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Abstract

A new class of nonlinear boundary value problems consisting of Caputo type coupled sequential frac-
tional differential equations subject to closed coupled boundary conditions is investigated in this paper.
The existence and uniqueness results for the given problem are proved with the aid of the standard fixed
point theorems. Examples illustrating the abstract results are constructed. Our results significantly con-
tribute to the literature on boundary value problems involving nonlinear sequential fractional differential
equations, and specialize to several new results as special cases.

1 introduction

We study the existence of solutions for a coupled system of nonlinear sequential fractional differential equa-
tions: {

(CDq + k1
CDq−1)x(t) = f(t, x(t), y(t)), t ∈ J := [0, T ], T > 0,

(CDp + k2
CDp−1)y(t) = g(t, x(t), y(t)), t ∈ J := [0, T ], T > 0,

(1)

subject to the closed coupled boundary conditions given by{
x(T ) = α1y(0) + β1Ty

′(0), Tx′(T ) = γ1y(0) + δ1Ty
′(0),

y(T ) = α2x(0) + β2Tx
′(0), T y′(T ) = γ2x(0) + δ2Tx

′(0),
(2)

where CDq, CDp denote the Caputo fractional derivative operators of order q ∈ (1, 2] and p ∈ (1, 2],
respectively, α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R, and f, g : [0, T ]× R× R→ R are given continuous functions.
Many researchers have shown a keen interest in investigating the fractional-order nonlinear boundary

value problems. It has been mainly due to the application of fractional-order operators (nonlocal in nature)
in the mathematical modeling of several real world phenomena occurring in physical and technical sciences.
In fact, the mathematical models based on fractional-order differential and integral operators are found to
be more informative and practical than their associated integer-order counterparts. Some examples of such
models include synchronization of chaotic systems [1, 2], anomalous diffusion [3], disease models [4, 5, 6],
ecological models [7], etc. For further applications of fractional calculus, see the books [8, 9], while the
theoretical background of this branch of mathematical analysis can be found in [10]. For some recent works
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on boundary value problems involving a variety of fractional differential equations and boundary conditions,
we refer the reader to the articles [11]—[18].
In [19], the authors studied a nonlinear coupled system of Caputo-type fractional differential equations

equipped with coupled closed boundary conditions. Keeping in mind the application of closed boundary
conditions in the real world phenomena, such as deblurring problems [20], honeycomb lattice [21], wavefield
decomposition [22], magneto-electro-elastic panel [23], etc., we investigate a coupled system of nonlinear
sequential fractional differential equations of different orders (1) complemented with closed coupled boundary
conditions (2). For some recent works on sequential fractional differential equations, for instance, see [24]—
[27].
The objective of the present work is to enrich the literature on boundary value problems involving

sequential fractional differential equations with a new class of boundary conditions. Precisely, we apply
Leray-Schauder’s alternative and Banach’s contraction mapping principle to develop the criteria ensuring
the existence and uniqueness of solutions for the system (1)—(2). Our results are new and specialize to several
new results by fixing the parameters involved in the closed coupled boundary conditions.
The composition of the rest of the paper is as follows. In Section 2, some fundamental ideas of fractional

calculus are recalled. We also prove an auxiliary lemma for the linear version of the system (1)—(2). Section
3 contains the main results, while the examples illustrating these results are presented in Section 4. The
paper concludes with some interesting observations.

2 Preliminaries

Let us first recall some definitions from fractional calculus [10].

Definition 1 For σ ∈ L1[0, T ], we define the (left) Riemann-Liouville fractional integral of order p > 0 as

Ipσ(t) =

∫ t

0

(t− t)p−1

Γ(p)
σ(t)dt.

Definition 2 The (left) Caputo fractional derivative for a function σ ∈ ACm[0, T ] of order p ∈ (m −
1,m], m ∈ N is defined by

CDpσ(t) =

∫ t

0

(t− t)m−p−1

Γ(m− p) σ(m)(t)dt.

