ZW

and choose

s V214
Yzow = : ; +Awz if z = —V22.
—ZW

First assume that || > 1, and let M; be a uniform upper bound on |v/#2 + 4¢| for [¢| < } in C2. Then

z + |22 z 1
Z = Zl< = )
><|w w2+4w|*2(4+M1)

If |%| < i, then we express Y, as Yz,u = 2 X 1=vIi+D V[%J“D where D = 477”. Then |D| < 1 and so y, ., has series
representation

Yz w| =

DN =

__1. D D2+5D3
Yoo =79 T T 96 T8

which clearly has upper bound

1 5
+ =+ —

1 1
My==+=
2= 575" 16" 128

and we see that, in either case,
1
[Y20] < M = max{z (4 + M), Ma}.

Finally, for any preimage (z,y) of (z,w), w #0 = y # —1, and

2 w .z w
r=— —9y=—— - =
e YTy Y v oy+1
If |y.w| < 3, then
o 1 > 1o > £ = 19 9 oy 1?
- = _— T - =,
Yzw Yzw 2 |yz7w+1| 2 9
Otherwise,
|yz,w‘ > - = |z S ~Yzw| < 7 +M
Z,W 1
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Thus, we see that for any (z,w) € Bcz(0,1) there is a preimage (z,y) with |z| < max{2,4M} and |y| < M
and 0 is not a repelling point of f. m

Polynomials onto C are open mappings and therefore cannot have repelling points. Example 1 shows that
if the range is 3-dimensional (or greater) then polynomials can have repelling points, so the only dimension
unaccounted for is dimension 2. Theorem 1 below gives conditions under which a polynomial onto C? cannot
have 0 as a repelling point. We will need the following definition.

Definition 2 Two polynomials P and Q in the variables x,y,ya, - . . , Yn are xy-robust if, after fixing yo, ... yn
(if n > 2) at some values, we have

P'=apz"+...+a1x+ag and Q° =b,x™ +...+bix+ by
and they are such that min{n,m} > 1 and an,b,, have no roots y in common.

Example 2 Let P(z,y) = y2? +y = (22 + 1)y and Q(z,y) = y*x. Then P and Q are not xy-robust as y
and y? share the root y =0, but P and Q are yx-robust as x> + 1 and x have no root in common.

Before stating our main theorem we note here three facts which will be used in the proof. By || - | we
mean the max norm both for polynomials and vectors.

Note 1: For nonconstant polynomials, their roots change continuously with their coefficients. In particular,
if h is a nonzero polynomial with a finite set of roots ry,...,rk, then for any é > 0, there is an € > 0
such that ||h — ¢g|]| < €. Then g has roots within ¢ of r1,...,r after ordering appropriately.

Note 2: For two polynomials P and @ of two variables z and y, yo is a root of Res”(P, Q) if and only if
either there exists an xo such that P(xg,yo) = Q(x0,y0) = 0, or DegP*(yy) < DegP® and DegQ*(yo) <

DegQ®.

Note 3: For two polynomials P and @ in the variables z and y, and (z,w) € C2, Res"(P — 2,Q — w) =
Res® (P, Q)+¢(z, w) where ¢(z, w) is a polynomial in y with coefficients in z and w so that ||¢(z, w)|| — 0
as (z,w) — (0,0).

While the proof of Note 3 is elementary (and can be done by induction) we offer the following simple
example to illustrate:

Example 3 Let P(z,y) = y?z? + yz and Q(z,y) = y*z +y+ 1. Then

y2 y3 0
Res"(P,Q)=|y y+1 ¢* |=—y"+2°+¢
0 0 y+1
and
y? y? 0
Res"(P—z,Q—w)=|y y+1—-w y? = -’ +2° + 7 + ¢(z,w)
— 0 y+1—w
where

o(z,w) = y*w? + (y* — 2¢° — 2y°)w — 3%

Theorem 1 Let f = (P,Q) be a surjective polynomial onto C2. If f has variables © and y such that
Res™ (P, Q) is nonconstant and P, Q are xy-robust, then f does not have 0 as a repelling point.

Proof. By the hypothesis, we assume that f is a function of just z and y. Let

PP=apz"+...4+a1x+ a9 and Q¥ =bnpx™ + ...+ bx+ by
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where a; and b; are polynomials in y. As Res”(P, () is nonconstant, it has a finite set of roots which change
continuously with its coefficients. Let yg be such a root, and assume w.l.o.g that yq is not a root of a,
(P, Q@ are xy-robust). Accordingly, P*(yo) is a non-constant polynomial (n > 1) with a finite set of roots
29,29, ...,29. Let €; be such that || P*(yo) —g|| < €1. Then the roots of g are within 1 of these (after ordering
appropriately). By the continuity of the coefficients of P*, there is an €y small enough so that |y’ — yo| < €.
Then both || P*(yo) — P*(y')] < 9 and ' is also not a root of a,,. Let €5 be such that ||Res”(P,Q) — hl| < es.
Then their roots are within €p, and Let €3 be such that ||(z,w)| < e3. Then ||¢(z,w)| < €2, where ¢(z, w)
is as in Note 3.
Finally, let € = min{eg, §, €2, €e3}. Then for [|(z,w)| < €, we have that

[Res™(P, @) — Res™(P — 2,@Q — w)| = [[Res"(P, Q) — (Res™ (P, Q) — ¢(z,w))[| = [[¢(z, w)|| < e2.
Then Res “(P — z,Q — w) has a root y, , with ||y,.» — yol| < €. It follows that
1P*(yo) = (P*(yz) = 2) || < [[P*(y0) = P*(yzw)ll + |2 < 1.

So P*(y, ) —% has aroot x, ,, within 1 of one of 29,29, .. ,mg. Moreover, as ¥, is not a root of a,,, by Note
2, x4 corresponds to a common root of P*(y, .,) —z and Q% (y,,») —w. In particular, f(z, ., Yz w) = (2, w)
and

122 41, yol + €0}

As these bounds are uniform for ||(z,w)| < €, f cannot have 0 as a repelling point. m

(%20, Yzw)|l < max{max{|x(1)|, |$(2)|a ..

3 Known Results

As of the writing of this article, Table 1 below summarizes what is known for classes of operators regarding
open mapping theorems and or repelling points:

Table 1

Operator Class | Largest Dimension | Smallest Dimension | Open at 0 equiv-
Continuous ~ And | Of Range For Open | Of Range Origin | alent to  Non-
Surjective Mapping Theorem | Can Be Repelling Repelling At 0
Linear 00 N/A Yes

Bilinear 3 4 Yes

Multilinear 20r3 3or4 Yes

Polynomial 1 2o0r 3 No

General Unknown unknown No

4 Conclusion

The operator in Lemma 2 settles the question of open mapping theorems for polynomials according to the
dimension of the range space. Moreover, it is interesting to note that this operator does not meet the
hypothesis of Theorem 1 as both Res”(P, Q) and Res”(P, Q) are identically zero, and so the existence of a
surjective polynomial onto C? for which 0 is a repelling point is still in question. Moreover, as seen in Table
1, there are also unresolved questions for multilinear operators regarding the dimension of the range space.
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