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Abstract

In this paper, we have extended an inequality concerning the integral analogue of an inequality for
ordinary derivative recently proved by Reingachan et al. [Int. J. App. Math. 53(1)(2022)] into polar
derivative setting which, in addition, generalizes as well as sharpens some other earlier known results in
this direction.

1 Introduction

Let p(z) be a polynomial of degree n. We define

‖p‖γ =

{
1

2π

∫ 2π

0

|p(eiθ)|γdθ
} 1
γ

, 0 < γ <∞. (1)

If we let γ →∞ in the above equality and make use of the well-known fact from analysis [11] that

lim
γ→∞

{
1

2π

∫ 2π

0

|p(eiθ)|γdθ
} 1
γ

= max
|z|=1

|p(z)|,

we can suitably denote
‖p‖∞ = max

|z|=1
|p(z)|.

Similarly, one can define ‖p‖0 = exp
{

1
2π

∫ 2π

0
log |p(eiθ)|dθ

}
and show that limγ→0+‖p‖γ = ‖p‖0. It would

be of further interest that by taking limit as γ → 0+ that the stated results holding for γ > 0, also hold for
γ = 0 as well. For r > 0, we denote

M(p, r) = max
|z|=r

|p(z)|.

The famous inequality due to Bernstein [9, 12], states that if p(z) is a polynomial of degree n, then

‖p′‖∞ ≤ n‖p‖∞. (2)

Restricting to the class of polynomials having no zero in |z| < 1, inequality (2) can be improved by

‖p′‖∞ ≤
n

2
‖p‖∞. (3)

Inequality (3) was conjectured by Erdös and later verified by Lax [6]. Another generalization of (3), Malik
[7] proved that if p(z) does not vanish in |z| < k, k ≥ 1, then

‖p′‖∞ ≤
n

1 + k
‖p‖∞. (4)
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Further, as a generalization of (4), Bidkham and Dewan [13] proved that

‖p′(rz)‖∞ ≤
n(r + k)n−1

(1 + k)n
‖p‖∞, for 1 ≤ r ≤ k. (5)

As another generalization of (5), Aziz and Zargar [4] proved that if p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a
polynomial of degree n having no zero in |z| < k, k ≥ 1, then for 0 < r ≤ R ≤ k

‖p′(Rz)‖∞ ≤
nRµ−1(Rµ + kµ)

n
µ−1

(rµ + kµ)
n
µ

‖p(rz)‖∞. (6)

Equality holds in (6) for p(z) = (zµ + kµ)
n
µ where n is a multiple of µ.

As an improvement and generalization of (5), Aziz and Shah [14] proved that if p(z) = a0 +
∑n
ν=µ aνz

ν ,
1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ k

‖p′(Rz)‖∞ ≤
nRµ−1(Rµ + kµ)

n
µ−1

(rµ + kµ)
n
µ

{‖p(rz)‖∞ −m} . (7)

The result is best possible and equality in (7) holds for p(z) = (zµ + kµ)
n
µ where n is a multiple of µ.

Extensions of (6) and (7) into Lγ norm were done very recently by Chanam et al. [5] by proving the
following two results.

Theorem 1 If p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k,
k > 0, then for 0 < r ≤ R ≤ k and γ > 0

‖p′(Rz)‖γ ≤
n

R
Fγ

[∫ 2π

0

{
|p(reiθ)|+

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

}γ
dθ

] 1
γ

,

where

M(p, t) = max
|z|=t
|p(z)| and Fγ =

{
1

2π

∫ 2π

0

∣∣∣∣( kR
)µ

+ eiα
∣∣∣∣γ dα}

−1
γ

.

Theorem 2 If p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k,
k > 0, then for 0 < r ≤ R ≤ k and γ > 0

‖p′(Rz)‖γ ≤
n

R
Fγ

[∫ 2π

0

{
|p(reiθ)|+ n

∫ R

r

tµ−1

tµ + kµ
(M(p, t)−m) dt−m

}γ
dθ

] 1
γ

, (8)

where Fγ and M(p, t) are as defined in Theorem 1 and m = min|z|=k |p(z)|.
For a polynomial p(z) of degree n, we now define the polar derivative of p(z) with respect to a real or

complex number α as
Dαp(z) = np(z) + (α− z)p′(z).

