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Abstract

Some new types of special curves, such as ξ-helix, ξ1-helix, µ-helix, ν-helix and Wk-Darboux helices

in the Myller configuration M(C, ξ, π) are defined and studied where k ∈ {n, r, o}. The necessary

and sufficient conditions for a curve in M(C, ξ, π) to be classified as a special helix are established.
Additionally, the axes of these helices are presented, and the relationships between them are discussed.

1 Introduction

In the Euclidean 3-space E3, the geometric properties of a curve C are investigated by the aid of orthonormal
frames defined along the curve. The most well-known of such frames is the Serret-Frenet frame {t, n, b},
where the unit vector fields t, n, b denote the tangent, principal normal, and binormal of C, respectively.

Myller considered some more general frames along a curve C. By considering a unit vector ξ and a plane π

along a curve C, and calling them a versor field (C, ξ) and a plane field (C, π) such that ξ ∈ π, he defined a

configuration in E3 called the Myller configuration, denoted by M(C, ξ, π) [7]. If the planes π are tangent

to C, then this configuration is called a tangent Myller configuration, denoted by Mt(C, ξ, π). Specifically,

if the curve C is a surface curve lying on a surface S ⊂ E3 with arclength parameter s, where ξ(s) is the

tangent versor field to S along C, π(s) is the tangent plane field to S along C, then Mt(C, ξ, π) is called

the tangent Myller configuration intrinsic associated with the geometric objects S, C, and ξ. Thus, the

geometry of the versor field (C, ξ) on a surface S is the geometry of the associated Myller configurations

Mt(C, ξ, π). Moreover, Mt(C, ξ, π) represents a particular case of M(C, ξ, π). In the special case where the

tangent Myller configuration Mt(C, ξ, π) is the associated Myller configuration to a curve C on a surface S,
the classical theory of surface curves (curves lying on a surface) is obtained.

The parallelism of the versor field (C, ξ) in the plane field (C, π) was studied by Alexandru Myller [8].
He obtained a generalization of Levi-Civita parallelism on the curved surfaces. Later, Mayer introduced new

invariants ofM(C, ξ, π) andMt(C, ξ, π) [6]. Miron extended the notion of Myller configuration to Riemannian
geometry [7]. Vaisman considered the Myller configuration in symplectic geometry [12]. Furthermore, Myller
configurations were studied in different spaces [1, 7]. Moreover, Macsim et al. have studied rectifying-type
curves in a Myller configuration [5].

In the present paper, we study certain special helices in a Myller configuration M . We provide charac-
terizations for these curves and describe their axes. Additionally, we introduce the relations between these
special helices in M .

2 Preliminaries

This section provides a brief summary of curves in the Myller configuration M(C, ξ, π). For more detailed
information, we refer to [7].

*Mathematics Subject Classifications: 53A04.
�Manisa Celal Bayar University, Gördes Vocational School, 45750, Gördes, Manisa, Turkey
�Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Mathematics Department, Muradiye, Manisa,

Turkey

93



94 Some Special Helices in Myller Configuration

Let (C, ξ) be a versor field and (C, π) be a plane field such that ξ ∈ π in E3. Then, the pair ((C, ξ), (C, π))

is called Myller configuration in E3 and is denoted by M(C, ξ, π), or briefly M . Let R = (O; i1, i2, i3) be an

orthonormal frame. Then, (C, ξ) can be expressed as follows

r = r(s), ξ = ξ(s), s ∈ I = (s1, s2),

r(s) = x(s)i1 + y(s)i2 + z(s)i3 =
−−→
OP (s),

ξ(s) = ξ1(s)i1 + ξ2(s)i2 + ξ3(s)i3 =
−−→
PQ,

where s is the arclength parameter of the curve C, r = r(s) is the position vector of C and∥∥∥ξ(s)∥∥∥2 =
〈
ξ(s), ξ(s)

〉
= 1.

