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Abstract

This paper investigates an axially moving beam that includes the coupling of longitudinal and
transversal vibrations, as well as nonlinear tension. By employing an appropriate boundary control
technique, we prove the exponential stability result using the Lyapunov method.

1 Introduction

Consider a nonlinear coupling of the longitudinal and transverse beam displacements under axial transport
of mass, with a mass fixed at its end:

p (et + 27010 + V2 052) + o (00 +Y02) + ElVzpge = {Pvs + EAv, (ug 4+ 502) }
P (utt + 27“1&3: + ’YZUxx) + cu (ut + ’Yux) - FEA (u;r + %Uﬁ)w = Oa in (Oa L) X R+, (1)
”U(SC,O) = Uo(x)a ’Ut(IE,O) = 1)1(1'), u(x,O) = ’U,O(l'), ut(x’o) = ul(x)’ T e (OvL)7

subject to
mug(L,t) = Uy(t) + Elvges (L, t) — { Po, + EAv, (up + 302) } (L, 1),
mu(L,t) =U,(t) — FA (um + %vf,) (L, 1), (2)
v(0,1) = v,(0,1) = vy (L, 1) = 0, u(0,t) = 0, Vt € Ry,

where v(z,t) and u(zx,t) are the transversal and longitudinal displacements of the beam at the position x
for time ¢, the subscripts mean partial derivatives, p, L, v, P, EI and FA are the volumetric mass, length,
transport speed of mass, axial tension, bending stiffness and axial stiffness of the beam, and m is mass fixed
at © = L. ¢, and ¢, are the structural damping coefficients, U, (t) and U, (t) are the control applied at = L.

Recently, the technique of boundary control has seen widespread use in various fields, including the
control of vibrations in flexible structures. In studying these systems, they are modeled using second-
order partial differential equations (for strings and cables) and fourth-order partial differential equations (for
beams and plates). Where many results of stability/stabilisation have been established in this regard (see
[1, 4, 5, 13, 16, 17, 18, 19, 20, 23]) and for an axially moving system, see [2, 7, 8, 12, 14].

In [9], an axially moving Kirchhoff string is controlled by a boundary viscoelastic term. For high gain
adaptive output feedback type, we can refer to the work in [10], for a distributed delay in internal feedback
to [11]. The authors in [6], studied system (1) without axial motion, i.e., ¥ = 0. They proved an exponential
stability result for the riser system under robust boundary control. The same result was reached in [15],
where the riser system was considered by replacing frictional dissipation with viscoelastic dissipation.

Our goal in this work is to select the appropriate boundary control that enables us to achieve exponential
stability for the system without imposing any conditions on the transport speed 7.
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298 Exponential Stabilization of Coupled Beam with Nonlinear Tension

The rest of the paper is organized as follows: In the next section, we will present some basic tools that are
essential for our work. In the final section, we will present a result on exponential stability and demonstrate
a result regarding the uniform boundedness of solutions.

2 Preliminary

In this section, we will provide the fundamental materials necessary to demonstrate our results. Below, we
will denote the inner product and norm in L?(0,L) by (-,-) and |-, respectively.
To stabilize the beam (1)—(2), we propose the following control:

(3)

Uy(t) = —ki1ve(L,t) — kovge (L, t) — ksvg (L, t) — kav(L, 1),
Uu(t) = —ksup (L, t) — keuzt (L, t) — krug (L, t) — ksu(L, t),

where k;, i = 1, ..., 8, are positive constants.
Because the beam is moving with a constant speed -, the total derivative operator with respect to time
is defined by

a_0. 9
it~ ot oz
For more details see [22]. The energy of system (1)—(2) is defined by
EA 1,|? EI P
B(t) = & [lve +70all3 + lus + vuall3] + Bo() + =5 [ua + 502|| + S laalls + 5 ally (4)
2 2 27, 2 2
where Ep(t) = 2 [uf + v}] (L,1).
Lemma 1 The total derivative of energy (4) is given by
d
PO = —cofo+ Vel = ymveve (Lyt) = YEIVZ, (0,8) + U () (v + i) (L, ) ()

—cy |Jug + 'yumHg — ymuggg (L, t) — YEAuZ(0,t) + Uy (t) (ur + yug) (L, t).