This polynomial Dαp(z) is of degree at most n − 1 and it generalizes the ordinary derivative p′(z) in the
sense that

lim
α→∞

Dαp(z)

α
= p′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
A variety of results on the polar derivative of a polynomial can be found in the comprehensive books

of Milovanovíc et al. [9], Marden [15] and Rahman and Schmeisser [16], where some methods for deriving
polynomial inequalities are based on using techniques of the geometric function theory and findings.
Among those who extended some of the above inequalities to polar versions, Aziz [1] was the first who

extended inequality (4) to polar derivative of a polynomial by proving that if p(z) is a polynomial of degree
n having no zero in |z| < k, k ≥ 1, then for any complex number α with |α| ≥ 1

max
|z|=1

|Dαp(z)| ≤ n
(
|α|+ k

1 + k

)
max
|z|=1

|p(z)|. (9)
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2 Lemmas

We need the following lemmas to prove the theorem. The first lemma is due to Qazi [10].

Lemma 1 If p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k,
k ≥ 1, then on |z| = 1

|q′(z)| ≥ kµ+1

µ
n
|aµ|
|a0| k

µ−1 + 1

1 + µ
n
|aµ|
|a0| k

µ+1
|p′(z)|, (10)

where q(z) = znp( 1
z ).

The next lemma is due to Govil and Kumar [3].

Lemma 2 Let p, q be any two positive real numbers such that p ≥ qx, where x ≥ 1. If ξ is any real such
that 0 ≤ ξ < 2π, then for any y ≥ 1

p+ qy

x+ y
≤
∣∣∣∣p+ qeiξ

x+ eiξ

∣∣∣∣ . (11)

The next lemma is due to Govil and Kumar [3].

Lemma 3 Let z1 and z2 be any two complex numbers not depending on β, where β is real. Then for each
γ > 0 ∫ 2π

0

∣∣z1 + z2e
iβ
∣∣γ dβ =

∫ 2π

0

∣∣|z1|+ |z2|eiβ
∣∣γ dβ. (12)

The following result is due to Aziz and Rather [2].

Lemma 4 Let p(z) be a polynomial of degree n. Then for every ξ with 0 ≤ ξ < 2π and γ > 0∫ 2π

0

∫ 2π

0

|q′(eiθ) + eiξp′(eiθ)|γdξdθ ≤ 2πnγ
∫ 2π

0

|p(eiθ)|γdθ, (13)

where q(z) = znp
(

1
z̄

)
.

The next three lemmas are due to Reingachan et al. [8].

Lemma 5 If p(z) = a0+
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k

|p(Reiθ)| ≤ |p(reiθ)|+ n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

×{M(p, t)−m} dt, (14)

where m = min|z|=k |p(z)| and M(p, t) = max|z|=t |p(z)|.

Lemma 6 If p(z) = a0+
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k ∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt)

{M(p, t)−m} dt

≤
∫ R

r

tµ−1

tµ + kµ
{M(p, t)−m} dt, (15)

where M(p, t) = max|z|=t |p(z)| and m = min|z|=k |p(z)|.
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Lemma 7 If p(z) = a0+
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < R ≤ k

µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|
|a0|−mk

µ+1Rµ +Rµ+1
≥ 1. (16)

Lemma 8 The function

g(x) = kµ+1

{
µ
n
|aµ|
x kµ−1 + 1

µ
n
|aµ|
x kµ+1 + 1

}
(17)

where k ≥ 1, µ > 0 and n ∈ N, is a non-decreasing function of x > 0.

Proof. The proof follows simply by the first derivative test.

