Applied Mathematics E-Notes, 25(2025), 557-563 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/

On L" Inequalities For Polar Derivative Of Polynomials*

Mayanglambam Singhajit Singhf, Barchand Chanam?*

Received 8 August 2024

Abstract

In this paper, we have extended an inequality concerning the integral analogue of an inequality for
ordinary derivative recently proved by Reingachan et al. [Int. J. App. Math. 53(1)(2022)] into polar
derivative setting which, in addition, generalizes as well as sharpens some other earlier known results in
this direction.

1 Introduction
Let p(z) be a polynomial of degree n. We define
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If we let ¥ — oo in the above equality and make use of the well-known fact from analysis [11] that
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we can suitably denote

1plloo = max |p(z)].
|z|=1

Similarly, one can define ||p|lo = exp {% 027r log |p(ei0)|d9} and show that lim,_,o+||pll, = |p[lo. It would

be of further interest that by taking limit as v — 0T that the stated results holding for v > 0, also hold for
v =0 as well. For » > 0, we denote

M(p,r) = max [p(2)].
The famous inequality due to Bernstein [9, 12], states that if p(z) is a polynomial of degree n, then
19" loc < nlplloo- (2)
Restricting to the class of polynomials having no zero in |z| < 1, inequality (2) can be improved by

n
1Pl < 5 lIPlloo- 3)

Inequality (3) was conjectured by Erdos and later verified by Lax [6]. Another generalization of (3), Malik
[7] proved that if p(z) does not vanish in |z| < k, k > 1, then

n
19w < o l1ple: Q)
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Further, as a generalization of (4), Bidkham and Dewan [13] proved that
n(r+ k)1
1+ k)

As another generalization of (5), Aziz and Zargar [4] proved that if p(2) = ap +Y_)_,a,2", 1 < p<n,isa
polynomial of degree n having no zero in |z| < k, k > 1, then for 0 <r < R <k

nRF(RM + )1
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P’ (r2)lleo < [Plloc, for 1<r <k ()

I’ (R2)]loo < [2(r2)]]co- (6)

Equality holds in (6) for p(z) = (z* 4+ k*)# where n is a multiple of .
As an improvement and generalization of (5), Aziz and Shah [14] proved that if p(2) = ag + 3_)_, a,z",
1 < u <mn, is a polynomial of degree n having no zero in |z| < k, k > 0, then for 0 <r < R <k
nRA (R 4 ket
(11 + kr)n

P/ (R2)[loe < {lp(rz)lloc —m}. (7)

The result is best possible and equality in (7) holds for p(z) = (z* + k*)# where n is a multiple of .
Extensions of (6) and (7) into L” norm were done very recently by Chanam et al. [5] by proving the
following two results.

Theorem 1 If p(z) = ap + ZZ:M a,z’, 1 < p <mn, is a polynomial of degree n having no zero in |z| < k,
k>0, then forO<r < R<kandy >0
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Theorem 2 If p(z) = ap + ZZ:M a,z’, 1 < p <mn, is a polynomial of degree n having no zero in |z| < k,
k>0, then forO<r < R<kandy >0

2m ; R tp‘_l R %
/0 {p(ree)|—|—n/r tu+k# (M(p,t)—m)dt—m} d&] , (8)

where F, and M (p,t) are as defined in Theorem 1 and m = min, |y |p(z)|.

1 27
M(p,t) = max Ip(z)| and F, = {%/0

n
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For a polynomial p(z) of degree n, we now define the polar derivative of p(z) with respect to a real or
complex number « as
Dap(z) = np(2) + (o — 2)p' (2).
This polynomial D,p(z) is of degree at most n — 1 and it generalizes the ordinary derivative p’(z) in the
sense that
lim Dapz) _ p'(2),
a— 00 (8]
uniformly with respect to z for |z2| < R, R > 0.

A variety of results on the polar derivative of a polynomial can be found in the comprehensive books
of Milovanovi¢ et al. [9], Marden [15] and Rahman and Schmeisser [16], where some methods for deriving
polynomial inequalities are based on using techniques of the geometric function theory and findings.

Among those who extended some of the above inequalities to polar versions, Aziz [1] was the first who
extended inequality (4) to polar derivative of a polynomial by proving that if p(z) is a polynomial of degree
n having no zero in |z| < k,k > 1, then for any complex number « with |a| > 1

al+k
max Dap()] < 0 (S5 ) max . Q
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2 Lemmas

We need the following lemmas to prove the theorem. The first lemma is due to Qazi [10].

