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Abstract
Some new types of special curves, such as £-helix, &;-helix, p-helix, v-helix and Wy-Darboux helices
in the Myller configuration M(C,&, ) are defined and studied where k € {n,r,0}. The necessary

and sufficient conditions for a curve in M(C,&, ) to be classified as a special helix are established.
Additionally, the axes of these helices are presented, and the relationships between them are discussed.

1 Introduction

In the Euclidean 3-space E3, the geometric properties of a curve C are investigated by the aid of orthonormal
frames defined along the curve. The most well-known of such frames is the Serret-Frenet frame {¢,n,b},
where the unit vector fields ¢,n,b denote the tangent, principal normal, and binormal of C, respectively.
Myller considered some more general frames along a curve C. By considering a unit vector £ and a plane 7
along a curve C, and calling them a versor field (C, €) and a plane field (C, ) such that ¢ €, he defined a
configuration in £ called the Myller configuration, denoted by M (C, £, m) [7]. If the planes 7 are tangent
to C, then this configuration is called a tangent Myller configuration, denoted by M;(C, £, 7). Specifically,
if the curve C' is a surface curve lying on a surface S C E3 with arclength parameter s, where & (s) is the
tangent versor field to S along C, 7(s) is the tangent plane field to S along C, then M,(C, ¢, ) is called
the tangent Myller configuration intrinsic associated with the geometric objects S, C, and é Thus, the
geometry of the versor field (C, é) on a surface S is the geometry of the associated Myller configurations
M,(C, €, ). Moreover, M,(C, €, ) represents a particular case of M(C, &, 7). In the special case where the
tangent Myller configuration M;(C, , m) is the associated Myller configuration to a curve C on a surface S,
the classical theory of surface curves (curves lying on a surface) is obtained.

The parallelism of the versor field (C,€) in the plane field (C,7) was studied by Alexandru Myller [8].
He obtained a generalization of Levi-Civita parallelism on the curved surfaces. Later, Mayer introduced new
invariants of M(C, &, ) and M;(C, &, ) [6]. Miron extended the notion of Myller configuration to Riemannian
geometry [7]. Vaisman considered the Myller configuration in symplectic geometry [12]. Furthermore, Myller
configurations were studied in different spaces [1, 7]. Moreover, Macsim et al. have studied rectifying-type
curves in a Myller configuration [5].

In the present paper, we study certain special helices in a Myller configuration M. We provide charac-
terizations for these curves and describe their axes. Additionally, we introduce the relations between these
special helices in M.

2 Preliminaries

This section provides a brief summary of curves in the Myller configuration M (C, £, 7). For more detailed
information, we refer to [7].
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Let (C, €) be a versor field and (C,7) be a plane field such that & € 7 in E3. Then, the pair ((C,£), (C,))

is called Myller configuration in E3 and is denoted by M(C, &, ), or briefly M. Let R = (O;iy,is,i3) be an
orthonormal frame. Then, (C, &) can be expressed as follows
r= 7;(5)3 g: E(S), sel= (81332)7
() = 2()i1 + y(s)ia + 2(s)is = OP(s),
E(s) = & (s)in + &a(s)in + &(s)iz = 1@»
where s is the arclength parameter of the curve C, 7 = 7(s) is the position vector of C' and

e = (Eoné)) = 1.

Defining &, (s) = £(s) and considering d%is), we define versor field &,(s) as follows,

dfTU — K1(s)€5(s),

is called curvature (or K-curvature) of (C,€). Clearly, &,(s) is orthogonal to &, (s)

and exists when Ki(s) # 0. If we define £5(s) = &£,(s) X &,(s), the frame Rp (P(s);él(s),éz(s),ég(s))
is positively oriented and orthonormal, and is called the invariant frame of Frenet-type of the versor field

where K(s) = HZ—E

(C,¢) I7].
The derivative formulas for R are
) — a(5) = (5181 (5) + aa(s)as) + as (96 (o)

with B

d€,(s) _ p

Tds K1(s)&,(s),

B2) K901 9) + Ka5)Esls),

and .

dé5(s) p

s —K3(8)§5(5),

where a?(s) + a3(s) + a3(s) = 1, Ki(s) > 0 and

Kols) = - <d€;f),§2<s)>

is called torsion (or Ka-torsion) of (C,&). One can consider the geometrical interpretation of functions K (s)
and K»(s) as the same as the curvature and torsion of a curve in E% and the functions a1 (s), as(s), az(s),
Ki(s), Ka(s) (s € I) are invariants of the versor field (C, €). Obviously, if a1 (s) = 1, az(s) =0, and az(s) = 0,
one obtains the Frenet equations of a curve in E3 [7].

