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Abstract
In this paper, we explore a property of polynomial operators related to a question first posed by Walter

Rudin, a distinguished mathematician famous for his textbooks on Mathematical Analysis. The original
question was whether surjective bilinear operators on complex spaces, like their linear counterparts,
are necessarily open at the origin. This question took just over 50 years to be completely answered
(see Introduction), but similar questions remain for the more general class of polynomial operators. In
particular, we show that polynomial operators, unlike their bilinear cousins, do not have an open mapping
theorem, except for the case where the range has dimension 1. We also consider the topic of Repelling
Points for polynomial operators, which is related to the existence or nonexistence of an open mapping
theorem, and see how this notion further distinguishes the general class of polynomial operators from
multilinear operators.

1 Introduction

Walter Rudin was a well-known 20th-century mathematician renowned for his influential textbooks on Math-
ematical Analysis. In 1969, in his book "Function Theory in Polydiscs" [5], he posed an open question
concerning bilinear operators on complex spaces. In particular, he asked if every surjective bilinear operator
must be open at the origin. Several counterexamples were subsequently given [1], [4], but these relied on the
range space having at least 4 dimensions. The question was finally resolved in 2020 [3], where a positive result
was obtained conditional upon the dimension of the range space. In particular, it is shown that surjective
bilinear operators onto spaces of dimension 3 or smaller must be open at the origin.
Also in [3] was an example showing that the positive result cannot be extended to more general polyno-

mials. The example is that of a polynomial onto C3 which has the origin (in the range) as a repelling point,
a certain pathology which excludes the possibility of openness. In fact, the notions of repelling points and
openness at the origin are equivalent for multilinear operators but not for polynomials. We include here the
definition of repelling point and the example mentioned above for convenience. We also mention that while
open and open at the origin are equivalent for linear operators, they are not for bilinear or more general
operators, and we are primarily concerned here with openness at the origin (as in [5]), and so by an open
mapping theorem we mean that continuous surjective operators in that class must be open at the origin.

Definition 1 Let f : X → Y be a function between topological vector spaces. A point y ∈ Y is a repelling
point for f if no neighborhood of y is the image of a bounded subset of X under f .

We mention that functions which have repelling points are easy to construct if the functions are not
assumed to be continuous or surjective. However, imposing these two conditions makes the existence of
repelling points much more restrictive. In fact, a function with a repelling point cannot be open at any
preimage of that point. In particular, the Open Mapping Theorem for linear operators guarantees that no
surjective linear operator can have a repelling point. Also in [3], it is shown that no surjective bilinear
operator with range of dimension 3 or smaller can have a repelling point either. What made the notion
of repelling points interesting initially was that for multilinear operators (more generally n-homogeneous),
having the origin be a repelling point is equivalent to the operator not being open at the origin. We note
this in the following lemma :
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Lemma 1 Let f : X→ Y be a surjective n-homogeneous operator between normed vector spaces. Then f is
open at the origin if and only if 0 is not a repelling point for f .

Proof. Since f is n-homogeneous, f(0X) = 0Y. If f is open at 0X, then 0Y is interior to f(BX(0, 1)) and
so 0Y is not repelling for f . Now assume that 0Y is not repelling for f . Let W be any neighborhood of 0X.
Since 0Y is not repelling, there exist M > 0 and ε > 0 such that BY(0, ε) ⊆ f(BX(0,M)). Let BX(0, δ) ⊆W.
Assume that δ < 1. Then

f(BX(0, δ)) = f(
δ

M
BX(0,M)) =

δn

Mn
f(BX(0,M)) ⊇

δn

Mn
BY(0, ε).

The example mentioned above of a surjective polynomial which has the origin as a repelling point is given
below. Note that the complement of the set of repelling points in the range of an operator is easily seen to
be an open set, so that the set of repelling points is closed.