Lemma 1 If p(z) = ap + Z:f:u a,z”, 1 < p < n, is a polynomial of degree n having no zero in |z| < k,
k> 1, then on|z| =1
© la“‘k“ 1 +1
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The next lemma is due to Govil and Kumar [3].

n

W=

where ¢(z) = 2

Lemma 2 Let p, q be any two positive real numbers such that p > qx, where x > 1. If £ is any real such
that 0 < & < 2m, then for any y > 1

p+ge
T + et

p+qy
T+y

(11)

The next lemma is due to Govil and Kumar [3].

Lemma 3 Let z1 and z3 be any two complex numbers not depending on B, where B is real. Then for each
>0

2m 2m
/ |z1—|—zQeiﬁ}’ydﬁ: / ||z1|—|—|z2\eiﬁ|ﬂ/dﬁ. (12)
0

0
The following result is due to Aziz and Rather [2].

Lemma 4 Let p(z) be a polynomial of degree n. Then for every & with 0 < & < 2w and v >0
27 27 ) 27 )
/ / )+ ep () dedh < 27rn7/ Ip(e’)|7de, (13)
0

where q(z) = 2"p (2)
The next three lemmas are due to Reingachan et al. [8].

Lemma 5 Ifp(z) = UL()—I—Z:Z:M a,z”, 1 < p<m, is a polynomial of degree n having no zero in |z| < k,k > 0,
then for0 <r < R<k

' . R HI \a|u| Eptlpn—1 4 yn
RO < Ipre )]+ [ ol
e o B (g ) + )
x {M(p,t) — m}dt, (14)

where m = min;—, [p(2)| and M(p,t) = max,— [p(z)|.

Lemma 6 Ifp(z) = aO‘*’EZ:N a,z”, 1 < p < mn, is a polynomial of degree n having no zero in |z| < k,k > 0,
then for0 <r < R<k

R ﬁl |a‘i| hHln—1 4 g
/ : la,| {M(p, t) _m} dt
ro R et g B (kR 4 B2
R tu,—l
< [ o M - my (15)

where M (p,t) = max,— |p(2)| and m = min;— [p(2)].
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Lemma 7 Ifp(z) = ao—l—zszu a,2”, 1 < p < mn, is a polynomial of degree n having no zero in |z| < k,k > 0,
then for0 < R <k

n_lau|R k21 4 ptl

n lag|—m > 1. (16)
123 ‘awl k“"_lRﬂ—FRlH—l

n |ag|—m

Lemma 8 The function

la“'k“ 1 1
g(z) = EHtL {H_F} (17)

EN
woa ke
where k> 1,1 >0 and n € N, is a non-decreasing function of x > 0.

Proof. The proof follows simply by the first derivative test. m

3 Main Results

The present paper is mainly motivated by the desire to establish an improved and generalized version in
polar derivative of Theorems 1 and 2. Our result also extends an inequality recently proved by Reingachan
et al. [8] to its polar derivative version. In fact, we prove

Theorem 3 If p(z) = ap + ZZ:M a,z’, 1 < p <mn, is a polynomial of degree n having no zero in |z| < k,
k>0, then for v > 0,0 <r < R <k and for any complex number o with |a| > R, § with |B] < 1

n (A—l— ‘ZJ) R ﬁl |a|u‘ fptlpp—1 4 g
IDap(Be)| + gl < e ptre) |+ ol
! 1A+ 2, R aa = Ea
X {M(pa t) - m} dt — |B‘m ) (18)
¥
where
e
A= 20 , M(p,t) =max|p(z)] and m = min |p(2)|.
i Tl i g et (p,t) max p(2)] min Ip(2)]

n [ag|—m

Proof. Since p(z) has no zero in |z| < k, k > 0, for every real or complex number § with |3] < 1, by
Rouche’s theorem, the polynomial p(z) + fm, where m = min|, | [p(z)|, has no zero in|z| <k, k>0. Let
0 <7 < R < k. Then the polynomial P(z) = p(Rz) + Bm has no zero in |z| < &, £ > 1.