The following theorem is the fundamental theorem for the versor field (C,¢):

Theorem 1 ([7]) If the functions Ki(s), Ka(s), a1(s), az(s), asz(s) of class C* are given a priori for
s € [a,b] with
ai(s) +a3(s) + aj(s) = 1,

then there ezists a curve C : [a,b] — E® with arclength parameter s and a versor field &(s), such that the

functions a;(s), i = 1,2,3, K1(s) and Ky(s) are the invariants of (C, 5) Any two such versor fields (C, 5)
differ by a proper Euclidean motion.



A. Alkan and M. Onder 95

We define the éi7 1= 1,2, 3, helices as follows:

Definition 1 Let the curve C' with the invariant type Frenet frame Rp (P(s);él(s),gQ(s),ég,(s)) in M be
a heliz in B3 with the unit axis glg, that is, <d, El§> is constant. Then, the curve C is called éi-helia: if the

versor field él makes a constant angle with the same fized direction Elg, where 1 =1,2,3.

Let ©(s) be the unit normal to the oriented plane 7. Define ji(s) = ¥(s) x &(s). Then the positively
oriented orthonormal frame, denoted by Rp (P(s);é (s), iu(s), 17(3)) , is called the Darbouz frame of the curve

C'. This frame is geometrically associated with the Myller configuration M [7]. The following theorem gives
the fundamental equations of M.

Theorem 2 ([7]) The moving equations of Darbouz frame for M are as follows

% = a(s) = c1(s)E(s) + ca(s)fals) + c3(s)0(s); ] + 3+ 5 =1,
% = G(s)ils) + K ()5 (s),
% = —G(s)&(s) + T(s)i(s),
and di
dis) = —K(s)é(s) — T(s)ja(s),

where c1(8), ca(s), c3(s); G(s), K(s) and T(s) are invariants and are uniquely determined.

The functions G(s), K(s) and T(s) are called the geodesic curvature, the normal curvature and the

geodesic torsion of the versor field (C, &), respectively, in M.
The fundamental theorem for the Darboux frame Rp is stated as follows:

Theorem 3 ([7]) Let C*°-functions ci(s), ca(s), c3(s), with ¢} +c3+c3 =1, G(s), K(s), and T(s), for
s € [a,b], be given a priori. Then, there exists a Myller configuration M (C, &, ) such that the given functions
and parameter s are the invariants and arclength of curve C, respectively. Two such configurations differ by
a proper Fuclidean motion.

The relations between the invariants of the field (C,€) and the invariants of (C,€) in M are given as
follows

dr
ds
E(s) = &1(5), &(s) = (sine)(s) + (cos¥)o(s),
£3(5) = —(cosy)ia(s) + (sinv))o(s),
ci(s) = ar(s), ca(s) = (sing)as(s) — (cosp)as(s),

c3(s) = (cos)az(s) + (sinyh)as(s),

=a(s) = alél + a2£2 + 0353 = Clé + copp + c3v,

and,

G(s) = (sin) K1 (s), K(s) = (cos9)Ki(s), T(s) = Ka(s) + —

where 1) = £(£,,7) [7].
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3 ¢-helices in Myller Configuration M(C, ¢, )

