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Abstract

This work applies Adomian’s decomposition method (ADM) to solve a one-dimensional fractional
advection-dispersion equation with variable diffusivity. The temporal derivative is substituted with
a Caputo fractional derivative of order α (where 0 < α ≤ 1), and spatial derivatives with orders β

(where 0 < β ≤ 1) and γ (where 1 < γ ≤ 2) are used. The concentration effects of three pollutants
with different diffusivities are examined under constant wind velocity, and it also analyzes how varying
fractional derivatives affect the interaction between advection and diffusion. The accuracy of the solutions
improves as the fractional order increases, demonstrating the method’s effectiveness in modeling complex
pollutant dispersion in systems with heterogeneous diffusion and providing insights into systems with
memory effects or long-range interactions.

1 Introduction

The advection-diffusion equation (ADE) is a parabolic partial differential equation widely used in envi-
ronmental science to model the movement and dispersion of pollutants [12, 21]. Advection describes the
transport of substances by a moving fluid, while diffusion refers to the movement of molecules from high to
low concentration due to a concentration gradient [13, 23]. Fick’s law and the principle of mass conservation,
ADE also incorporates methods such as fractional Langevin processes, continuous-time random walks, and
fractional Brownian motion. These approaches often model more complex pollutant dispersion patterns in
aquatic systems and the atmosphere, and the use of fractional calculus improves predictions of pollutant
spread [1, 21, 25].

Fractional calculus (FC), which extends classical calculus by incorporating fractional derivatives and in-
tegrals, is a valuable tool in many fields of science and engineering. It is particularly useful for understanding
diffusion processes in systems with memory effects, fractal media, and heterogeneous environments. Due to
its broad range of applications, FC has attracted significant attention across multiple scientific disciplines
[2, 11, 19]. The development of fractional diffusion equations, especially in the context of anomalous dif-
fusion, explores non-integer derivative orders in both space and time, revealing how these affect diffusion
patterns [5]. The fractional advection-diffusion equation (FADE) has proven especially effective in modeling
fluid transport through porous media [23]. This is achieved by replacing the first-order time derivative in
the standard diffusion equation with a Liouville-Caputo derivative and substituting the second-order spatial
derivative with a Riesz-Feller derivative [25, 26].

El-Sayed et al. [15] developed a model using fractional derivatives (FD) and applied the Adomian
Decomposition Method (ADM) to derive an analytical solution. George Adomian (1923–1996) established
the ADM, an effective mathematical technique for solving various differential equations (Adomian, 1994).
The ADEs traditionally model particle transport but often fail to depict real-world scenarios accurately due
to constant diffusivity assumptions. Mainardi [16]; Liu et al. [14] have recently emerged FADEs incorporating
(FD) for better representation in heterogeneous and complex media. Bear [4] introduced variable diffusivity,
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which has significantly enhanced ADE models, especially for diffusion in heterogeneous materials. Kumar et
al. [12] introduced the space-fractional diffusion equation, describing diffusion in non-homogeneous media
and fractal geometries, considering sub- or super-diffusion phenomena [17, 22].

2 Preliminaries

Recall that the Riemann Liouville (R-L) fractional integral is defined by

aI
α
y (f(y)) =

1

Γ(α)

∫ y

a

(y − t)α−1f(t)dt,

where Γ is the gamma function and a is an arbitrary but fixed base point. The integral is well defined
provided f is locally integrable on suitable intervals, and α is a complex number in the half-plane Re(α) > 0.

Property 1 ([19]) aIα
y (λ(K(y))) = λaIα

y (K(y)), aIα
y (M(y)±N(y)) = aIα

y M(y) ± aIα
y N(y)) and aIα

y (N(y)±
M(y))) = aIα

y (N(y) ± aIα
y M(y)).

Definition 1 ([16]) The Riemann-Liouville fractional derivative of order α > 0 is defined by

bD
α
x(v(x)) =

{

1
Γ(m−γ)

dm

dxm

∫ x

b
(x − t)m−α−1v(t)dt (m − 1) < α < m,

dm

dxm v(x) α = m

where m = dαe , the ceiling function of α.

Definition 2 ([1]) The Caputo fractional derivative (FD) is a kind of fractional derivative

aD
α
z (f(z)) =

{

1
Γ(p−α)

∫ z

a
(z − t)p−α−1 dp

dzp f(t)dt (p − 1) < α < p, α ∈ R+, p ∈ N,
dp

dzp f(z) α = p.