Defining ξ1(s) = ξ(s) and considering dξ1(s)
ds , we define versor field ξ2(s) as follows,

dξ1(s)

ds
= K1(s)ξ2(s),

where K1(s) =
∥∥∥dξ
ds

∥∥∥ is called curvature (or K1-curvature) of (C, ξ). Clearly, ξ2(s) is orthogonal to ξ1(s)

and exists when K1(s) ̸= 0. If we define ξ3(s) = ξ1(s) × ξ2(s), the frame RF

(
P (s); ξ1(s), ξ2(s), ξ3(s)

)
is positively oriented and orthonormal, and is called the invariant frame of Frenet-type of the versor field

(C, ξ) [7].
The derivative formulas for RF are

dr(s)

ds
= α(s) = a1(s)ξ1(s) + a2(s)ξ2(s) + a3(s)ξ3(s),

with
dξ1(s)

ds
= K1(s)ξ2(s),

dξ2(s)

ds
= −K1(s)ξ1(s) +K2(s)ξ3(s),

and
dξ3(s)

ds
= −K2(s)ξ2(s),

where a21(s) + a22(s) + a23(s) = 1, K1(s) > 0 and

K2(s) = −

〈
dξ3(s)

ds
, ξ2(s)

〉

is called torsion (or K2-torsion) of (C, ξ). One can consider the geometrical interpretation of functions K1(s)
and K2(s) as the same as the curvature and torsion of a curve in E3 and the functions a1(s), a2(s), a3(s),

K1(s), K2(s) (s ∈ I) are invariants of the versor field (C, ξ). Obviously, if a1(s) = 1, a2(s) = 0, and a3(s) = 0,
one obtains the Frenet equations of a curve in E3 [7].

The following theorem is the fundamental theorem for the versor field (C, ξ):

Theorem 1 ([7]) If the functions K1(s), K2(s), a1(s), a2(s), a3(s) of class C∞ are given a priori for
s ∈ [a, b] with

a21(s) + a22(s) + a23(s) = 1,

then there exists a curve C : [a, b] → E3 with arclength parameter s and a versor field ξ(s), such that the

functions ai(s), i = 1, 2, 3, K1(s) and K2(s) are the invariants of (C, ξ). Any two such versor fields (C, ξ)
differ by a proper Euclidean motion.
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We define the ξi, i = 1, 2, 3, helices as follows:

Definition 1 Let the curve C with the invariant type Frenet frame RF

(
P (s); ξ1(s), ξ2(s), ξ3(s)

)
in M be

a helix in E3 with the unit axis dξ, that is,
〈
α, dξ

〉
is constant. Then, the curve C is called ξi-helix if the

versor field ξi makes a constant angle with the same fixed direction dξ, where i = 1, 2, 3.

Let v(s) be the unit normal to the oriented plane π. Define µ(s) = v(s) × ξ(s). Then the positively

oriented orthonormal frame, denoted by RD

(
P (s);ξ(s), µ(s), v(s)

)
, is called the Darboux frame of the curve

C. This frame is geometrically associated with the Myller configuration M [7]. The following theorem gives
the fundamental equations of M .

Theorem 2 ([7]) The moving equations of Darboux frame for M are as follows

dr

ds
= α(s) = c1(s)ξ(s) + c2(s)µ(s) + c3(s)v(s); c

2
1 + c22 + c23 = 1,

dξ

ds
= G(s)µ(s) +K(s)v(s),

dµ

ds
= −G(s)ξ(s) + T (s)v(s),

and
dv

ds
= −K(s)ξ(s)− T (s)µ(s),

where c1(s), c2(s), c3(s); G(s), K(s) and T (s) are invariants and are uniquely determined.

The functions G(s), K(s) and T (s) are called the geodesic curvature, the normal curvature and the

geodesic torsion of the versor field (C, ξ), respectively, in M .
The fundamental theorem for the Darboux frame RD is stated as follows:

Theorem 3 ([7]) Let C∞-functions c1(s), c2(s), c3(s), with c
2
1 + c22 + c23 = 1, G(s), K(s), and T (s), for

s ∈ [a, b], be given a priori. Then, there exists a Myller configuration M(C, ξ, π) such that the given functions
and parameter s are the invariants and arclength of curve C, respectively. Two such configurations differ by
a proper Euclidean motion.