3 Main Results

The present paper is mainly motivated by the desire to establish an improved and generalized version in
polar derivative of Theorems 1 and 2. Our result also extends an inequality recently proved by Reingachan
et al. [8] to its polar derivative version. In fact, we prove

Theorem 3 If p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k,
k > 0, then for γ > 0, 0 < r ≤ R ≤ k and for any complex number α with |α| ≥ R, β with |β| < 1

‖Dαp(Rz)|+ nβm‖γ ≤
n
(
A+ |α|

R

)
‖A+ z‖γ

∥∥∥∥∥|p(reiθ)|+ n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

×{M(p, t)−m} dt− |β|m
∥∥∥∥∥
γ

, (18)

where

A =


µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|
|a0|−mk

µ+1Rµ +Rµ+1

 , M(p, t) = max
|z|=t
|p(z)| and m = min

|z|=k
|p(z)|.

Proof. Since p(z) has no zero in |z| < k, k > 0, for every real or complex number β with |β| < 1, by
Rouche’s theorem, the polynomial p(z) + βm, where m = min|z|=k |p(z)|, has no zero in |z| < k, k > 0. Let
0 < r ≤ R ≤ k. Then the polynomial P (z) = p(Rz) + βm has no zero in |z| < k

R ,
k
R ≥ 1.

Applying Lemma 1 to P (z), we have for 0 ≤ θ < 2π

A0|P ′(eiθ)| ≤ |Q′(eiθ)|, (19)

where

A0 =


µ
n
|aµ|R
|a0+βm|k

2µ + kµ+1

µ
n
|aµ|Rµ
|a0+βm|k

µ+1 +Rµ+1

 and Q(z) = znP

(
1

z̄

)
.

By Lemma 8, we have A0 ≥ A, where

A =


µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|Rµ
|a0|−mk

µ+1 +Rµ+1

 .

Therefore, inequality (19) gives
A|P ′(eiθ)| ≤ |Q′(eiθ)|. (20)
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Now, it can be easily verified that for 0 ≤ θ < 2π

nP (eiθ)− eiθP ′(eiθ) = ei(n−1)θQ′(eiθ). (21)

For any complex number δ and 0 ≤ θ < 2π, we have

DδP (eiθ) = nP (eiθ) + (δ − eiθ)P ′(eiθ),

which on using (21) yields

DδP (eiθ) ≤ |nP (eiθ)− eiθP ′(eiθ)|+ |δ||P ′(eiθ)| = |Q′(eiθ)|+ |δ||P ′(eiθ)|. (22)

Now, for every complex number δ with |δ| ≥ 1, γ > 0 and ξ real on using (22), we have∫ 2π

0

|A+ eiξ|γdξ
∫ 2π

0

|DδP (eiθ)|γdθ ≤
∫ 2π

0

∫ 2π

0

|A+ eiξ|γ
{
|Q′(eiθ)|+ |δ||P ′(eiθ)|

}γ
dξdθ. (23)

By Lemma 7, A ≥ 1 and by taking p = |Q′(eiθ)|, q = |P ′(eiθ)|, x = A and y = |δ| ≥ 1 in Lemma 2 so that
p ≥ qx satisfied by (20), we get

|A+ eiξ|
{
|Q′(eiθ)|+ |δ||P ′(eiθ)|

}
≤ (A+ |δ|)

∣∣|Q′(eiθ)|+ eiξ|P ′(eiθ)|
∣∣ . (24)

By Lemma 3, for every γ > 0 and z1, z2 ∈ C with ξ real, we have∫ 2π

0

∣∣z1 + z2e
iξ
∣∣γ dξ =

∫ 2π

0

∣∣|z1|+ |z2|eiξ
∣∣γ dξ. (25)

With the help of (24) and (25), inequality (23) implies∫ 2π

0

|A+ eiξ|γdξ
∫ 2π

0

|DδP (eiθ)|γdθ ≤ (A+ |δ|)γ
∫ 2π

0

∫ 2π

0

∣∣|Q′(eiθ)|+ eiξ|P ′(eiθ)|
∣∣γ dξdθ

= (A+ |δ|)γ
∫ 2π

0

∫ 2π

0

∣∣Q′(eiθ) + eiξP ′(eiθ)
∣∣γ dξdθ

≤ (A+ |δ|)γ2πnγ
∫ 2π

0

∣∣P (eiθ)
∣∣γ dθ, (26)

where the last inequality follows by Lemma 4.
The above inequality becomes∫ 2π

0

|DδP (eiθ)|γdθ ≤ nγ(A+ |δ|)γ(
1

2π

∫ 2π

0
|A+ eiξ|γdξ

) ∫ 2π

0

∣∣P (eiθ)
∣∣γ dθ.