Definition 3 ([20]) The single-parameter Mittag-Leffler function Eα(x) is defined as,

Eα(x) =

∞
∑

k=0

xk

Γ(αk + 1)

where α is a complex parameter, and Γ(.) is the gamma function.

It is well known that [3] the R-L fractional integral exists if the function f(x) belongs to the space

L1([a, b]), which implies that
∫ b

a
|f(x)| dx < ∞. Additionally, the Liouville-Caputo fractional derivative

exists if the function f(x) is absolutely continuous and satisfies the condition

∫ x

a

|f ′(t)|

(x − t)1−α
dt < ∞.

Principal Components of ADM: In the differential equation Lu +Ru +N(u) = f(x), where L = Dn

and D = d
dx

, N(u) is a nonlinear operator, L and R are linear operators. ADM expresses u(x, t) as an
infinite series:

u(x, t) =

∞
∑

k=0

uk(x, t),

and the nonlinear operator N(u) is expanded as An are Adomian polynomials depending on u0, u1, u2, · · · ,

An =

[

1

n!

dn

dλn
N

(

n
∑

i=0

λiui

)]

λ=0

, (1)
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where N(u) represents the nonlinear term such that
∑

∞

k=0 uk(x, t) = f(x) − L−1
t Lx (

∑

∞

k=0 uk) − L−1
t (

∑

∞

n=0 An) ,

∑

∞

n+1=0 un+1(x, t) = f(x) − L−1
t Lx (

∑

∞

n=0un) − L−1
t (

∑

∞

n=0 An) ,
(2)







u0(x, t) = f(x),

un+1(x, t) = L−1
t Lxun − L−1

t An for k = 0, 1, 2, 3, . . . .
(3)

We use the recurrence relation to find the first few components, u0, u1, u2, u3. These are sufficient to form the
series for u(x, t) ≈

∑N
k=0 uk(x, t). With N being finite, calculating more terms manually is difficult, so we use

computer software; however, the series converges quickly, so only a few terms are needed for an approximate
solution. For the exact solution, we use u(x, t) = limN→∞

∑N
k=0 uk(x, t). In both cases, the series converges

[10] fast. Equations (1) and (3) are used to solve the nonlinear differential equation u(x, t) =
∑N

k=0 uk(x, t).
The ADM requires u(x, t) to have a continuous derivative, N(u) to be twice continuously differentiable, and
all functions to be smooth so that the inverse operators L−1

t and L−1
x are well-defined. Lt and Lx are linear,

while N(u) is nonlinear. These conditions guarantee the convergence and accuracy of the ADM [9].

Example 1 Consider the nonlinear second order homogeneous partial differential equation,

ut − uxx + u2 − u = 0 (4)

with the initial condition:
u(x, 0) = α.

Using ADM, the differential operators are decomposed, Lt = ∂
∂t

, Lx = ∂2

∂x2 and N(u) = (u2 − u). From (4):

u(x, t) = L−1
t [Lx(u)] − L−1

t [N(u)] + α. Let

u =

∞
∑

k=0

uk(x, t), N(u) = u2 − u and N(u) =

∞
∑

n=0

An.

Then
∞
∑

k=0

uk(x, t) = L−1
t Lx

∞
∑

k=0

uk(x, t) − L−1
t

∞
∑

n=0

An,







u0(x, t) = α,

un+1(x, t) = L−1
t Lxun − L−1

t An for n = 0, 1, 2, 3, . . . .

So we have that

u1 = L−1
t Lx(u0) − L−1

t (A0) = (α − α2).t, u2 = L−1
t Lx(u1) − L−1

t (A1) = α(α− 1)(2α − 1)
t2

2
,

u3 = α(α − 1)(2α − 1)(3α − 1)
t3

3
· · · .

Then

u(x, t) ≈

∞
∑

k=0

uk = α + α(α− 1)t + α(α− 1)(1 − 2α)
t2

2
+ · · · .

Convergence of Adomian Series for α = 1:

1. For N = 0:

S0(x, t) = α = 1 and S1(x, t) = α +
α(α − 1)

t
= 1.

2. For N = 2:

S2(x, t) = α + α(α − 1)t +
α(α− 1)(1 − 2α)

2
t2 = 1.