Proof. The L?(0,L) inner product of (v; + yv,) and (v; + yv,) with first and second equations in (1),
respectively, and integrating by parts, leads to

d
p ((vet + 29010 + 7 Vaa) + o (v +Y02) , (U + Y02)) = g% v + 70 l5 + co lve + a3, (6)
EI d
(ETgpaz, Vi + Y0z) = Elvggy (v +yve) (L, t) + yETvZ, (0,t) + e ||’U3:a:||g )
Pd
—P(Vgg, vt +Y0z) = —Pvg (v +yvz) (L, 1) + Sq vz ll3

1 L 1
_EA({vw (ui + 211%) } (v ) = EA/ (ui + 2@5) Vg (V¢ + YUg), dx
x 0

1
_EAU:E (U/w + 2”3:) (Ut + ’YUx) (La t)»

d
P ((utt + 2'7utw + 72umaz) + ¢y (ut + ’Yuw) ) (ut + 'yum)) = g% ||ut + 7“’1”; +Cu Hut + ’Yumll; ’

—FEA( (um + ;vg) ,(ug +yug)) = YEAu,(0,t) — EA (um + ;1@) (ug + yuy) (L, 1)

L

1

JrEA/ <ut + 21}5) (ur + yug), dx.
0
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Taking into account the fact that:

L 2
1, 1, _ EBAd 1,
EA/O [(um + 21)33) Vg (U + YUz), + <uz + 21)1) (ug +fyum)x] dx = 5 7 |[% + 5 Va J (7)
Combining the results (6)—(7), we get (5). =
Lemma 2 Let u be a function defined on [0, L] x Ry satisfies u(0,t) = u,(0,t) = 0. Then
w?(2,t) < Dllua(O3, and u@)ll3 < L ua(®)]3 < L* uge(®)]l5,  VE>0.
Lemma 3 We have 1
ab§5a2+4—6b2, Y oa,beR, §>0.
Lemma 4 ([3]) Let u € C([0, L]) satisfying uw(0,t) = 0. Then the following inequality hold:
[w?(®)] o, < 2llu@®ll; lue@®l,.  VE=0,
where ||.|| ., is the norm of L>([0, L]).
3 Stability
Now, we define the Lyapunov function by
5
L(t)=BE®) +) . Vilt),
where [ is a positive constant, E(t) is the energy given by (4) and
Vi(t) = Vii(t) + Via(t) + Vis(t),
Ly
Vii(t) = p/ 7Y (vt + Yvz) + u (ug + yuy) dz,
0
L
Via(t) = /0 %02 + %qux,
1
Vis(t) =m |:21}t’() + utu} (L, t),
Va(t) = mpBy [veve + ueug] (L, 1), (8)
Vs(t) = %” [k2v2 + keuZ] (L,t),
i) = | B2 ey B2 (1),
ko
Vs(t) = o Vs + kgutiy. (9)

Now we aim to prove the exponential decay of the Lyapunov function. Using the following proportions,
we will analyze the energy decay.

Proposition 1 If ky = ym, kg = ym, % > % and % > %, then

5

BEL(t) + Vis(t) + Y _Vi(t) >0, t>0. (10)
=2
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Proof. We take the sum of E(¢) and the five functions Vi3(t) and V; (t),i = 2,...,5,, we have

5

BEL(t) + Vis(t) + Y Vi(t)
i=2
Bm [ 2 2 2 1 k1/2+5k‘4 2 Yy
- Ta 2 x A - 5 A T
5 _vt + 2yvv, + 7y szrﬁvthr Bm v +ﬁvv
IB’ITL 2 2 9 2 k5+ﬁk8 2 2
5 2 xT ) - 5 n T
+ 5 uy + 2yugug + 7y Ua:+5“tu+ Bm U +ﬁ’yuu
[ k1/2 4+ Bk 1 k k 2
- 2 (vt+-vvw>24-1/ﬁ%n54v2+-5v<vt4-vvz>+—<ut+-vuw>2+-5;;j’szﬁ-+[3u<ut+-vum{
Bm < 1 2)2 {k1/2+ﬂk4 1} ) < 1 )2 {k5+ﬂk8 1] )
= — || v+ — 5V + | —  —F | v+t tYu +su| + | —— 5| U .
2 [\ 55 bm ap? PR pm- 5

Since ’“/2% > % and % > %, we have (10). m

Proposition 2 There exist a; > 0, ¢ = 1,2, such that

5

5
o <6E(t) +Vis(t) + ) V;(t)) < L(t) < ay <[3E(t) +Vis(t) + ) V;(t)) . VE>0. (11)

=2 =2

Remark 1 ([21]) From the practical points of view, the slope of the beam v, in the vibration never goes to
infinity. Hence, we assume that there exists ¢ € Ry such that ¥t > 0 and x € [0, L], |vg| < ec.