In the following lemma, we obtain an integral presentation of a solution of the linear variant of the
problem (1)—(2). Before presenting this lemma, let us introduce the notation:

∆ = µ1µ4 + µ2µ6 + ρ3ρ4 − T 2k1k2ρ9ρ10 − µ7e
−(k1+k2)T 6= 0, (3)

µ1 = γ2e
−k1T , µ2 = γ1e

−k2T , µ3 = Tk2ρ7 − ρ1, µ4 = Tk1ρ5 − ρ3, µ5 = Tk1ρ8 − ρ2,
µ6 = Tk2ρ6 − ρ4, µ7 = T 2k1k2 − ρ1ρ2,
ρ1 = γ1 + Tα1k1, ρ2 = γ2 + Tα2k2, ρ3 = γ1 − Tδ1k2, ρ4 = γ2 − Tδ2k1,
ρ5 = Tβ1k2 − α1, ρ6 = Tβ2k1 − α2, ρ7 = δ1 + Tβ1k1, ρ8 = δ2 + Tβ2k2,
ρ9 = α1δ1 − β1γ1, ρ10 = α2δ2 − β2γ2,
ω1 = α2ρ1, ω2 = α1ρ2, ω3 = γ2ρ1, ω4 = γ1ρ2, ω5 = γ2ρ7, ω6 = γ1ρ8, ω7 = α2ρ7,
ω8 = α1ρ8, ω9 = α2ρ9, ω10 = α1ρ10, ω11 = γ2ρ5, ω12 = γ1ρ6.

(4)

Lemma 1 Let F,G ∈ C[0, T ]. If ∆ 6= 0 (∆ is given by (3)), then the solution of sequential fractional
differential system: 

(CDq + k1
CDq−1)x(t) = F (t), t ∈ J := [0, T ],

(CDp + k2
CDp−1)y(t) = G(t),

x(T ) = α1y(0) + β1Ty
′(0), Tx′(T ) = γ1y(0) + δ1Ty

′(0),

y(T ) = α2x(0) + β2Tx
′(0), T y′(T ) = γ2x(0) + δ2Tx

′(0),

(5)
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is given by a pair of fractional integral equations:

x(t) =

∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
F (τ)dτds+ ν1(t)

∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
F (τ)dτ ds

+ν2(t)

∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
G(τ)dτ ds+ ν3(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
F (s) ds

+ν4(t)

∫ T

0

(T − s)p−2

Γ(p− 1)
G(s) ds, (6)

y(t) =

∫ t

0

e−k2(t−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
G(τ)dτds+ ν5(t)

∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
F (τ)dτ ds

+ν6(t)

∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
G(τ)dτ ds+ ν7(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
F (s) ds

+ν8(t)

∫ T

0

(T − s)p−2

Γ(p− 1)
G(s) ds, (7)

where

ν1(t) =
−1

∆

{
µ6ρ1e

−k2T − µ3ρ4 − [ω3 − Tk2ω5 + µ7 e
−k2T ]e−k1t

}
,

ν2(t) =
−Tk2

∆

{
µ4e
−k1T + µ5ρ9 + (ρ3 + ρ9ρ2)e−k1t

}
,

ν3(t) =
−T
∆

{
ρ4ρ5 + (ω2 − Te−k1T k2 − Tk1ω8)e−k2T − [ω11 + (ω2 − Tk2)e−k2T ]e−k1t

}
,

ν4(t) =
T

∆

{
(µ3 + ρ1e

−k2T )e−k1T + Tk2ρ9ρ6 + (ρ3 − µ2 + Tk2ω9)e−k1t

}
,

ν5(t) =
−Tk1

∆

{
µ6e
−k2T + µ3ρ10 − (ρ4 − ρ1ρ10)e−k2t

}
,

ν6(t) =
−1

∆

{
− µ5ρ3 + µ4ρ2e

−k1T − (ω4 − Tk1ω6 + µ7e
−k1T )e−k2t

}
,

ν7(t) =
T

∆

{
(ρ2e

−k1T + µ5)e−k2T + Tk1ρ5ρ10 + (ρ4 − µ1 + Tk1ω10)e−k2t

}
,

ν8(t) =
−T
∆

{
ρ3ρ6 + (ω1 − Tk2ω7 − Tk1e

−K2T )e−k1T − [ω12 + (ω1 − Tk1)e−k1T ]e−k2t

}
,

and µi (i = 1, . . . , 7), ρj (j = 1, . . . , 10) and ωk (k = 1, . . . , 12) are given in (4).