In the Euclidean 3-space E3, special curves for which their orthonormal frame vectors make a constant angle
with some constant directions play an important role. Well-known examples of such curves, studied using the
Frenet frame, are helices, slant helices, and Darboux helices [3, 11, 13]. Moreover, when the curve is a surface
curve, meaning it lies entirely on a surface, one can also consider the Darboux frame {T'(s),V(s),U(s)} of
the curve to study the same special conditions where the vector fields of the Darboux frame make a constant
angle with some fixed directions. Here, T'(s) is the unit tangent of the curve, U(s) is the unit surface normal
along the curve and V' (s) is a unit vector defined by V' (s) = U(s) xT(s). A surface curve is called surface heliz
(or, respectively, a relatively normal slant heliz and an isophote curve) if the unit vector T (or, respectively,
V and U) makes a constant angle with a fixed direction. In this case, surface helices, relatively normal slant
helices and isophote curves are the well-known examples of such curves [2, 4, 9]. In this section, we consider

the same conditions in the Myller configuration M and introduced é-helices in M.
Definition 2 Let C be a unit speed curve with Darboux frame Rp (P(s);é(s),ﬂ(s),i)(s)) in the Myller

configuration M. Let C' be a heliz in E® with a unit axis (25, such that <d, (25> is constant. The curve C is

called a &-heliz in M if the versor field & makes a constant angle with the same fized unit direction glg, i.e.,

there exists a constant angle 0 such that <é,&§> = cosf.

Theorem 4 The curve C with Darboux frame Rp and (G, K) # (0,0) in M is a E-heliz iff the following
functions are constant

K3 (8)/~(@*+K)T

og =cotf ==+

3 )
G2+K?)2
o o @
Ae = c1cosl F ey s1n9m + 3 Sln@m.

Proof. From Definition 2, there exist a unit constant vector dg and a constant function 6 such that

<é, &5> = cos 6. The unit vector dg can be given in the form
de = (cos 0)& + xofi + T30, (3)
where o = 22(s) and x5 = x3(s) are smooth functions of s. Differentiating (3) with respect to s gives

% = (—22G — 23K) €+ (G cos O + xhy — 23T ji + (K cos 0 + xoT + 5) 0.

Since glg is constant, we have the system
—LL'QG — 1‘3K = O,

Gcos + xf, —x3T =0, (4)
K cost + xzoT + x4 = 0.

From the first equation in (4), it follows x3 = —z2% . Writing that in the second and third equations in (4)
gives the following differential equation

) (1 + (IG{Y) +x2% (IG{)/ =0. (5)
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The solution of (5) is xy = p\/ﬁ, where p is integration constant. Hence, x3 = —p\/ﬁ. Since

HEQH =1, from (3) we have p = Fsinf. Then, (3) becomes

G

Elf = (COS e)é + sin 0 \/ﬁ{)

e

K
N ez

By differentiating <£ , &5> = cos 0 two times, it follows

('K —GK') — (G* + K*) T
VG +K?

—cosf (G* + K?) F sin6 = 0,

which gives
K2 (§) - (@ + KT
(G2 + K2)* '

o¢ =cot =F

(7)

It follows that o¢ is constant. Furthermore, using that <d,d§> = const., from (6), we have that ¢ is
constant. B
Conversely, let the functions ¢ and A¢ given in (2) be constants. Let d¢ be a unit vector defined by

- - G
d¢ = cos € Fsinf —_—,
3 §F /G2 + K2

K _ .
WN +sin 6

where 6 is constant. Differentiating last equality one obtains

d - ('K -GK')+ (G*+ K*)T
dde = FGsinf ( )+(3 i ) + GcosO | i
ds (G2 + K?)2
G’ +K)T - (G'K — GK'
+ | FK sinf ( * ) ( = ) + K cosf | v.
(G2 + K2)2

Now, writing (2) in this result, we have % =0, i.e., glf is a constant vector field and <é, &5> is constant.

Moreover, we have <d, £l§> = A¢. Thus, we obtain that C'is a é—helix in Myller configuration M. =
From Theorem 4, the following corollaries are obtained:

Corollary 1 The azis of &-heliz C in the Myller configuration M is given by

G

(;lf = (COS 9)5 F sin 6 \/ﬁ{),

[ Esinf

K
VG?+ K2
where 0 is the constant angle defined by <é, &5> = cos?.