The relations between the invariants of the field (C, ξ) and the invariants of (C, ξ) in M are given as
follows

dr

ds
= α(s) = a1ξ1 + a2ξ2 + a3ξ3 = c1ξ + c2µ+ c3v,

ξ(s) = ξ1(s), ξ2(s) = (sinψ)µ(s) + (cosψ)v(s),

ξ3(s) = −(cosψ)µ(s) + (sinψ)v(s),

c1(s) = a1(s), c2(s) = (sinψ)a1(s)− (cosψ)a3(s),

c3(s) = (cosψ)a2(s) + (sinψ)a3(s),

and,

G(s) = (sinψ)K1(s), K(s) = (cosψ)K1(s), T (s) = K2(s) +
dψ

ds
, (1)

where ψ = ∡(ξ2, v) [7].
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3 ξ-helices in Myller Configuration M(C, ξ, π)

In the Euclidean 3-space E3, special curves for which their orthonormal frame vectors make a constant angle
with some constant directions play an important role. Well-known examples of such curves, studied using the
Frenet frame, are helices, slant helices, and Darboux helices [3, 11, 13]. Moreover, when the curve is a surface
curve, meaning it lies entirely on a surface, one can also consider the Darboux frame {T (s), V (s), U(s)} of
the curve to study the same special conditions where the vector fields of the Darboux frame make a constant
angle with some fixed directions. Here, T (s) is the unit tangent of the curve, U(s) is the unit surface normal
along the curve and V (s) is a unit vector defined by V (s) = U(s)×T (s). A surface curve is called surface helix
(or, respectively, a relatively normal slant helix and an isophote curve) if the unit vector T (or, respectively,
V and U) makes a constant angle with a fixed direction. In this case, surface helices, relatively normal slant
helices and isophote curves are the well-known examples of such curves [2, 4, 9]. In this section, we consider

the same conditions in the Myller configuration M and introduced ξ-helices in M .

Definition 2 Let C be a unit speed curve with Darboux frame RD

(
P (s);ξ(s), µ(s), v(s)

)
in the Myller

configuration M . Let C be a helix in E3 with a unit axis dξ, such that
〈
α, dξ

〉
is constant. The curve C is

called a ξ-helix in M if the versor field ξ makes a constant angle with the same fixed unit direction dξ, i.e.,

there exists a constant angle θ such that
〈
ξ, dξ

〉
= cos θ.

Theorem 4 The curve C with Darboux frame RD and (G,K) ̸= (0, 0) in M is a ξ-helix iff the following
functions are constant 

σξ = cot θ = ±K2(G
K )

′−(G2+K2)T

(G2+K2)
3
2

,

λξ = c1 cos θ ∓ c2 sin θ
K

(G2+K2)
1
2
± c3 sin θ

G

(G2+K2)
1
2
.

(2)

Proof. From Definition 2, there exist a unit constant vector dξ and a constant function θ such that〈
ξ, dξ

〉
= cos θ. The unit vector dξ can be given in the form

dξ = (cos θ)ξ + x2µ+ x3v, (3)

where x2 = x2(s) and x3 = x3(s) are smooth functions of s. Differentiating (3) with respect to s gives

ddξ
ds

= (−x2G− x3K) ξ + (G cos θ + x′2 − x3T )µ+ (K cos θ + x2T + x′3) v.

Since dξ is constant, we have the system
−x2G− x3K = 0,

G cos θ + x′2 − x3T = 0,

K cos θ + x2T + x′3 = 0.

(4)

From the first equation in (4), it follows x3 = −x2 G
K . Writing that in the second and third equations in (4)

gives the following differential equation

x′2

(
1 +

(
G

K

)2
)

+ x2
G

K

(
G

K

)′

= 0. (5)
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The solution of (5) is x2 = ρ K√
G2+K2

, where ρ is integration constant. Hence, x3 = −ρ G√
G2+K2

. Since∥∥∥dξ∥∥∥ = 1, from (3) we have ρ = ∓ sin θ. Then, (3) becomes

dξ = (cos θ)ξ ∓ sin θ
K√

G2 +K2
µ± sin θ

G√
G2 +K2

v. (6)