Proof. As argued in [10], the general solution of sequential fractional equations in (5) can be written as

x(t) = −A1 +A0e
−k1t +

∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
F (τ) dτ ds, (8)

y(t) = −B1 +B0e
−k2t +

∫ t

0

e−k2(t−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
G(τ) dτ ds, (9)
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where A1, A0, B1 and B0 are unknown arbitrary constants. Differentiating (8) and (9) with respect to t, we
obtain

x′(t) = −k1A0e
−k1t − k1

∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
F (τ) dτ ds+

∫ t

0

(t− s)q−2

Γ(q − 1)
F (s)ds, (10)

and

y′(t) = −k2B0e
−k2t − k2

∫ t

0

e−k2(t−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
G(τ) dτ ds+

∫ t

0

(t− s)p−2

Γ(p− 1)
G(s)ds. (11)

Inserting (8)—(11) in the boundary conditions of the system (5), we obtain

A1 − α1B1 −A0e
−k1T + (α1 − Tβ1k2)B0 =

∫ T

0

e−k1(T−s)Iq−1F (s) ds,

−γ1B1 + k1TA0e
−k1T + (γ1 − Tδ1k2)B0 = −k1T

∫ T

0

e−k1(T−s)Iq−1F (s)ds+ TIq−1F (T ),

−α2A1 +B1 + (α2 − k1β2T )A0 −B0e
−k2T =

∫ T

0

e−k2(T−s)Ip−1G(s)ds,

−γ2A1 + (γ2 − Tδ2k1)A0 + Tk2B0e
−k2T = −k2T

∫ T

0

e−k2(T−s)Ip−1G(s)ds+ TIp−1G(T ).

(12)

Solving the system (12) for A1, B1, A0, and B0, we find that

A1 =
1

∆

{[
− ρ4µ3 + ρ1µ6e

−k2T
] ∫ T

0

e−k1(T−s)Iq−1F (s) ds

+
[
Tk2ρ9µ5 + Tk2µ4e

−k1T
] ∫ T

0

e−k2(T−s)Ip−1G(s)ds

+
[
ρ4ρ5 + (ω2 − Tk1ω8)e−k2T − Tk2e

−(k1+k2)T
]
TIq−1F (T )

−
[
Tk2ρ6ρ9 + µ3e

−k1T + ρ1e
−(k1+k2)T

]
TIp−1G(T )

}
,

B1 =
1

∆

{[
k1µ6e

−k2T + k1ρ10µ3

]
T

∫ T

0

e−k1(T−s)Iq−1F (s) ds

+
[
− ρ3µ5 + ρ2µ4e

−k1T
] ∫ T

0

e−k2(T−s)Ip−1G(s)ds

−
[
Tk1ρ5ρ10 + µ5e

−k2T + ρ2e
−(k1+k2)T

]
TIq−1F (T )

+
[
ρ3ρ6 + (ω1 − Tk2ω7)e−k1T + Tk1e

−(k1+k2)T
]
TIp−1G(T )

}
,

A0 =
1

∆

{[
ω3 − Tk2ω5 + µ7e

−k2T
] ∫ T

0

e−k1(T−s)Iq−1F (s) ds

−
[
k2ρ3 + k2ρ2ρ9

]
T

∫ T

0

e−k2(T−s)Ip−1G(s)ds+
[
ω11 + (ω2 − Tk2)e−k2T

]
TIq−1F (T )

+
[
ρ3 − µ2 + Tk2ω9

]
TIp−1G(T )

}
,

B0 =
1

∆

{[
− ρ1ρ10 + ρ4

]
Tk1

∫ T

0

e−k1(T−s)Iq−1F (s) ds
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+
[
ω4 − Tk1ω6 + µ7e

−k1T
] ∫ T

0

e−k2(T−s)Ip−1G(s)ds

+
[
ρ4 − µ1 + Tk1ω10

]
TIq−1F (T ) +

[
ω12 + (ω1 − Tk1)e−k1T

]
TIp−1G(T )

}
.

Substituting the above values of A1, B1, A0 and B0 in (8)-(9), we get the solution (6)—(7). The converse of
the lemma can be established by direct computation. This completes the proof.