Summary of Partial Sums for α = 1; N = 0: S0(x, t) = 1, for N = 1: S1(x, t) = 1, for N = 2, S2(x, t) = 1.
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Convergence Behavior

For α = 1, the series solution u(x, t) converges rapidly since all terms involving t vanish (α(α− 1) = 0). The
partial sums stabilize at u(x, t) = 1, indicating effective convergence of the Adomian series to a constant
solution for this case. Although the exact solution is unavailable, the Adomian series provides an infinite
representation of the solution. Analyzing the partial sums demonstrates that the ADM solution becomes
more accurate as additional terms are included, making ADM a reliable approximation method for solving
nonlinear PDEs.

3 Fractional Advection Dispersion Equation in Space -Time

The (FADE) for the concentration field C(κ, ζ), with a single spatial variable κ and time ζ,

∂αC(κ, ζ)

∂ζα
= G.

∂γC(κ, ζ)

∂κγ
− λ

∂βC(κ, ζ)

∂κβ
, 0 ≤ κ ≤ L, (5)

with 0 < α ≤ 1, β > 0, and γ > 0, such that the pollutant concentration function C(κ, ζ) has its domain
defined over the spatial interval 0 ≤ κ ≤ L and for all times t ≥ 0. The concentration function C(κ, ζ)
and its fractional derivatives will fall within the codomain R, given that C(κ, ζ) is a real-valued function.
C(κ, ζ) represents the dissolved concentration, G denotes the dispersion coefficient, and λ signifies the Darcy
velocity, where the diffusion and drift velocity are represented, respectively, by the positive constants G and
λ. When the space variable κ and the time variable ζ take modeled by the Fokker-Planck equation, the
diffusion and drift velocity adjust accordingly. Now, let’s introduce non-dimensional variables and constants
by substituting, x = κ

L
and t = ζ.λ

L
, ∂

∂x
= ∂

∂κ
. ∂κ
∂x

= L ∂
∂κ

and ∂
∂t

= ∂
∂ζ

. ∂ζ
∂t

= L
λ

∂
∂ζ

. Substituting C(κ, ζ) with

u(x, t) results in the desired form and (5) reduces to

∂αu(x, t)

∂tα
=

G

λ
.
∂γu(x, t)

∂xγ
−

∂βu(x, t)

∂xβ
,

D
α
t u = µD

γ
xu − D

β
xu, (6)

for x, t > 0 where µ = G

λ
, Dt = ∂

∂t
, and Dx = ∂

∂x
, under initial condition u(x, 0) = e−x. For a diffusion

Peclet number Pe = 1
µ
, a large Peclet number (Pe > 100) indicates that the advection term is the dominant

transport mechanism. For Pe → 0, diffusion is the dominant mode of mass transport, and advection is
minimal. For Pe = 1, both advection and diffusion have the same impact on mass transfer and occur at
identical periods. For Pe → ∞, mass transfer is dominated by advection and diffusion is minimal. Using
condition u(x, 0) = e−x, we want to solve FADE model (6) in three different scenarios.

3.1 Time Fractional Advection Diffusion Equation

The FADE in time with γ = 2 and β = 1

D
α
t u = µD

2
xu − Dxu, x, t > 0. (7)

Applying the initial condition u(x, 0) = e−x, then equation (7) becomes

u(x, t) = u(x, 0) + µD−α
t (D2

xu) − D−α
t (Dxu).

The solution to u(x, t) may be determined using infinite series and ADM, u(x, t) =
∑

∞

m=0 um recursive relation,
u0 = u(x, 0) = e−x and un+1 = µIα(D2

xun) + Iα(Dxun).

u1 = µIα(D2
x(u0)) − Iα(Dx(u0)) = µIα(D2

x(e−x)) − Iα(Dx(e−x)) =
tα

Γ(α + 1)
(µ + 1)e−x,
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u2 =
t2α

Γ(2α + 1)
(µ + 1)2e−x, · · ·um =

tmα

Γ(mα + 1)
(µ + 1)me−x,

u(x, t) = e−x

∞
∑

m=0

tmα

Γ(mα + 1)
(1 + µ)m = e−xEα((1 + µ)tα). (8)

The single parameter MLF is represented by Eα. The x-axis shows how pollutant concentration varies across
different locations in the atmosphere.