Note that P (z) = p(Rz) + βm and putting δ = α
R such that

|α|
R ≥ 1, we have

∫ 2π

0

|D α
R
{p(Reiθ) + βm}|γdθ ≤

nγ
(
A+ |α|

R

)γ
(

1
2π

∫ 2π

0
|A+ eiξ|γdξ

) ∫ 2π

0

∣∣p(Reiθ) + βm
∣∣γ dθ. (27)

Since

D α
R
{p(Reiθ) + βm} = n{p(Reiθ) + βm}+

(α
R
− eiθ

)
Rp′(Reiθ)

= Dαp(Re
iθ) + nβm,
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inequality (27) is equivalent to

∫ 2π

0

|Dαp(Re
iθ) + nβm|γdθ ≤

nγ
(
A+ |α|

R

)γ
(

1
2π

∫ 2π

0
|A+ eiξ|γdξ

) ∫ 2π

0

∣∣p(Reiθ) + βm
∣∣γ dθ. (28)

Now, we choose the argument of β suitably such that

|p(Reiθ) + βm| = |p(Reiθ)| − |β|m. (29)

Using equality (29) in the right side of (28), we get

∫ 2π

0

|Dαp(Re
iθ) + nβm|γdθ ≤

nγ
(
A+ |α|

R

)γ
(

1
2π

∫ 2π

0
|A+ eiξ|γdξ

) ∫ 2π

0

{|p(Reiθ)| − |β|m}γdθ. (30)

Applying Lemma 5 in (30), we have for γ > 0{∫ 2π

0

|Dαp(Re
iθ) + nβm|γdθ

}1/γ

≤
n
(
A+ |α|

R

)
(

1
2π

∫ 2π

0
|A+ eiξ|γdξ

)1/γ

[∫ 2π

0

{
|p(reiθ)|

+n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

{M(p, t)−m} dt− |β|m
}γ

dθ

]1/γ

, (31)

which is equivalent to (18). This completes the proof of Theorem 3.

Remark 1 Dividing both sides of (18) of Theorem 3 by |α| and letting |α| → ∞ and |β| → 1, we obtain a
result due to Reingachan et al. [8]. Also since |p(reiθ)| ≤ max|z|=r |p(z)|, Theorem 3 reduces to the following
interesting result.

Corollary 1 If p(z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k,
k > 0, then for 0 < r ≤ R ≤ k, any complex numbers α, β with |α| ≥ R, |β| < 1 and γ > 0,

‖Dαp(Rz)|+ nβm‖γ

≤
n
(
A+ |α|

R

)
‖A+ z‖γ

∥∥∥∥∥|M(p, r)|+ n

∫ R

r

µ
n
|aµ|
|a0|−mk

µ+1tµ−1 + tµ

tµ+1 + µ
n
|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

×{M(p, t)−m} dt− |β|m
∥∥∥∥∥
γ

, (32)

where

A =


µ
n
|aµ|R
|a0|−mk

2µ + kµ+1

µ
n
|aµ|
|a0|−mk

µ+1Rµ +Rµ+1

 , M(p, t) = max
|z|=t
|p(z)|,

M(p, r) = max
|z|=r

|p(z)| and m = min
|z|=k

|p(z)|.
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Remark 2 Since ( kR )µ ≤ A, where A is as defined in Corollary 1, and by (15) of Lemma 6, the bound
given by Corollary 1 is better than both the bounds given by Theorems 1 and 2 which were recently proved by
Chanam et al. [5] and hence Theorem 3 is an improved and generalized version concerning polar derivative
of the inequalities of Theorems 1 and 2.

Acknowledgment. We are very grateful to the referees for their valuable suggestions.
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