2.1 Main Result

Let us introduce the Banach space X = C([0, T ],R) endowed with the usual norm ‖u‖ = max{|u(t)|, t ∈
[0, T ]}. Then, it is well-known that the product space X×X equipped with the norm ‖(u, v)‖ = ‖u‖+‖v‖ is
also a Banach space.
Next, we define an operator V : X ×X → X ×X associated with the problem (1)—(2) as

V(u, v)(t) =
(
V1(u, v)(t),V2(u, v)(t)

)
, (13)

where

V1(u, v)(t) =

∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
f(τ , u(τ), v(τ))dτds

+ν1(t)

∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
f(τ , u(τ), v(τ))dτ ds

+ν2(t)

∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
g(τ , u(τ), v(τ))dτ ds

+ν3(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s), v(s)) ds

+ν4(t)

∫ T

0

(T − s)p−2

Γ(p− 1)
g(s, u(s), v(s)) ds,

and

V2(u, v)(t) =

∫ t

0

e−k2(t−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
g(τ , u(τ), v(τ))dτds

+ν5(t)

∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
f(τ , u(τ), v(τ))dτ ds

+ν6(t)

∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
g(τ , u(τ), v(τ))dτ ds

+ν7(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s), v(s)) ds

+ν8(t)

∫ T

0

(T − s)p−2

Γ(p− 1)
g(s, u(s), v(s)) ds. (14)

In the forthcoming analysis, we need the following assumptions.

(H1) There exist real constants ai, bi > 0, i = 1, 2, and a0, b0 > 0 such that

|f(t, x, y)| ≤ a0 + a1|x|+ a2|y|, |g(t, x, y)| ≤ b0 + b1|x|+ b2|y|, ∀t ∈ [0, T ], x, y ∈ R.
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(H2) The functions f, g : [0, T ]× R2 → R satisfy the Lipschitz condition with Lipschitz constants κi, κi, i =
1, 2:

|f(t, u1, u2)− f(t, v1, v2)| ≤ κ1|u1 − v1|+ κ2|u2 − v2|,∀ ui, vi ∈ R, i = 1, 2,

|g(t, u1, u2)− g(t, v1, v2)| ≤ κ1|u1 − v1|+ κ2|u2 − v2|,∀ ui, vi ∈ R, i = 1, 2.

For computational convenience, we introduce the notation:

S1 = maxt∈[0,T ]

{
tq−1(1−e−k1t)

k1Γ(q) + |ν1(t)|T q−1(1−e−k1T )
k1Γ(q) + |ν3(t)|T q−1

Γ(q)

]}
,

S2 = maxt∈[0,T ]

{
|ν2(t)|Tp−1(1−e−k2T )

k2Γ(p) + |ν4(t)|Tp−1
Γ(p)

}
,

S3 = maxt∈[0,T ]

{
tp−1(1−e−k2t)

k2Γ(p) + |ν6(t)|Tp−1(1−e−k2T )
k2Γ(p) + |ν8(t)|Tp−1

Γ(p)

}
.

S4 = maxt∈[0,T ]

{
|ν5(t)|T q−1(1−e−k1T )

k1Γ(q) + |ν7(t)|T q−1
Γ(q)

}
,

(15)

S0 = min
{

1− [a1(S1 + S4) + b1(S2 + S3)], 1− [a2(S1 + S4) + b2(S2 + S3)]
}
. (16)

Now, the platform is set for presenting the the main results. In our first result, we establish the existence of
at least one solution for the problem (1)—(2) by applying Leray-Schauder’s alternative.

Lemma 2 (Leray-Schauder’s alternative [28]) Let F : E → E be a completely continuous operator
(that is, a continuous map F restricted to any bounded set in E is compact). Let ϑ(F ) = {x ∈ E : x =
λF (x), 0 < λ < 1}. Then, either the set ϑ(F ) is bounded or F has at least one fixed point.

Theorem 1 Let f, g : [0, T ]×R2 → R be continuous functions satisfying the condition (H1) and the following
inequalities hold:

a1(S1 + S4) + b1(S2 + S3)] < 1, a2(S1 + S4) + b2(S2 + S3) < 1,

where S1, S2, S3 and S4 are given in (15). Then, the problem (1)—(2) has at least one solution on [0, T ].