Figure 1: Comparison of Diffusion Types, A: Normal Diffusion with α = 1 for AH2
: µ = 0.756, ACO : µ =

0.208, and AAr : µ = 0.167; B: Sub-Diffusion with α = 0.65 for BH2
: µ = 0.756, BCO : µ = 0.208, and

BAr : µ = 0.167; C: Super-Diffusion with α = 1.8 for CH2
: µ = 0.756, CCO : µ = 0.208, and CAr : µ = 0.167.

Temporal evolution, represented by the y-axis, indicates changes in atmospheric processes and dispersion
over time. The concentration of pollutants is depicted on the z-axis. Initially, when pollutants are emitted
into the atmosphere, their concentration is higher near the source. As time progresses, these pollutants
disperse and spread out, leading to a decrease in concentration near the source and an increase at farther
distances. This often results in a peak concentration occurring shortly after the emission. We considered
three pollutants: hydrogen gas, carbon monoxide, and argon, with varying diffusivities categorized as high,
moderate, and low. These diffusivities are measured at real values of µ = 0.756cm2/s, µ = 0.208cm2/s, and
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µ = 0.167cm2/s, respectively in (8), under constant wind velocity conditions at a temperature of 20◦C across
various orders of fractional derivatives: α = 1, 0.65, and 1.8 cf. [18]. In the context of the classical advection-
diffusion equation at α = 1, pollutants spread consistently according to Fick’s laws. Diffusion occurs at a
standard rate determined by the concentration gradient and diffusivity coefficient. When α = 0.65, pollutants
spread more slowly than in normal diffusion, exhibiting sub-diffusion characteristics. This slow diffusion
occurs due to impeded movement, leading to long-term memory effects and non-Gaussian behavior, which
depart from traditional Fickian diffusion patterns. Superdiffusion occurs when the fractional order of the
advection-diffusion equation is α = 1.8. This phenomenon indicates a quicker spreading rate compared to
classical diffusion. Superdiffusion is observed in systems such as turbulent fluxes and anomalous transport
in porous media, where elements cause enhanced mixing, long-range interactions, or active motion. Figures
(AH2

, BH2
, CH2

) illustrate these behaviors of Hydrogen gas with a high diffusivity of 0.756cm2/s at 20◦C
spreads more slowly when entering areas with pollutants having lower diffusivities, such as carbon monoxide
ACO, BCO, CCO) and argon (AAr, BAr , CAr). Similarly, when argon (µ = 0.167cm2/s) moves in, pollutants
with higher diffusivities, like carbon monoxide and hydrogen, spread more slowly, leading to a gradual
increase in pollutant concentration.

Concentration directly impacts space and time when the order of fractional derivatives changes while dif-
fusion remains constant. Dispersion changes as fractional derivative orders change. Concentration spreading
happens more quickly at higher orders. Higher fractional derivative orders imply stronger memory effects,
potentially causing complex behavior like longer concentration tails and slower decay rates. Anomalous diffu-
sion is influenced by fractional orders. Subdiffusion caused by smaller orders slows the concentration spread
for a limited distribution. Greater orders indicate superdiffusive behavior, which accelerates the spread of
concentration for a widely dispersed condition. The rate at which the material spreads out is influenced by
changes in the diffusion coefficient, even while the order of fractional derivatives remains the same. It spreads
more quickly with a greater diffusion coefficient, mitigating concentration disparities. Sharper concentration
differences are maintained when the spreading is slowed down by a lower diffusion coefficient. It functions
essentially like a dial to control how rapidly the perfume travels throughout space; the more diffusion, the
faster and more evenly the smell spreads, and the less diffusion, the slower it spreads and may be longer
concentrated in some locations.

Figure 2: The solute concentration u(x, t) in equation (8), A : H2 gas: µ = 0.756; B : CO gas: µ = 0.208,
and C(Ar) : µ = 0.167, with varying fractional orders α = 0.65, 1, 1.8.

Concentration of solutes u(x, t) describes the distribution of pollutants over time and space. In subdif-
fusion (0 < α < 1), pollutants disperse slowly due to obstacles like dense urban structures, vegetation, or
barriers. In normal diffusion (α = 1), pollutants spread in open areas, such as from a factory chimney, mixing
gradually with the air. This model is suitable for rural or suburban environments with fewer obstructions. In
superdiffusion (1 < α ≤ 2), pollutants are rapidly transported over large distances in high wind or turbulent
areas, like highways or industrial zones, causing quick concentration changes.
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3.2 Space-time fractional Advection Diffusion Equation

The following is an expression of space-time fractional advection-diffusion equation