Proof. By using Young’s inequality we obtain

L2P+Cv,v2 p+cu

Vaa(t) + Via®) < 5 (o4 vl + s +al] + L [ 2205002 4 22 2,
0
On the other hand
L 2 2
1 1 2 1 1 2 2
2 2 2 2
Combining the inequalities (10), (12) and Remark 1, we get
2(p+cy)L 2p+c,) L+ (p+cy,)c
Viale) + Via()] < max {1, 2L o) 2 Brted EEGECICL by s,

Choosing § properly, for all ¢ > 0, we deduce (11), with oy = —A>0and e =+ A. =

Lemma 5 The total derivative of Vi(t) yields

dv; 1,7
ditl Uy + =02

p 2 2 FEI 2
(t) = 3 llve + ")/Ua:||2 + p [lue +7ux“2 T 9 HU“””2 —EA 2

2

P 1
el AL t) LU0 ) (L) + (L),
Proof. We write the functional V;(t) as

Vl(t) = Vv(t) + Vu(t)v
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where

L L
Vu(t) = /0 gv (vt +yvz) + %U2d$ + %vtv(L,t) and V,(t) = /0 pu (U + yug) + %“uzdx + mugu(L, t).

A total derivative of V,,(t) yield

dVs,
dt

Ca m
(t) = g l|lvs + 'yvag—i— g/v (Utt + 2y, + 72’Um) dr + 5 /v (v + vz ) da+ 5 [vttv + vtz] (L,t). (14)

Substituting the first equation of (1) in (14), and integrating by parts, we have

P EI EI Bl

(Eva:w - TUa:azzmav) = _TUmwwv(Lat) - 7

EA 1, EA 1, EA (* T
vy (g + =02 = 22 [y + 202 ) opu(L,t) — =2 o+ 202 ) v2da., 1
5 ({vl (ui + 21&) }$,v) 5 <u + 2%) (L, t) ) /0 (u + 5V vydx (16)

Substituting (15)—(16) into (14), we have

P P
—v,v(L,t) — 5

2
. sl (15)

2
HUIJL’HZ +

P m FA

av, 2 2 2 1 o I 5\ 2
el = 5 ol BaR et) + 50u00(2,0) = 50 [ (et 502 2

dt

EI
2

p 2
(®) = 2 lloe +you 3 -

In the same way, a total derivative of V,,(t) yields

v,

L
1
W(t) = p|lus + 'yum||§ +mu?(L,t) + Uyu(L, t) — EA/ <u$ + 21}3) ugdx.
0

By adding the last two relations, we obtain (13). m

Lemma 6 The functions Vi(t),i = 2,...,4, given by (8)—(9), respectively, satisfy

%Vg(t) = mPBY [VeVs + ViVty + Uty + Upptigs] (L, t), (17)
d
%Vz’,(t) = B [havaves + kouzuts] (L, 1),
SSVAE) = [k /2 Bha) v+ (s + Fhs) ] (L),
%Vg(t) = %vtvw + %vvm + kgusug + keuugg | (L, t). (18)

Proof. A differentiation of (8)—(9) leads to (17)—(18), respectively. m

Lemma 7 Time derivative of L(t) satisfies

d
— < — 1
L(1) < —aL(t), (19)
where a is positive constant.
Proof. We have
iﬁ(t) fﬁiE(t) + § : iv( )
a7 T Pt i=1dt
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Taking estimates of %E(t) and %Vi(t),i =1,...,4, we obtain

2

d p 2 2 FEI 2 P 2
ZL(t) = = [Beo—E] e+ v} = Bew — ol lu + 7uall3 = 5= Ivwall} — 5 Izl - BA

1,
oy Uz + =V

2

2
+U, (1) (ﬁvt + Byvs + 1@) (L, t) + Uyu(t) (But + Byug + u) (L, t) + fymove (L, t) + %vf(L, t)

2
1/ VU + 5

+mu?(L,t) + Bymugus, (L, t) — ByEAu2(0,t) + [ uut} (L,t)

k k
—ByEIv:, (0,t) + [;vtvx + ?Zvvtx + kguity + k‘ﬁuUth:| (L,t) + By [kovevie + keugtsg] (L, t).