Proof. In the first step, we show that the operator V : X × X → X × X defined by (13) is completely
continuous. Observe that continuity of functions f and g implies that the operator V is continuous. Let us
consider a bounded set

Ω = {(u, v) ∈ X ×X : ‖(u, v)‖ ≤ r} ⊂ X ×X,

where r is a fixed number. Then, we have

|f(t, x, y) ≤ a0 + a1|x|+ a2|y|
≤ a0 + a1(‖x‖+ ‖y‖) + a2(‖x‖+ ‖y‖)
≤ a0 + (a1 + a2)r = L1.

Likewise, we have |g(t, x, y)| ≤ b0 + (b1 + b2)r = L2. For any (u, v) ∈ Ω, we have

‖V1(u, v)‖ ≤ max
t∈[0,T ]

{∫ t

0

e−k1(t−s)
∫ s

0

(t− s)q−2

Γ(q − 1)
|f(τ , u(τ), v(τ))| dτ ds

+|ν1(t)|
∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ , u(τ), v(τ))|dτ ds

+|ν2(t)|
∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
|g(τ , u(τ), v(τ))| dτ ds

+|ν3(t)|
∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, u(s), v(s))| ds+ |ν4(t)|

∫ T

0

(T − s)p−2

Γ(p− 1)
|g(s, u(s), v(s))| ds

]}
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≤ L1 max
t∈[0,T ]

{∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
dτ ds+ |ν1(t)|

∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
dτ ds

+ν3(t)|
∫ T

0

(T − s)q−2

Γ(q − 1)
ds

}
+ L2 max

t∈[0,T ]

{
|ν2(t)|

∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
dτ ds

+|ν4(t)|
∫ T

0

(T − s)p−2

Γ(p− 1)
ds

}

≤ L1 max
t∈[0,T ]

{
tq−1(1− e−k1t)

k1Γ(q)
+
|ν1(t)|T q−1(1− e−k1T )

k1Γ(q)
+
|ν3(t)|T q−1

Γ(q)

}

+L2 max
t∈[0,T ]

{
|ν2(t)|T p−1(1− e−k2T )

k2Γ(p)
+
|ν4(t)|T p−1

Γ(p)

}
≤ L1S1 + L2S2,

where S1 and S2 are given in (15). Similarly, one can obtain

‖V2(u, v)‖ ≤ L1S4 + L2S3,

where S3 and S4 are given in (15). Thus, it follows from the above inequalities that the operator V(Ω) in
uniformly bounded.
Next, we show that V(Ω) is equicontinuous. Let t1, t2 ∈ [0, T ] with t1 < t2. Then, we have

|V1(u(t2), v(t2))− V1(u(t1), v(t1))|

≤
∫ t1

0

∣∣e−k1(t2−s) − e−k1(t1−s)
∣∣ ∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ , u(τ), v(τ))| dτ ds

+

∫ t2

t1

e−k1(t2−t1)

∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(s, u(s), v(s)|ds

+
∣∣∣e−k1t2 − e−k1t1 ∣∣∣{∣∣∣ω3 − Tk2ω5 + µ7e

−k2T
∣∣∣ ∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ , u(τ), v(τ))| dτ ds

+
∣∣∣ρ3 + ρ9ρ2

∣∣∣ ∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
|g(τ , u(τ), v(τ))dτ ds

+
∣∣∣ω11 + (ω2 − Tk2)e−k2T

∣∣∣ ∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, u(s), v(s)|ds

+
∣∣∣ρ3 − µ2 + Tk2ω9

∣∣∣ ∫ T

0

(T − s)p−2

Γ(p− 1)
|g(s, u(s), v(s)|ds

}

≤ L1

{∫ t1

0

∣∣e−k1(t2−s) − e−k1(t1−s)
∣∣ ∫ s

0

(s− τ)q−2

Γ(q − 1)
dτ ds+

∫ t2

t1

e−k1(t2−t1)

∫ s

0

(s− τ)q−2

Γ(q − 1)
ds

}

+
∣∣∣e−k1t2 − e−k1t1 ∣∣∣{L1

(∣∣∣ω3 − Tk2ω5 + µ7e
−k2T

∣∣∣ ∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
| dτ ds

+
∣∣∣ω11 + (ω2 − Tk2)e−k2T

∣∣∣ ∫ T

0

(T − s)q−2

Γ(q − 1)
ds

)