D
α
t u = µD

2β
x u − D

β
xu (for γ = 2β) x, t > 0 (9)

In air pollution, the Adomian’s decomposition method is used for equation (9), with initial condition as
u(x, t) = e−x

un+1 = µIα(D2β
x un) − Iα(Dβ

xun)

Applying the recurrence relation yields the first five terms of un:

u1 =
tα

Γ(α + 1)

1
∑

i=0

(−1)i

[

1
i

]

µ(1−i)
D

(2−i)β
x e−x,

u2 =
t2α

Γ(2α + 1)

2
∑

i=0

(−1)i

[

2
i

]

µ(2−i)
D

(2×2−i)β
x e−x,

u3 =
t3α

Γ(3α + 1)

3
∑

i=0

(−1)i

[

3
i

]

µ(3−i)
D

(2×3−i)β
x e−x,

um =
tmα

Γ(mα + 1)

m
∑

i=0

(−1)i

[

m
i

]

µ(m−i)
D

(2×m−i)β
x e−x,

u(x, t) =

∞
∑

m=0

tmα

Γ(mα + 1)

m
∑

i=0

[

m
i

]

µ(m−i)e−x = e−xEα(1 + µ)tα.

Under the initial condition u(x, 0) = e−x, the solution of the above equation reduces to (9) when β = 1. The
space-time fractional advection-diffusion equation with γ=2β provides a simplified model for understanding
how pollutants disperse in the air, taking into account both spatial and temporal dynamics. When the
diffusion coefficient µ is very small, the equation behaves like a singularly perturbed problem [24], leading
to unbounded solution derivatives and complicating error analysis. To address this, careful selection of
numerical methods, appropriate mesh adjustment, and thorough stability analysis are essential. Kumar et
al. [11] and Kumar et al. [12] have explored these issues, highlighting that small diffusion terms can lead to
unbounded derivatives. For instance, the time FADE is Dα

t u = µD2
xu−Dxu and initial condition u(x, 0) =

e−x with unbouded derivatives: If we choose µ to be very small, the term Dα
t u become negligible compared

to −Dα
t u. Thus, Dα

t u ≈ −Dxu. We modify the initial condition for singularity: u(x, 0) = e−x + δ(x − x0)
where x = x0 introduces the point source and δ is the Dirac delta. The soultion of fractional ADE can be
written as,

u(x, t) =
tα

Γ(α + 1)
(e−x − Dx(

tα

Γ(α + 1)
δ(x − x0)))

the term Dxδ(x − x0) represents the derivative of the Dirac delta function, which is unbounded. The
tables compare numerical and exact solutions for various fractional orders (α). The error decreases with
increasing x, indicating higher accuracy at larger spatial positions. For α = 0.5, the error drops from 0.0321
at x = 0.30 to 0.0004 at x = 1.45. For α = 1.8, it reduces from 0.0131 to 0.0042 over the same range,
suggesting greater accuracy for larger α. Careful handling is needed for precision and stability at small time
scales (t = 0.01). Adding more terms to the Adomian decomposition method generally improves accuracy,
as the series solution more closely approximates the exact answer. This results in reduced error, enhanced
convergence, and increased stability. Since the Adomian Decomposition Method (ADM) is semi-analytical,
its convergence analysis assumes compatibility conditions and solution smoothness within a fixed domain.
Shakti et al. [26] and Das et al. have provided several alternative convergence assessments for this approach,
as discussed in [6, 7, 8].
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Table 1: H2: µ = 0.756, α = 0.5 at t = 0.01

x Exact
Solution

Numerical
Solution

Error

0.30 0.7539 0.7218 0.0321

0.50 0.6173 0.5858 0.0315

0.70 0.5054 0.4786 0.0267

0.90 0.4138 0.3937 0.0201

1.10 0.3388 0.3260 0.0127

1.20 0.3065 0.2974 0.0091

1.30 0.2774 0.2718 0.0055

1.40 0.2510 0.2489 0.0021

1.45 0.2383 0.2387 0.0004

Table 2: H2: µ = 0.756, α = 1.8 at t = 0.01

x Exact
Solution

Numerical
Solution

Error

0.30 0.7539 0.7408 0.0131

0.50 0.6173 0.6065 0.0108

0.70 0.5054 0.4966 0.0088

0.90 0.4138 0.4066 0.0072

1.10 0.3388 0.3329 0.0059

1.20 0.3065 0.3012 0.0053

1.30 0.2774 0.2725 0.0048

1.40 0.2510 0.2466 0.0044

1.45 0.2346 0.2387 0.0042

3.3 Space-time FADE (0 < β ≤ 1) and (1 < γ ≤ 2)

Given u(x, 0) = f(x) and for 0 < α, β ≤ 1 and 1 < γ ≤ 2, the Adomian recursive terms for (9) are:

u1 = µIα(Dγ
xu0) − Iα(Dβ

xu0) = µIα(Dγ
xf(x)) − Iα(Dβ

xf(x)) =
tα

Γ(α + 1)
[µD

γ
x − D

β
x]f(x),

u2 =
t2α

Γ(2α + 1)
(µ(Dγ

x(µD
γ
x − D

β
x) −D

β
x(µD

γ
x − D

β
x))f(x) =

t2α

Γ(2α + 1)
(µ2

D
2γ
x − µD

γ+β
x − µD

γ+β
x + D

2β
x )f(x).

Continuing, under the condition γ = 2β, the above relation reduces to

um(x, t) = [Eα(tα(µD
2β
x − D

β
x)]e−x

and

u(x, t) =

∞
∑

m=0

tmα

Γ(mα + 1)

m
∑

i=0

(−1)i

[

m
i

]

µ(m−i)
D

(2m−i)β
x e−x.

If γ = 2, α = 1, β = 1, and the following solution when we apply the initial condition u(x, 0) = e−x to the
classical advection diffusion equation: u(x, t) = e−x+(1+µ)t. The solution of a fractional advection-diffusion
equation at a certain time t and position x is represented by the expression u(x, t) which takes into account
both the diffusion and advection processes in space as well as the memory effects in time. The non-local
behavior is captured by the Mittag-Leffler function Eα, and the solution moves in space is determined by
the combination of spatial derivative operators. This provides the precise solution to the problem. Setting
the initial condition as u(x, 0) = xn, where n is any real exponent.

The space-time fractional advection-diffusion equation incorporates fractional derivatives in both spatial
and temporal variables, extending traditional equations to encompass non-local and memory effects across
both dimensions. The FADE provides a more comprehensive understanding of pollutant dispersion in the
atmosphere by incorporating both spatial non-locality and temporal memory effects, leading to more accurate
predictions and assessments of environmental impacts. The equation in the first image, which uses normal
differential equations rather than fractional ones, shows a basic advection-diffusion process, which is often
seen in scientific and technological disciplines, where α = β = n = 1 and γ = 2. In the second image,
the equation shows a system where advection functions as it would in a classical scenario, but the diffusion
process exhibits fractional characteristics when β = 1 and α = 0.25. This scenario might be typical of
procedures where the diffusion process is impacted by long-range interactions or memory effects. Similarly,
the third picture illustrates memory-dependent and non-local behavior with fractional characteristics in both
the advection and diffusion processes at β = 0.75 and α = 0.5. This scenario might represent systems where
both advection and diffusion are influenced by long-range interactions or memory effects.
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Figure 3: Solute concentration u(x, t) for A: α = 1, β = 1, B: α = 0.25, β = 1, C: α = 0.25, β = 0.5.

4 Conclusion

This work demonstrates the effectiveness of Adomian’s Decomposition Method (ADM) in solving fractional
advection-diffusion equations (FADE) with variable diffusivity and initial conditions, using Caputo fractional
derivatives for time and variable-order derivatives for space. The solutions, expressed as an infinite series of
Mittag-Leffler functions, reveal that higher fractional orders accelerate concentration spreading and increase
memory effects while varying the diffusion coefficient adjusts the rate and uniformity of dispersion. Results
indicate that varying diffusivity and the order of fractional derivatives significantly impact concentration
profiles, with higher diffusion coefficients leading to faster, more uniform spreading. ADM proves robust for
real-world scenarios with spatially varying diffusivity, providing valuable insights into systems with memory
effects and heterogeneous diffusion. The ADM yields precise results, with errors decreasing as the fractional
order α increases. Accuracy improves with higher spatial positions and more series terms. Graphical solutions
confirm ADM’s practical applicability. Fractional calculus’s critical role in pollutant dispersion, where higher
fractional orders α correspond to superdiffusion and faster spreading, and lower orders indicate subdiffusion
and slower spreading. A one-dimensional model explores more general uses to improve the fractional diffusion
process prediction capability.
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