Corollary 2 i) The curve C with K = 0 in the Myller configuration M is E-heliz iff o = j:% and
A¢ = c1cosf £ c3sinb are constants.

it) The curve C with G = 0 in the Myller configuration M is &-helix iff oe = :t% and \¢ = c1 cos 0Fcp sin 6
are constants.
iit) The curve C' with T = 0 in the Myller configuration M is &-heliz iff o¢ = $% and ¢ given in
—+ 2
(2) are constants.
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Theorem 5 The curve C in M is a &, -helix according to the Frenet-type frame Rp iff % and ay cosf +
assin @ F (a1 — ag) sinfsin cos ) are constants.

Proof. By taking into account the relations between the invariants of the field (C, é) and the invariants
of (C,€) in M, we have & = &,. Thus, it is clear that C is a &-helix if and only if it is a & -heliz. Now,
substituting (1) into (2), it follows that o¢ = i%, Ae = aq cosf +assinf F (a1 — az) sin @ sin i cos ), which
concludes the proof. m

Moreover, from Corollary 2 and Theorem 5, we obtain the following corollary.

Corollary 3 The axis of a él-heliw C according to Frenet-type frame Rp is given by &51 = (cos 6)51 +
(sin0)&,, where 0 is constant.

4 W,-Darboux Helices in the Myller Configuration M(C,¢, )

Darboux vector, which is the angular velocity vector of the Frenet-Serret frame of a space curve, is an
important tool for studying the differential geometry of space curves. This vector is directly proportional
to angular momentum, which is why it is also called angular momentum vector [10]. If we consider another
frame along a curve that is different from the Frenet frame, new forms of the Darboux vector can be defined.
In this section, we define the Darboux vector of the Darboux frame Rp of a curve C' in a Myller configuration
M. Furthermore, we define some new forms of the Darboux vector and introduce some special Darboux
helices in the Myller configuration M.

Definition 3 Let C be a curve with Darbouz frame Rp (P(s);é(s),ﬂ(s),{)(s)) in the Myller configuration
M. The vector W = T¢ — Kji + G0 is called Darbouz vector field of the Darbouz frame Rp . The vectors

W, =—-Kji+Go, W,=TE+Go and W, =TE — Kfi,

are called the normal-type Darbouz vector (or ND-vector), the rectifying-type Darboux vector (or RD-vector)
and the osculating-type Darbouz vector (or OD-vector) of Rp, respectively.

Considering versor field (C,W,,) with W,, = II%LH’ we can give the following:

Definition 4 Let C' be a curve with unit ND-vector field W, in the Myller configuration M. Let C' also be
a heliz in E® with o unit axis in, such that <6z, Zn> is constant. The curve C is called Wy, -heliz in M if Wn

makes a constant angle with the same fized unit direction I,,.

Theorem 6 The curve C with a unit ND-vector field W,, and (G, K) # (0,0) in the Myller configuration
M is a Wy,-heliz iff C is a £-heliz in M.

Proof. From Definition 4, we have <Wn, in> = cosy, where ¢ is the constant angle between unit versor

fields W ,,and L,,. Differentiating, one obtains

K (F) - (@ )T

_ Gﬂ+K@,in> —0.
(G2+K2)§

-/ - -
Since ¢ = G+ Kv, the last equality becomes o¢ <§ ln> = 0. If we assume that o¢ = 0, then o is constant.

-/ -
Let us investigate the case o¢ # 0. In this case, < ,ln> = 0. On the other hand, by taking into account
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- -/

7 - - - _ -
<Wn, I3 > =0, we have £ = W, X l,,. Then, it follows that the vectors l,,, W, and & lie on the same plane,

ie., I, € sp {Wn, é} . So, we can write I, = £(sin )& + (cos ©)W,, or, equivalently,

) . B K G _
I, = £(sin )& + cos p \/G2—|—K2'u+ \/G2+K2v .

-/ -
Differentiating <§ 7ln> = 0 yields

_ 'K — GK' 2 K2 T
:Fsincp(G2+K2)+cos<p< @ GK) + (&7 + K7) >0.