Using the control law defined by (3), we have

d p EI P 1,7
Zot) = = [Beo—E] v+ youll3 = [Bew — ol lut + 7uall3 = 5= lvwall} = 5 val; — BA |lus + 507

2

— [5]61 — %} v (L,t) — (51@3 + Bk — k;) vev. (L, t) — (Wﬂkz; + k;) v (L, t) — yBksv? (L, )

+ [nym - 6k2] ’Utvtw(L?t) - %UQ(L7t) - [ﬁkf) - m] u?(Lvt) - 76]67”3:([”” - ('YBkS + k7) uua:(Lat)
—ngQ(L, t) - (Bk'? + ’YﬁkS - kﬁ) utuz(Lv t) + [577” - 6]66} ututw(L7 t) - 6’)/(EI’U§1 + EAui)(()) t)

By applying Young’s inequality to the non-constant sign term and fixed ks = kg = ym, we get

2

d r P 2 2 FEI 2 P 2 L,
= < — _£ 17— - = = Nvgal? — = [vI? — R
GFEO < [0 = §] ol — e gl + 70l 5 e} = 5 el — BA e+ 03|
- _ 2 2
_5h_?_me?1kquLw{%_W@?W}ﬁwﬁ_m&%&ﬂ
| 1 2
— [ By — g - 1P 220k ’%'} WAL, 1) — {ks - W;”ﬂ WA (L, 1) — By EI, (0,1)
L 3 4

— [YBks — 01 |Bks + vBk1 — k2/2| — 65 (vBka — k3 /2)] w3 (L, 1)
—[1Bkr — 83 |Bkr +Bks — ko| — 84 (vBks + k)] ui (L, ).
where 01, d2, 03 and 4 are positive constants.

Now we choose 3, k;, i =1,...,8, and §;, i = 1,...,4, so that all the coefficients in the previous inequality
are strictly positive. Then, we have

4
d
ﬁﬁ(t) < -az <5E(t) + Via(t) + ; VQ(@) ) (20)
where
a3 = 2min{ﬁcv — /2 Beu=p i Bk1 —m/2 — |Bks + yBk1 — k2/2[ /01
Bp 7 Bp 28 pm ’
Bks —m — |Bkr +yBks — ke| /03 ~Bks — 01 |8ks + vBk1 — ko /2| — 02yBks — O2ks/2
pm ’ Bk ,
vBk7 — 63 |Bky + yBks — ke| — 04 (YBks + kv) doks — 2vBks + k3 dsks — vBks + k7}
Bryke 209 (k1/2+ Bky) T 04 (ks + Bks)

Now, combining the inequality (11) and (20), we have(19) with o = 22, m

a2
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3.1 Uniform Boundedness

Theorem 1 For the system (1)—(2), under the control (3), given that the initial conditions are bounded,
we can conclude that uniform boundedness (UB), the state of the closed-loop system v(z,t) and u(x,t) will
remain in the compact set

Q = {(u(z,t),v(z,t)) € R*/ |u(z,t)|, [v(z,t)| < D,¥(z,t) € [0,L] x [0,+00)} . (21)

D = max {\/]iflﬁ(o), \/EZZIL(O)} .

Proof. Multiplying equation (19) by e*, we obtain

where constant

Integrating over (0,t), we obtain
L(t) < L(0)e™*" € L=([0, +00)), (22)

which implies that £ is bounded. By utilizing Lemma 2 and Proposition 2, we have

P 1 EA EA 1
2 <= 2o = 2 < == 2< L),
57 (@ 1) < 5 llally < alﬁ(t) and  ——u(2,1) < —= Jluell; < alﬁ(t) (23)

Combining the inequalities (22) and (23), we obtain that v(z,t) and u(x,t) is uniformly bounded as follows:

2L 2L

< <y /==
@@ O <\ F A, £O) and Julz. )] <4/ 5

£(0).

3.2 Exponential Stability

Theorem 2 The energy E(t) satisfies

where A and « are two positive constants.

Proof. Using the Proposition 2 into the inegality (22), we have

Et) < &(O)e—at7
(€51

with A = 2£0) g

oy

Acknowledgment. The authors would like to thank the anonymous referees for their valuable comments
and suggestions. and express their gratitude to DGRSDT for the financial support.



304 Exponential Stabilization of Coupled Beam with Nonlinear Tension

References

[1] B. Basti and N. Benhamidouche. Global existence and blow-up of generalized self-similar solutions to
nonlinear degenerate diffusion equation not in divergence form, Appl. Math. E-Notes, 20(2020), 367-387.