+L2

(∣∣∣ρ3 + ρ9ρ2

∣∣∣ ∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
dτ ds+

∣∣∣ρ3 − µ2 + Tk2ω9

∣∣∣ ∫ T

0

(T − s)p−2

Γ(p− 1)
ds

)}
,
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and

|V2(u(t2), v(t2))− V2(u(t1), v(t1))|

≤ L2

{∫ t

0

∣∣∣e−k2(t2−s) − e−k2(t1−s)
∣∣∣ ∫ s

0

(s− τ)p−2

Γ(p− 1)
dτ ds+

∫ t2

t1

e−k2(t2−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
dτ ds

}

+
∣∣∣e−k2t2 − e−k2t1∣∣∣[L2

(∣∣∣ω4 − Tk1ω6 + µ7e
−k1T

∣∣∣ ∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
dτ ds

+
∣∣∣ω12 + (ω1 − Tk1)e−k1T

∣∣∣ ∫ T

0

(T − s)p−2

Γ(p− 1)
ds

)

+L1

(∣∣∣ρ4 − ρ1ρ10

∣∣∣ ∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
dτ ds+

∣∣∣ρ4 − µ1 + k1ω10

∣∣∣ ∫ T

0

(T − s)q−2

Γ(q − 1)
ds

)]
.

Clearly, the right-hand sides of the above two inequalities tend to zero as t2 − t1 → 0 independent of
(u, v) ∈ Ω. Therefore, the operators V1(Ω) and V2(Ω) are equicontinuous and hence the operator V(Ω) is
equicontinuous. Thus, by Arzelá-Ascoli theorem, we deduce that the operator V(Ω) is completely continuous.
Finally, it will be established that the set ε(F ) = {x ∈ E : x = λF (x), 0 < λ < 1} is bounded. Let

(u, v) ∈ ε, then (u, v) = λV(u, v). For any t ∈ [0, T ], we have u(t) = λV1(u, v)(t), v(t) = λV2(u, v)(t). Then,
in view of the assumption (H1), we obtain

|u(t)| ≤ |V1(u, v)|

≤
∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)

[
a0 + a1|u|+ a2|v|

]
dτ ds

+ν1(t)|
∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)

[
a0 + a1|u|+ a2|v|

]
dτ ds

+|ν2(t)|
∫ t

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)

[
b0 + b1|u|+ b2|v|

]
dτ ds

+|ν3(t)|
∫ T

0

(T − s)q−2

Γ(q − 1)

[
a0 + a1|u|+ a2|v|

]
ds

+|ν4(t)|
∫ T

0

(T − s)p−2

Γ(p− 1)

[
b0 + b1|u|+ b2|v|

]
ds,

which, on taking maximum for t ∈ [0, T ] and using (15), yields

‖u‖ ≤ [a0 + a1‖u‖+ a2‖v‖]S1 + [b0 + b1‖u‖+ b2‖v‖]S2. (17)

In a similar way, we can find that

‖v‖ ≤ [b0 + b1‖u‖+ b2‖v‖]S3 + [a0 + a1‖u‖+ a2‖v‖]S4. (18)

From (17)—(18), we obtain

‖u‖+ ‖v‖ ≤ (a0(S1 + S4) + b0(S2 + S3)

S0
,

where S0 is defined by (16). Consequently, we get

‖(u, v)‖ ≤ (a0(S1 + S4) + b0(S2 + S3)

S0
,

which shows that the set ε is bounded. Thus, by Lemma 2, the operator V has at least one solution on [0, T ].
The proof is complete.

We make use of Banach’s contraction mapping principle [28] to establish the existence of a unique solution
to the problem (1)—(2).
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Theorem 2 Let f, g : [0, T ]×R2 → R be continuous functions and (H2) holds. Then, there exists a unique
solution to the problem (1)—(2) on [0, T ], provided that

(κ1 + κ2)(S1 + S4) + (κ1 + κ2)(S2 + S3) < 1, (19)

where S1, S2, S3 and S4 are given in (15).