(G2 + K?)*

Hence, it follows that

1
cote =7F K2(£) —(G2+K2)T’
(G2+K?)%
or, equivalently, cot p = $U%. Furthermore, we have
<d7 in> = =+ (sing) + o cos wi -+ ¢3 oS @L.
NeEae VT K

Since 6 + ¢ = m/2, we see that <d, in> = £)\¢, which completes the proof. m
From Theorem 6, the following corollaries are given.

Corollary 4 The curve C in M is a él-helix according to Frenet-type frame Ry iff it is a W, -helix.
Corollary 5 The azis I, of Wy, -heliz in M is defined by

I, = %(sin )& + cos <

-K . G )
v )
NeE el ey e
where @ s the constant angle given by <Wm Zn> = cos .
Example 1 Let consider the versor fields
1(1 s 'S)1<1 s_s)(o,s s>
— (1l,cos —=,—sin—= |, p=—=[1,—cos—,sin— |, v=[0,—sin—,—cos — |,
V2 Vi) T V2R Vi
and invariants K = %, G=0and T = —%. We have that o¢ = cot0 = £1, that is, 0 = T or 0 = ?ﬂf. By
choosing 0 = 7, c1 = 5 and ca = 3, we get

V23 2 5vV2
=Y iz = e e = 2

i.e., o¢ and A¢ are constants. Thus, the curve Cy given by the parametrization

r(s)—<55 L in Y28 \/Ecos\/is 1 osﬁs—msin\/is>

£ —

6v2' 37" 2 6 2 3% 6 2

is a &-heliz (and, also W,-heliz) in M. (Figure 1(a)). If we choose 6 = a = —sin% and ¢y =
1+ sin %, we see that

S S V2
=4/—2sin— (1+sin — d e = — + =
c3 \/ sin 7 < sin \/i) an ¢ 5 (c1+ ¢2)

i.e., o¢ and A¢ are constants. Using the Maple program, we obtain the é—heliw Cs in M shown in Figure

1(b).

)

V2
2
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(a) &-helix C;

Figure 1: ¢ helices C; and Cy with curvatures K = %, G=0,and T = —

5 j-Helices and v-Helices in the Myller Configuration M(C, ¢, )

In this section, we introduce p-helices, v-helices, W,.-Darboux helices, and W,-Darboux helices in the Myller
configuration M. The proofs of theorems presented below can be carried out in a manner similar to those
presented in previous sections.

Definition 5 Let C be a unit speed curve with Darboux frame Rp (P(s);{(s),ﬂ(s)ﬂ(s)) in the Myller
configuration M. Let C also be a heliz in E® with a unit axis &“, such that <d,&u> is constant. The curve

C is called a p-heliz in M if the versor field i makes a constant angle with the same fized unit direction &w

i.e., there exists a constant angle n such that </:L,&ZN> = cosn.

Theorem 7 The curve C with Darbouz frame Rp and (G,T) # (0,0) in M is a p-heliz iff the following
functions are constant

G2 (L) — (G2 + T2 K
(G2 +12)%

oy =7F

and

+ cacosn Fezsing

T ¢
A, = Fepsin)——— ———————
RV e VG T2

Corollary 6 The azis of a p-heliz C' in M 1is given by
d, = Fsi __r &+ (cosn)ji F si __G
. = Fsin n v,
’ GEET R o
where 1 is the constant angle defined by <[L, El#> = cos 1.

Corollary 7 i) The curve C with K =0 in M is p-heliz iff o, = :F% and

Ay = Feysing + cacosn F cgsinm

T G
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are constants.
it) The curve C with G =0 in M is p-heliz iff o, = :I:% and A\, = Fcysinn + ca cosn are constants.

iti) The curve C with T =0 in M is p-helic iff 0, = :i:g and A\, = cp cosn F c3sinn are constants.

Considering versor field (C, WT) with W, = H%TH’ we can give the following:

Definition 6 Let C' be a curve with unit RD-vector field W, in the Myller configuration M. Let C also be
a heliz in E3 with a unit azxis Z,., such that <a,2r> is constant. The curve C is called a W.-helix in M if

W, makes a constant angle with the same fized unit direction l,..