[2] J. R. Chang, W. J. Lin, C. J. Huang and S. T. Choi, Vibration and stability of an axially moving
Rayleigh beam, Appl. Math. Model, 34(2010), 1482-1497.

[3] K. D. Do and J. Pan, Boundary control of transverse motion of marine risers with actuator dynamics,
J. Sound Vib, 318(2008), 768-791.

[4] B. Feng, General decay for a viscoelastic wave equation with strong time-dependent delay, Bound. Value
Probl., 2017(2017), 1-11.

[5] B. Feng, Asymptotic behavior of a semilinear non-autonomous wave equation with distributed delay
and analytic nonlinearity, Nonlinearity, 37(2024).

[6] S.S. Ge, W. He, B. V. E. How and Y. S. Choo, Boundary control of a coupled nonlinear flexible marine
riser, IEEE Trans. Control Syst. Technol., 18(2009), 1080-1091.

[7] M. H. Ghayesh, Stability and bifurcations of an axially moving beam with an intermediate spring
support, Nonlinear Dyn., 69(2012), 193-210.

[8] A. Kelleche and N. E. Tatar, Existence and stabilization of a Kirchhoff moving string with a distributed
delay in the boundary feedback, Math. Model. Nat. Phenom., 12(2017), 106-117.

[9] A. Kelleche, N. E. Tatar and A. Khemmoudj, Uniform stabilization of an axially moving Kirchhoff string
by a boundary control of memory type, J. Dyn. Control Syst., 23(2017), 237-247.

[10] A. Kelleche and N. E. Tatar, Adaptive Stabilization of a Kirchhoff Moving String, J. Dyn. Control Syst.,
26(2020), 255-263.

[11] A. Kelleche and N. E. Tatar, Adaptive boundary stabilization of a nonlinear axially moving string,
ZAMM-Z Angew Math Me, 101(2021), 14 pp.

[12] A. Kelleche and S. Fardin, Stabilization of an axially moving Euler Bernoulli beam by an adaptive
boundary control, J. Dyn. Control Syst., 29(2023), 1037-1054.

[13] A. Kelleche, Well-Posedness and a Blow up Result for a Fractionally Damped Coupled System, Bull.
Malays. Math. Sci. Soc., 46(2023), 33 pp.

[14] C. W. Kim, H. Park and K. S. Hong, Boundary control of axially moving continua: application to a
zinc galvanizing line, Int. J. Control. Autom., 3(2005), 601-611.

[15] B. Lekdim and A. Khemmoudj, General decay of energy to a nonlinear viscoelastic two-dimensional
beam, Appl. Math. Mech. (English Ed.), 39(2018), 1661-1678.

[16] B. Lekdim and A. Khemmoudj, Existence and energy decay of solution to a nonlinear viscoelastic
two-dimensional beam with a delay, Multidimens. Syst. Signal Process. 32(2021), 1-17.

[17] B. Lekdim and A. Khemmoudj, Existence and general decay of solution for nonlinear viscoelastic two-
dimensional beam with a nonlinear delay, Ric. Mat., 73(2021), 1-22.

[18] B. Lekdim and A. Khemmoudj, Existence and Exponential Stabilization of an Axial Vibrations Cable
with Time-Varying Length, J. Dyn. Control Syst., 29(2023), 2041-2053.

[19] S. Misra, G. Gorain and S. Kar, Stability of wave equation with a tip mass under unknown boundary
external disturbance, Appl. Math. E-Notes, 19(2019), 128-140.



B. Lekdim and A. Khemmoudj 305

[20] N. Ouagueni and Y. Arioua, Existence and uniqueness of solution for a mixed-type fractional differential
equation and Ulam-Hyers stability, Appl. Math. E-Notes, 22(2022), 476-495.

[21] R. F. Fung, J. W. Wu and S. L. Wu, Stabilization of an axially moving string by nonlinear boundary
feedback, J. Dyn. Sys., Meas., Control, (1999), 117-121.

[22] B. Tabarrok, C. M. Leech and Y. I. Kim, On the dynamics of an axially moving beam, J. Franklin Inst.,
297(1974), 201-220.

[23] V. M. Ungureanu, Uniform exponential stability for linear discrete time systems with stochastic pertur-
bations in Hilbert spaces, Bollettino della Unione Matematica Italiana-B, 3(2004), 757-772.



	Introduction
	Preliminary
	Stability
	Uniform Boundedness
	Exponential Stability