By differentiating
〈
ξ, dξ

〉
= cos θ two times, it follows

− cos θ
(
G2 +K2

)
∓

[
(G′K −GK ′)−

(
G2 +K2

)
T

√
G2 +K2

]
sin θ = 0,

which gives

σξ = cot θ = ∓
K2
(
G
K

)′ − (G2 +K2
)
T

(G2 +K2)
3
2

. (7)

It follows that σξ is constant. Furthermore, using that
〈
α, dξ

〉
= const., from (6), we have that λξ is

constant.
Conversely, let the functions σξ and λξ given in (2) be constants. Let dξ be a unit vector defined by

dξ = cos θξ ∓ sin θ
K√

G2 +K2
µ± sin θ

G√
G2 +K2

v,

where θ is constant. Differentiating last equality one obtains

ddξ
ds

=

(
∓G sin θ

[
− (G′K −GK ′) +

(
G2 +K2

)
T

(G2 +K2)
3
2

]
+G cos θ

)
µ

+

(
∓K sin θ

[(
G2 +K2

)
T − (G′K −GK ′)

(G2 +K2)
3
2

]
+K cos θ

)
v.

Now, writing (2) in this result, we have
ddξ

ds = 0, i.e., dξ is a constant vector field and
〈
ξ, dξ

〉
is constant.

Moreover, we have
〈
α, dξ

〉
= λξ. Thus, we obtain that C is a ξ-helix in Myller configuration M.

From Theorem 4, the following corollaries are obtained:

Corollary 1 The axis of ξ-helix C in the Myller configuration M is given by

dξ = (cos θ)ξ ∓ sin θ
K√

G2 +K2
µ± sin θ

G√
G2 +K2

v,

where θ is the constant angle defined by
〈
ξ, dξ

〉
= cos θ.

Corollary 2 i) The curve C with K = 0 in the Myller configuration M is ξ-helix iff σξ = ±T
G and

λξ = c1 cos θ ± c3 sin θ are constants.

ii) The curve C with G = 0 in the Myller configurationM is ξ-helix iff σξ = ± T
K and λξ = c1 cos θ∓c2 sin θ

are constants.

iii) The curve C with T = 0 in the Myller configuration M is ξ-helix iff σξ = ∓ G′K−GK′

(G2+K2)
3
2
and λξ given in

(2) are constants.
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Theorem 5 The curve C in M is a ξ1-helix according to the Frenet-type frame RF iff K2

K1
and a1 cos θ ±

a3 sin θ ∓ (a1 − a2) sin θ sinψ cosψ are constants.

Proof. By taking into account the relations between the invariants of the field (C, ξ) and the invariants

of (C, ξ) in M , we have ξ = ξ1. Thus, it is clear that C is a ξ-helix if and only if it is a ξ1-helix. Now,
substituting (1) into (2), it follows that σξ = ±K2

K1
, λξ = a1 cos θ± a3 sin θ∓ (a1 − a2) sin θ sinψ cosψ, which

concludes the proof.

Moreover, from Corollary 2 and Theorem 5, we obtain the following corollary.

Corollary 3 The axis of a ξ1-helix C according to Frenet-type frame RF is given by dξ1 = (cos θ)ξ1 ±
(sin θ)ξ3, where θ is constant.

4 Wn-Darboux Helices in the Myller Configuration M(C, ξ, π)

Darboux vector, which is the angular velocity vector of the Frenet-Serret frame of a space curve, is an
important tool for studying the differential geometry of space curves. This vector is directly proportional
to angular momentum, which is why it is also called angular momentum vector [10]. If we consider another
frame along a curve that is different from the Frenet frame, new forms of the Darboux vector can be defined.
In this section, we define the Darboux vector of the Darboux frame RD of a curve C in a Myller configuration
M . Furthermore, we define some new forms of the Darboux vector and introduce some special Darboux
helices in the Myller configuration M .