Proof. Fixing supt∈[0,T ] f(t, 0, 0) = N1 < ∞, supt∈[0,T ] g(t, 0, 0) = N2 < ∞, and using the assumption
(H2), we obtain

|f(t, u(t), v(t)| = |f(t, u(t), v(t)− f(t, 0, 0) + f(t, 0, 0)| ≤ κ1‖u‖+ κ2‖v‖+N1,

|g(t, u(t), v(t))| = |g(t, u(t), v(t)− g(t, 0, 0) + g(t, 0, 0)| ≤ κ1‖u‖+ κ2‖v‖+N2.
(20)

Now, we consider a closed ball Br = {(u, v) ∈ X ×X : ‖(u, v)‖ ≤ r}, where

N1(S1 + S4) +N2(S2 + S3)

1− [(κ1 + κ2)(S1 + S4) + (κ1 + κ2)(S2 + S3)]
≤ r, (21)

and show that V(Br) ⊂ Br. For (u, v) ∈ Br, it follows by using (20) that

|V1(u, v)(t)| ≤
∫ t

0

e−k1(t−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)

[
κ1|u|+ κ2|v|+N1

]
dτ ds

+|ν1(t)|
∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)

[
κ1|u|+ κ2|v|+N1

]
dτ ds

+|ν2(t)|
∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−1

Γ(p− 1)

[
κ1|u|+ κ2|v|+N2

]
ds

+|ν3(t)|
∫ T

0

(T − s)q−2

Γ(q − 1)

[
κ1|u|+ κ2|v|+N1

]
ds

+|ν4(t)|
∫ T

0

(T − s)p−2

Γ(p− 1)

[
κ1|u|+ κ2|v|+N2

]
ds

}
,

which, on taking the norm for t ∈ [0, T ], yields

‖V1(u, v)‖ ≤ [(κ1 + κ2)r +N1]S1 + [(κ1 + κ2)r +N2]S2.

In the same way, we can find that

‖V2(u, v)‖ ≤ [(κ1 + κ2)r +N2]S3 + [(κ1 + κ2)r +N1]S4.

From the above two inequalities together with (21), we find that ‖V(u, v)‖ ≤ r, that is V(u, v) ∈ Br. Hence,
V(Br) ⊂ Br.
Next, we show that the operator V is a contraction. For that, let (u2, v2), (u1, v1) ∈ X × X. Then, for

any t ∈ [0, T ], we get

‖V1(u2, v2)− V1(u1, v1)‖

≤ max
t∈[0,T ]

{∫ t

0

e−k1(t−s)
∫ s

0

(t− s)q−2

Γ(q − 1)
|f(τ , u2(τ), v2(τ))− f(τ , u1(τ), v1(τ))|dτ ds

+|ν1(t)|
∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
|f(τ , u2(τ), v2(τ))− f(τ , u1(τ), v1(τ))|dτ ds

+|ν2(t)|
∫ T

0

e−k2(T−s)
∫ s

0

(s− τ)p−2

Γ(p− 1)
|g(τ , u2(τ), v2(τ))− g(τ , u1(τ), v1(τ))|dτ ds
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+|ν3(t)|
∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, u2(s), v2(s))− f(s, u1(s), v1(s))| ds

+|ν4(t)|
∫ T

0

(T − s)p−2

Γ(p− 1)
|g(s, u2(s), v2(s))− g(s, u1(s), v1(s))|ds

]}

≤ (κ1‖u2 − u1‖+ κ2‖v2 − v1‖) max
t∈[0,T ]

{∫ t

0

e−k1(t−s)
∫ s

0

(t− s)q−2

Γ(q − 1)
dτ ds

+|ν1(t)|
∫ T

0

e−k1(T−s)
∫ s

0

(s− τ)q−2

Γ(q − 1)
dτ ds+ |ν3(t)|

∫ T

0

(T − s)q−2

Γ(q − 1)
ds

}

+(κ1‖u2 − u1‖+ κ2‖v2 − v1‖) max
t∈[0,T ]

{
|ν2(t)|

∫ T

0

e−k2(T−s)
∫ s

0

(T − s)p−2

Γ(p− 1)
dτ ds

+|ν4(t)|
∫ T

0

(T − s)p−2

Γ(p− 1)
ds

}
≤ (κ1‖u2 − u1‖+ κ2‖v2 − v1‖)S1 + (κ1‖u2 − u1‖+ κ2‖v2 − v1‖)S2,

which implies that

‖V1(u2, v2)− V1(u1, v1)‖ ≤
[
(κ1 + κ2)S1 + (κ1 + κ2)S2

]
(‖u2 − u1‖+ ‖v2 − v1‖).