Theorem 8 The curve C with unit RD-vector field W, and (G,T) # (0,0) in M is a W,-heliz iff C is a
p-heliz in M.

Corollary 8 The azis I, of Wy-heliz in M is defined by

[, = cos?

_ . B G
€ :F (Sln 7.9)# “+ cos ﬁwv,

T
A /G2 + T2
where ¥ is the constant angle defined by <WT, Zr> = cos ¥.

Definition 7 Let C be a unit speed curve with Darbouz frame Rp in the Myller configuration M. Let C

also be a heliz in E® with a unit azis glv, such that <d, Elv> 1s constant. The curve C is called a v-helix in M

if the versor field v makes a constant angle with the same fized unit direction dy, i.e. there exists a constant

angle w such that <{), Elv> = cosw.

Theorem 9 The curve C with Darbouz frame Rp and (T, K) # (0,0) in M is a v-heliz iff the following
functions are constant
K? (%) +(1°+ K*) G

o, =cotw =F

(T? + K2)*
and
A, = . T + o K .
v = FC1 blnw\/ﬁ Clenw\/ﬁ—l—@cosw.

Corollary 9 The azis of a v-heliz C' in M is given by

&v::Fsinw 2g:ﬁ:sinw

T
VT2 + K

i+ (cosw)v,

K
VI?+ K?
where w is the constant angle defined by <{1, Elv> = cosw.

Corollary 10 i) The curve C with K =0 in M is v-heliz iff o, = :F% and A\, = Fcysinw + ¢z cosw are
constants.

it) The curve C with G =0 in M is v-heliz iff

T'K - TK' .
Oy =F——— and A, = Fcisinw

3 £ cpsinw
(T2 + K2)§

+ c3cosw

T K
1/7“’2+[(2 1/7“24}[(2

are constants.
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it1) The curve C with T =0 in M is v-heliz iff 0, = :F% and A\, = f£cosinw + c3cosw are constants.

Considering versor field (C, W,) with W, = II%ZH’ we can give the following:

Definition 8 Let C be a curve with unit OD-vector field W, in the Myller configuration M. Let C also be
a heliz in E® with a unit azxis io, such that <@,ZO> is constant. The curve C' is called W,-helix in M if WO

makes a constant angle with the same fized unit direction lo.

Theorem 10 The curve C with unit OD-vector field W, and (K, T) # (0,0) in M is a W,-heliz iff C is a
v-heliz in M.

Corollary 11 The axis I, of W,-heliz in M is defined by

lo =cose & —cose

T K __ .
] —_— sine)v,
VT? + K2 \/T2+K2u$( )

where € is the constant angle defined by <W0, lo> = COSsE.

Example 2 Let consider the versor fields

é 3 . S+1 . 3s S 1 .
=|-sin-+ -sin—,——-cos - — — COS —, —— Sin —
4 2 4 27 4 2 4 27 2 2

o= () (g o) () (s +on ) 2)

and invariants K = —ﬁcosg, G=0andT = ?sin%. We have that o, = cotw = $§, that is, w = =

2
or w = %. By choosing w = %’r, c1 = —cos§ and ca = sin 5, we get c3 =0 and A\, =0, i.e., o, and A\, are

constants. Thus, the curve Cs given by the parametrization r(s) = (2 cos? 5— 1—76, 2 cos 5 sin 3, O) is a v-heliz
(and, also Wo-heliz) in M. (Figure 2(a)). If we choose w = %, ¢; =sin§ and cy = cos 5, we see that c3 =0
V3

and Ay = 5>, i.e., 0, and \, are constants. Using the Maple program, we obtain the v-heliz Cy in M shown

in Figure 2(b).

6 Conclusions

Some new types of special curves in the Myller configuration M (C,é,ﬂ') are defined and studied. The
definitions and characterizations of &-helices, fi-helices, v-helices, Wy-Darboux helices (k € {n,r,0}), and
€,-helices are introduced and presented. The axes of these helices are determined, and the relations between
these special curves are also established.
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(a) &-helix C3 (b) &-helix Cy

Figure 2: v helices C'3 and Cy with curvatures K = 773 cosg, G=0and T = g sin
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