Definition 3 Let C be a curve with Darboux frame RD

(
P (s);ξ(s), µ(s), v(s)

)
in the Myller configuration

M . The vector W = Tξ −Kµ+Gv is called Darboux vector field of the Darboux frame RD . The vectors

Wn = −Kµ+Gv, Wr = Tξ +Gv and Wo = Tξ −Kµ,

are called the normal-type Darboux vector (or ND-vector), the rectifying-type Darboux vector (or RD-vector)
and the osculating-type Darboux vector (or OD-vector) of RD, respectively.

Considering versor field (C,Wn) with Wn = Wn

∥Wn∥ , we can give the following:

Definition 4 Let C be a curve with unit ND-vector field Wn in the Myller configuration M. Let C also be

a helix in E3 with a unit axis ln, such that
〈
α, ln

〉
is constant. The curve C is called Wn-helix in M if Wn

makes a constant angle with the same fixed unit direction ln.

Theorem 6 The curve C with a unit ND-vector field Wn and (G,K) ̸= (0, 0) in the Myller configuration

M is a Wn-helix iff C is a ξ-helix in M.

Proof. From Definition 4, we have
〈
Wn, ln

〉
= cosφ, where φ is the constant angle between unit versor

fields Wnand ln. Differentiating, one obtains

K2
(
G
K

)′ − (G2 +K2
)
T

(G2 +K2)
3
2

〈
Gµ+Kv, ln

〉
= 0.

Since ξ
′
= Gµ+Kv, the last equality becomes σξ

〈
ξ
′
, ln

〉
= 0. If we assume that σξ = 0 , then σξ is constant.

Let us investigate the case σξ ̸= 0. In this case,
〈
ξ
′
, ln

〉
= 0. On the other hand, by taking into account
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〈
Wn, ξ

′〉
= 0, we have ξ

′
=Wn × ln. Then, it follows that the vectors ln, Wn and ξ lie on the same plane,

i.e., ln ∈ sp
{
Wn, ξ

}
. So, we can write ln = ±(sinφ)ξ + (cosφ)Wn or, equivalently,

ln = ±(sinφ)ξ + cosφ

(
−K√
G2 +K2

µ+
G√

G2 +K2
v

)
.

Differentiating
〈
ξ
′
, ln

〉
= 0 yields

∓ sinφ
(
G2 +K2

)
+ cosφ

(
− (G′K −GK ′) +

(
G2 +K2

)
T

(G2 +K2)
3
2

)
= 0.

Hence, it follows that

cotφ = ∓ 1

K2(G
K )

′−(G2+K2)T

(G2+K2)
3
2

,

or, equivalently, cotφ = ∓ 1
σξ
. Furthermore, we have〈

α, ln

〉
= ±c1(sinφ) + c2 cosφ

−K√
G2 +K2

+ c3 cosφ
G√

G2 +K2
.

Since θ + φ = π/2, we see that
〈
α, ln

〉
= ±λξ, which completes the proof.

From Theorem 6, the following corollaries are given.

Corollary 4 The curve C in M is a ξ1-helix according to Frenet-type frame RF iff it is a Wn-helix.

Corollary 5 The axis ln of Wn-helix in M is defined by

ln = ±(sinφ)ξ + cosφ

(
−K√
G2 +K2

µ+
G√

G2 +K2
v

)
,

where φ is the constant angle given by
〈
Wn, ln

〉
= cosφ.