Example 1 Define B : C2 × C × C2 → C3 by B(x, y, z) = (x1z1, x1z2, x1z2y + x2z1). To see that B is
surjective, let (a, b, c) ∈ C3 and first assume that a = b = 0. Then we choose x1 = 0, x2 = 1 and z1 = c.
If a = 0 and b 6= 0, then we choose z1 = 0, x1 = 1, z2 = b and y = c

b . Similarly, if a 6= 0 and b = 0, then
we choose z2 = 0, x1 = 1, z1 = a and x2 = c

a . Finally, if a 6= 0 and b 6= 0, then we choose x1 = 1, z1 = a,
z2 = b, x2 = 0 and y = c

b . Now, we claim that (0, 0, 1) is a repelling point for B. To see this, we consider

the path of points (t2, t, 1)→ (0, 0, 1) as t→ 0. Then B(x, y, z) = (t2, t, 1). It implies that z1 = t2

x1
, z2 =

t
x1

and ty + x2
t2

x1
= 1. Hence, y + x2

t
x1
= 1

t and so y + x2z2 =
1
t , which shows that at least one of y, x2, z2

must be large in norm, and (0, 0, 1) is a repelling point for B. Moreover, using the same argument as above,
(0, 0, α) is a repelling point as well for any fixed nonzero α. Finally, as the set of repelling points is closed,
letting α→ 0 we see in fact that (0, 0, 0) is a repelling point for B and B is not open at the origin.

Note that the construction in Example 1 would be impossible if the operator were bilinear, but the
′y′ coordinate makes the operator not bilinear and this somewhat subtle change allows a pathology like a
repelling point to exist. So we know now that surjective bilinear operators cannot have 0 as a repelling point
if the range is of dimension 3 or smaller, but general polynomials can. Two natural questions thus arise. The
first is what about polynomials whose range is of dimension 2 or smaller and the second is whether Lemma
1 extends to general polynomials, namely, can a polynomial fail to be open at the origin without having a
repelling point there. We address both of these below.

2 Main Results

Lemma 2 below gives an example of a surjective polynomial which is not open at the origin but for which 0
is not a repelling point, showing that unlike their multilinear cousins, these two properties are not equivalent
for general polynomials.
In what follows, for two polynomials P and Q in the variables x, y1, . . . , yn, we will use the notation

Resx(P,Q) for the resultant of P and Q when viewed as polynomials in x, so that Resx(P,Q) is a polynomial
in y1, . . . , yn. Also, we will use P x and Qx to refer to P and Q as polynomials in x with polynomial coeffi cients
in the other variables and P x(y1, . . . , yk) to mean P x with coeffi cients evaluated at the values y1, . . . , yk.

Lemma 2 There exists a continuous surjective polynomial onto C2 which is not open at the origin and for
which 0 is not a repelling point.

Proof. Define f : C2 → C2 by f(x, y) = (y2x + y3, (y + 1)x + y2 + y). We claim that f is surjective, not
open at the origin but 0 is not a repelling point of f . To see that f is onto, let (z, w) ∈ C2.

Case 1: If z = 0, then we choose y = 0 and x = w.

Case 2: If w = 0, then we choose y = −1 and x = z + 1.
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Case 3: If z and w are both nonzero, a preimage of (z, w) will be a pair (x, y) so that x is a common root
of the two polynomials P − z = y2x + y3 − z and Q − w = (y + 1)x + y2 + y − w, where we view P
and Q as polynomials in the variable x with coeffi cients that are polynomial functions in y. Such a

root x exists if y is a root of Resx(P − z,Q− w) = −wy2 + zy + z, which has roots y = −z
+
−
√
z2+4zw
−2w .

Moreover, since z and w are nonzero, y is nonzero, and one can check that either of these choices of y
along with x = z−y3

y2 gives a preimage of (z, w), and we see that f is onto.

We now show that f is not open at the origin. To see this, consider points of the form (z, 0) where z 6= 0.
Then

f(x, y) = (z, 0) =⇒ y 6= 0 =⇒ (y + 1)(
z − y3
y2

) + y2 + y = 0 =⇒ z(y + 1) = 0 =⇒ y = −1.

In particular, for δ < 1, f(BC2(0, δ)) does not contain BC2(0, ε) for any ε > 0 and we see that f is not open
at the origin.
Finally, we show that preimages of (z, w), as (z, w) ranges over BC2(0, 1), can be chosen in a uniformly

bounded way, which will show that f does not have 0 as a repelling point. For (z, w) ∈ BC2(0, 1), if w = 0
then we can let y = −1 and x = z + 1 and thus max{|x|, |y|} ≤ 2. Thus we assume w 6= 0, so that y 6= −1
and choose y to be the root

yz,w =
−z +

√
z2 + 4wz

−2w if z =
√
z2

and choose

yz,w =
−z −

√
z2 + 4wz

−2w if z = −
√
z2.