Applying Lemma 1 to P(z), we have for 0 < 0 < 27

AolP'(e”)] < 1Q'(e")], (19)
where o
p_lauR 4op + kmtl
a, m 1
Ag = n lao+Am| and Q(z) =z"P |- ).
b o R :
aop m

By Lemma 8, we have Ay > A, where

u_lau|R k.2,u+kp«+1

A= n |ao|—
\lgﬁww kit 4 Rt

Therefore, inequality (19) gives 4 ‘
AP ()] < 1Q'(e)]. (20)
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Now, it can be easily verified that for 0 < 0 < 27
nP(e®) — ¢ P (ei%) = ¢in=1OG1 ().
For any complex number ¢ and 0 < 6 < 27, we have
DsP(e) = nP(e?) + (6 — )P’ ('),
which on using (21) yields
DsP(e) < [nP(e) — e P'(e")]| + [8]|P' ()| = |Q' ()] + [8]|P' ().

Now, for every complex number ¢ with 6] > 1, v > 0 and £ real on using (22), we have

561

(22)

27 27 27 2
/ \A+ei5|”d£/ IDaP(e”")I”dag/ / A+ e {1Q ()] + 6] P'(e)|} dedo.  (23)
0 0 0 0

By Lemma 7, A > 1 and by taking p = |Q'(¢"?)|, ¢ = |P'(¢”)|, 2 = A and y = [§| > 1 in Lemma 2 so that

p > qux satisfied by (20), we get
[A+ e {1Q"(e) + 0] P'(e)]} < (A+3]) [|Q' ()] + e |P'(e”)]] -
By Lemma 3, for every v > 0 and 21, 2o € C with £ real, we have
27 ) 2w )
|l eac e = [ o] aale | e
0 0

With the help of (24) and (25), inequality (23) implies

2m 2 2 2m
| avespae [Cipspenpas < @iy [ [ @]+ P e dsas
0 0 0 0
27 27
= (A+|5I)”/ / |Q'(e") + e P’ ()| ded
0 0
27
< (A+|5|)727m7/ |P(e)|" do,
0

where the last inequality follows by Lemma 4.
The above inequality becomes

2 . Y o 2 .
/ D5 P(e?)[1df < — (4+ 1D / |P(c)[ db.
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Note that P(z) = p(Rz) + fm and putting § = % such that % > 1, we have

n7 (A + %)7

(% IOQW |A + ei€|rdg

27
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Since

D {p(Re”) + fm} = n{p(Re") + fm} + (& — ') Bp'(Re”)

R
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) /027T |p(Re™) + ﬁm’w de.

(24)

(25)

(27)
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inequality (2;) is equi\/alent t()
% \a|

(% Jo™ 1A+ exndg

27 2
/ | Dap(Re™) + npm|"do < / |p(Re) + pm|" db. (28)
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Now, we choose the argument of 3 suitably such that
p(Re™) + Bm| = [p(Re’)| — |Blm. (29)
Using equality (29) in the right side of (28), we get
n’ (A + ‘%l)W 2
(& Sy 1A+ eiprae)

27
/0 Dap(Rei®) + nfm|"d6 < {Ip(Re™)| — |8lm}do. (30)

Applying Lemma 5 in (30), we have for v > 0
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0
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which is equivalent to (18). This completes the proof of Theorem 3. m

Remark 1 Dividing both sides of (18) of Theorem 3 by |a| and letting |o| — oo and |8] — 1, we obtain a

result due to Reingachan et al. [8]. Also since |p(re”?)| < max|, . |p(z)|, Theorem 3 reduces to the following
interesting result.

Corollary 1 If p(z)
-

+> 0 Lz’ 1< <n, is a polynomial of degree n having no zero in [z| <k,
k >0, then for 0 < <k,

=ap
<R any complea: numbers o, 8 with |a| > R, |8] <1 and v > 0,
[Dap(Rz)| +npml|,

n(A+%)

14 |au| Jeptlpp—=1 4 4p
< A

R
e [ ARl
ottt Bose s (ke kPR + ket

x{M(p,t) —m}di —[Blm|| (32)

~

where
E\IGT‘R k2 4 LHtl
A= 4o M(p.t) =
M |au‘ k”+1RM+R“+1 ’ (p’ ) gl‘a':)i |p(2)|,

n Jao[—m

M(p,r) = max p(z)| and m = min |p(z)|.

|z|=r |z|=k
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Remark 2 Since (£)* < A, where A is as defined in Corollary 1, and by (15) of Lemma 6, the bound
giwen by Corollary 1 is better than both the bounds given by Theorems 1 and 2 which were recently proved by
Chanam et al. [5] and hence Theorem 3 is an improved and generalized version concerning polar derivative
of the inequalities of Theorems 1 and 2.
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