Example 1 Let consider the versor fields

ξ =
1√
2

(
1, cos

s√
2
,− sin

s√
2

)
, µ =

1√
2

(
1,− cos

s√
2
, sin

s√
2

)
, υ =

(
0,− sin

s√
2
,− cos

s√
2

)
,

and invariants K = 1
2 , G = 0 and T = − 1

2 . We have that σξ = cot θ = ±1, that is, θ = π
4 or θ = 3π

4 . By
choosing θ = π

4 , c1 = 1
2 and c2 = 1

3 , we get

c3 =

√
23

6
and λξ =

√
2

2
(c1 + c2) =

5
√
2

12
,

i.e., σξ and λξ are constants. Thus, the curve C1 given by the parametrization

r(s) =

(
5s

6
√
2
,
1

3
sin

√
2s

2
+

√
46

6
cos

√
2s

2
,−1

3
cos

√
2s

2
−

√
46

6
sin

√
2s

2

)
is a ξ-helix (and, also Wn-helix) in M. (Figure 1(a)). If we choose θ = π

4 , c1 = − sin s√
2

and c2 =

1 + sin s√
2
, we see that

c3 =

√
−2 sin

s√
2

(
1 + sin

s√
2

)
and λξ =

√
2

2
(c1 + c2) =

√
2

2
,

i.e., σξ and λξ are constants. Using the Maple program, we obtain the ξ-helix C2 in M shown in Figure
1(b).
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(a) ξ-helix C1 (b) ξ-helix C2

Figure 1: ξ helices C1 and C2 with curvatures K = 1
2 , G = 0, and T = − 1

2 .

5 µ-Helices and v-Helices in the Myller Configuration M(C, ξ, π)

In this section, we introduce µ-helices, v-helices, Wr-Darboux helices, and Wo-Darboux helices in the Myller
configuration M . The proofs of theorems presented below can be carried out in a manner similar to those
presented in previous sections.

Definition 5 Let C be a unit speed curve with Darboux frame RD

(
P (s);ξ(s), µ(s), v(s)

)
in the Myller

configuration M . Let C also be a helix in E3 with a unit axis dµ, such that
〈
α, dµ

〉
is constant. The curve

C is called a µ-helix in M if the versor field µ makes a constant angle with the same fixed unit direction dµ,

i.e., there exists a constant angle η such that
〈
µ, dµ

〉
= cos η.

Theorem 7 The curve C with Darboux frame RD and (G,T ) ̸= (0, 0) in M is a µ-helix iff the following
functions are constant

σµ = ∓
G2
(
T
G

)′ − (G2 + T 2
)
K

(G2 + T 2)
3
2

and

λµ = ∓c1 sin η
T√

G2 + T 2
+ c2 cos η ∓ c3 sin η

G√
G2 + T 2

.

Corollary 6 The axis of a µ-helix C in M is given by

dµ = ∓ sin η
T√

G2 + T 2
ξ+ (cos η)µ∓ sin η

G√
G2 + T 2

v,

where η is the constant angle defined by
〈
µ, dµ

〉
= cos η.

Corollary 7 i) The curve C with K = 0 in M is µ-helix iff σµ = ∓ T ′G−TG′

(G2+T 2)
3
2
and

λµ = ∓c1 sin η
T√

G2 + T 2
+ c2 cos η ∓ c3 sin η

G√
G2 + T 2
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are constants.

ii) The curve C with G = 0 in M is µ-helix iff σµ = ±K
T and λµ = ∓c1 sin η + c2 cos η are constants.

iii) The curve C with T = 0 in M is µ-helix iff σµ = ±K
G and λµ = c2 cos η ∓ c3 sin η are constants.

Considering versor field (C,W r) with W r = Wr

∥Wr∥ , we can give the following:

Definition 6 Let C be a curve with unit RD-vector field W r in the Myller configuration M. Let C also be

a helix in E3 with a unit axis lr, such that
〈
α, lr

〉
is constant. The curve C is called a Wr-helix in M if

W r makes a constant angle with the same fixed unit direction lr.

Theorem 8 The curve C with unit RD-vector field W r and (G,T ) ̸= (0, 0) in M is a Wr-helix iff C is a
µ-helix in M.

Corollary 8 The axis lr of Wr-helix in M is defined by

lr = cosϑ
T√

G2 + T 2
ξ ∓ (sinϑ)µ+ cosϑ

G√
G2 + T 2

v,

where ϑ is the constant angle defined by
〈
W r, lr

〉
= cosϑ.

Definition 7 Let C be a unit speed curve with Darboux frame RD in the Myller configuration M . Let C

also be a helix in E3 with a unit axis dv, such that
〈
α, dv

〉
is constant. The curve C is called a v-helix in M

if the versor field v makes a constant angle with the same fixed unit direction dv, i.e. there exists a constant

angle ω such that
〈
v, dv

〉
= cosω.