First assume that |wz | ≥
1
4 , and let M1 be a uniform upper bound on |

√
t2 + 4t| for |t| ≤ 1

4 in C
2. Then

|yz,w| =
1

2
× | z

w

+
−
√
z2

w2
+ 4

z

w
| ≤ 1

2
(4 +M1).

If |wz | <
1
4 , then we express yz,w as yz,w = 2×

1−
√
1+D
D where D = 4w

z . Then |D| < 1 and so yz,w has series
representation

yz,w = −
1

2
+
D

8
− D2

16
+
5D3

128
− . . . ,

which clearly has upper bound

M2 =
1

2
+
1

8
+
1

16
+

5

128
. . .

and we see that, in either case,

|yz,w| < M = max{1
2
(4 +M1),M2}.

Finally, for any preimage (x, y) of (z, w), w 6= 0 =⇒ y 6= −1, and

x =
z

y2
− y = w

y + 1
− y =⇒ z

y2
=

w

y + 1
.

If |yz,w| < 1
2 , then

|yz,w + 1| > 1− |yz,w| >
1

2
=⇒ |w|

|yz,w + 1|
< 2 =⇒ |x| < 2 + 1

2
=
3

2
.

Otherwise,

|yz,w| ≥
1

2
=⇒ |x| =

∣∣∣∣ z

y2z,w
− yz,w

∣∣∣∣ < 1
1
4

+M.
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Thus, we see that for any (z, w) ∈ BC2(0, 1) there is a preimage (x, y) with |x| ≤ max{ 32 , 4M} and |y| < M
and 0 is not a repelling point of f .
Polynomials onto C are open mappings and therefore cannot have repelling points. Example 1 shows that

if the range is 3-dimensional (or greater) then polynomials can have repelling points, so the only dimension
unaccounted for is dimension 2. Theorem 1 below gives conditions under which a polynomial onto C2 cannot
have 0 as a repelling point. We will need the following definition.

Definition 2 Two polynomials P and Q in the variables x, y, y2, . . . , yn are xy-robust if, after fixing y2, . . . yn
(if n > 2) at some values, we have

P x = anx
n + . . .+ a1x+ a0 and Qx = bmx

m + . . .+ b1x+ b0

and they are such that min{n,m} ≥ 1 and an, bm have no roots y in common.

Example 2 Let P (x, y) = yx2 + y = (x2 + 1)y and Q(x, y) = y2x. Then P and Q are not xy-robust as y
and y2 share the root y = 0, but P and Q are yx-robust as x2 + 1 and x have no root in common.

Before stating our main theorem we note here three facts which will be used in the proof. By ‖ · ‖ we
mean the max norm both for polynomials and vectors.

Note 1: For nonconstant polynomials, their roots change continuously with their coeffi cients. In particular,
if h is a nonzero polynomial with a finite set of roots r1, . . . , rk, then for any δ > 0, there is an ε > 0
such that ‖h− g‖ < ε. Then g has roots within δ of r1, . . . , rk after ordering appropriately.

Note 2: For two polynomials P and Q of two variables x and y, y0 is a root of Res
x(P,Q) if and only if

either there exists an x0 such that P (x0, y0) = Q(x0, y0) = 0, or DegP x(y0) < DegP x and DegQx(y0) <
DegQx.

Note 3: For two polynomials P and Q in the variables x and y, and (z, w) ∈ C2, Resx(P − z,Q − w) =
Resx(P,Q)+φ(z, w) where φ(z, w) is a polynomial in y with coeffi cients in z and w so that ‖φ(z, w)‖ → 0
as (z, w)→ (0, 0).