Theorem 9 The curve C with Darboux frame RD and (T,K) ̸= (0, 0) in M is a v-helix iff the following
functions are constant

σv = cotω = ∓
K2
(
T
K

)′
+
(
T 2 +K2

)
G

(T 2 +K2)
3
2

and

λv = ∓c1 sinω
T√

T 2 +K2
± c2 sinω

K√
T 2 +K2

+ c3 cosω.

Corollary 9 The axis of a v-helix C in M is given by

dv = ∓ sinω
T√

T 2 +K2
ξ ± sinω

K√
T 2 +K2

µ+ (cosω)v,

where ω is the constant angle defined by
〈
v, dv

〉
= cosω.

Corollary 10 i) The curve C with K = 0 in M is v-helix iff σv = ∓G
T and λv = ∓c1 sinω+ c3 cosω are

constants.

ii) The curve C with G = 0 in M is v-helix iff

σv = ∓T ′K − TK ′

(T 2 +K2)
3
2

and λv = ∓c1 sinω
T√

T 2 +K2
± c2 sinω

K√
T 2 +K2

+ c3 cosω

are constants.
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iii) The curve C with T = 0 in M is v-helix iff σv = ∓G
K and λv = ±c2 sinω + c3 cosω are constants.

Considering versor field (C,W o) with W o = Wo

∥Wo∥ , we can give the following:

Definition 8 Let C be a curve with unit OD-vector field W o in the Myller configuration M. Let C also be

a helix in E3 with a unit axis lo, such that
〈
α, lo

〉
is constant. The curve C is called Wo-helix in M if W o

makes a constant angle with the same fixed unit direction lo.

Theorem 10 The curve C with unit OD-vector field W o and (K,T ) ̸= (0, 0) in M is a Wo-helix iff C is a
v-helix in M.

Corollary 11 The axis lo of Wo-helix in M is defined by

lo = cos ε
T√

T 2 +K2
ξ − cos ε

K√
T 2 +K2

µ∓ (sin ε)v,

where ε is the constant angle defined by
〈
W o, lo

〉
= cos ε.

Example 2 Let consider the versor fields

ξ =

(
3

4
sin

s

2
+

1

4
sin

3s

2
,−3

4
cos

s

2
− 1

4
cos

3s

2
,−

√
3

2
sin

s

2

)
,

µ =

(
1

2
cos

s

2

(
2 cos2

s

2
− 3
)
,− sin3

s

2
,−

√
3

2
cos

s

2

)
,

υ =

((
−
√
3

4 cos(s/2)

)(
cos

s

2
+ cos

3s

2

)
,

(
−
√
3

4 cos(s/2)

)(
sin

s

2
+ sin

3s

2

)
,
1

2

)
,

and invariants K = −
√
3
2 cos s

2 , G = 0 and T =
√
3
2 sin s

2 . We have that σv = cotω = ∓
√
3
3 , that is, ω = 2π

3
or ω = π

3 . By choosing ω = 2π
3 , c1 = − cos s

2 and c2 = sin s
2 , we get c3 = 0 and λv = 0, i.e., σv and λv are

constants. Thus, the curve C3 given by the parametrization r(s) =
(
2 cos2 s

2 − 7
16 , 2 cos

s
2 sin

s
2 , 0
)
is a v-helix

(and, also W0-helix) in M. (Figure 2(a)). If we choose ω = π
3 , c1 = sin s

2 and c2 = cos s
2 , we see that c3 = 0

and λv =
√
3
2 , i.e., σv and λv are constants. Using the Maple program, we obtain the v-helix C4 in M shown

in Figure 2(b).

6 Conclusions

Some new types of special curves in the Myller configuration M(C, ξ, π) are defined and studied. The

definitions and characterizations of ξ-helices, µ-helices, v-helices, Wk-Darboux helices (k ∈ {n, r, o}), and
ξ1-helices are introduced and presented. The axes of these helices are determined, and the relations between
these special curves are also established.
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(a) ξ-helix C3 (b) ξ-helix C4

Figure 2: v helices C3 and C4 with curvatures K = −
√
3
2 cos s

2 , G = 0 and T =
√
3
2 sin s

2 .
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