While the proof of Note 3 is elementary (and can be done by induction) we offer the following simple
example to illustrate:

Example 3 Let P (x, y) = y2x2 + yx and Q(x, y) = y3x+ y + 1. Then

Resx(P,Q) =

∣∣∣∣∣∣
y2 y3 0
y y + 1 y3

0 0 y + 1

∣∣∣∣∣∣ = −y5 + 2y3 + y2
and

Resx(P − z,Q− w) =

∣∣∣∣∣∣
y2 y3 0
y y + 1− w y3

−z 0 y + 1− w

∣∣∣∣∣∣ = −y5 + 2y3 + y2 + φ(z, w)
where

φ(z, w) = y2w2 + (y4 − 2y3 − 2y2)w − y6z.

Theorem 1 Let f = (P,Q) be a surjective polynomial onto C2. If f has variables x and y such that
Resx(P,Q) is nonconstant and P,Q are xy-robust, then f does not have 0 as a repelling point.

Proof. By the hypothesis, we assume that f is a function of just x and y. Let

P x = anx
n + . . .+ a1x+ a0 and Qx = bmx

m + . . .+ b1x+ b0
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where ai and bj are polynomials in y. As Res
x(P,Q) is nonconstant, it has a finite set of roots which change

continuously with its coeffi cients. Let y0 be such a root, and assume w.l.o.g that y0 is not a root of an
(P,Q are xy-robust). Accordingly, P x(y0) is a non-constant polynomial (n ≥ 1) with a finite set of roots
x01, x

0
2, . . . , x

0
k. Let ε1 be such that ‖P x(y0)−g‖ < ε1. Then the roots of g are within 1 of these (after ordering

appropriately). By the continuity of the coeffi cients of P x, there is an ε0 small enough so that |y′− y0| < ε0.
Then both ‖P x(y0)−P x(y′)| < ε1

2 and y
′ is also not a root of an. Let ε2 be such that ‖Resx(P,Q)−h‖ < ε2.

Then their roots are within ε0, and Let ε3 be such that ‖(z, w)‖ < ε3. Then ‖φ(z, w)‖ < ε2, where φ(z, w)
is as in Note 3.
Finally, let ε = min{ε0, ε12 , ε2, ε3}. Then for ‖(z, w)‖ < ε, we have that

‖Resx(P,Q)− Resx(P − z,Q− w)‖ = ‖Resx(P,Q)− (Resx(P,Q)− φ(z, w))‖ = ‖φ(z, w)‖ < ε2.

Then Res x(P − z,Q− w) has a root yz,w with ‖yz,w − y0‖ < ε0. It follows that

‖P x(y0)− (P x(yz,w)− z)‖ ≤ ‖P x(y0)− P x(yz,w)‖+ |z| < ε1.

So P x(yz,w)−z has a root xz,w within 1 of one of x01, x02, . . . , x0k. Moreover, as yz,w is not a root of an, by Note
2, xz,w corresponds to a common root of P x(yz,w)−z and Qx(yz,w)−w. In particular, f(xz,w, yz,w) = (z, w)
and

‖(xz,w, yz,w)‖ < max{max{|x01|, |x02|, . . . , |x0k|}+ 1, |y0|+ ε0}.
As these bounds are uniform for ‖(z, w)‖ < ε, f cannot have 0 as a repelling point.

3 Known Results

As of the writing of this article, Table 1 below summarizes what is known for classes of operators regarding
open mapping theorems and or repelling points:

Table 1
Operator Class
Continuous And
Surjective

Largest Dimension
Of Range For Open
Mapping Theorem

Smallest Dimension
Of Range Origin
Can Be Repelling

Open at 0 equiv-
alent to Non-
Repelling At 0

Linear ∞ N/A Yes
Bilinear 3 4 Yes
Multilinear 2 or 3 3 or 4 Yes
Polynomial 1 2 or 3 No
General Unknown unknown No

4 Conclusion

The operator in Lemma 2 settles the question of open mapping theorems for polynomials according to the
dimension of the range space. Moreover, it is interesting to note that this operator does not meet the
hypothesis of Theorem 1 as both Resx(P,Q) and Resy(P,Q) are identically zero, and so the existence of a
surjective polynomial onto C2 for which 0 is a repelling point is still in question. Moreover, as seen in Table
1, there are also unresolved questions for multilinear operators regarding the dimension of the range space.
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