In a similar manner, one can obtain that

‖V2(u2, v2)− V2(u1, v1)‖ ≤
[
(κ1 + κ2)S4 + (κ1 + κ2)S3

]
(‖u2 − u1‖+ ‖v2 − v1‖).

Therefore, we have

‖V(u2, v2)− V(u1, v1)‖ ≤
[
(κ1 + κ2)(S1 + S4) + (κ1 + κ2)(S2 + S3)

]
(‖u2 − u1‖+ ‖v2 − v1‖),

which, in view of (19), shows that the operator V is a contraction. Hence, it follows by Banach’s contraction
mapping principle that the operator V has a unique fixed point, which is indeed a unique solution to the
problem (1)—(2). This completes the proof.

3 Examples

Consider the following system of coupled sequential fractional differential equations equipped with closed
boundary conditions:

(cD1.57 + 9/5 cD0.57)x(t) = f(t, x(t), y(t)), t ∈ J := [0, 2],

(cD1.4 + 2/3 cD0.4)y(t) = g(t, x(t), y(t)),

x(2) = y(0) + 10/9y′(0), 2x′(2) = −3/8y(0) + 8/9y′(0),

y(2) = −2/5x(0)− 14/3x′(0), 2y′(2) = 7/2x(0)− 2x′(0).

(22)

Here, T = 2, q = 1.57, p = 1.4, k1 = 9/5, k2 = 2/3, α1 = 1, α2 = −2/5, β1 = 5/9, β2 = −7/3, δ1 = 4/9,
δ2 = −1, γ1 = −3/8, γ2 = 7/2 and f, g will be defined later. With the given data, it is found that
S1 = 1.669994615, S2 = 1.553972248, S3 = 3.089558371 and S4 = 5.711755201 (S1, S2, S3, and S4 are given
in (15).
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(i) (Illustration of Theorem 1). Let us consider

f(t, x(t), y(t)) = 1
(2t+4)4

|x|x2
1+x2 + 7

40 sin y + 1
t2+144 ,

g(t, x(t), y(t)) = e−t

60 x tan−1 x+ y2

75(1+|y|) + 1√
t2+400

.

(23)

Observe that a0 = 1/144, a1 = 1/256, a2 = 7/40, b0 = 1/20, b1 = π/120, b2 = 1/75 as

|f(t, x(t), y(t))| ≤ 1

144
+

1

256
|x|+ 7

40
|y|, |g(t, x(t), y(t))| ≤ 1

20
+

π

120
|x|+ 1

75
|y|.

In addition,

a1(S1 + S4) + b1(S2 + S3) = 0.1254735973 < 1, a2(S1 + S4) + b2(S2 + S3) = 0.1883333333 < 1.

Thus, by the conclusion of Theorem 1, the problem (22) with f and g given by (23) has at least one solution
on [0, 2].

(ii) (Illustration of Theorem 2). In this case, we take

f(t, x(t), y(t)) = 1
(t+4)3

|x|
1+|x| + 7

60 sin y + cos t√
t2+256

,

g(t, x(t), y(t)) = e−t

50 tan−1 x+ 1
(t+5)2 cos y + t+1

t2+75 ,

(24)

and note that

|f(t, x2, y2)− f(t, x1, y1)| ≤ 1

64
|x2 − x1|+

7

60
|y2 − y1|,

|g(t, x2, y2)− g(t, x1, y1)| ≤ 1

50
|x2 − x1|+

1

25
|y2 − y1|.

From the above inequalities, it follows that κ1 = 1
64 , κ2 = 7

60 , κ1 = 1
50 , κ2 = 1

25 . Further, we have

[(κ1 + κ2)(S1 + S4) + (κ1 + κ2)(S2 + S3)] = 0.1922916667 < 1.

Thus, the hypothesis of Theorem 2 is satisfied and consequently, the problem (22) with f and g given by
(24) has a unique solution on [0, 2].

3.1 Conclusions

A new boundary value problem involving coupled nonlinear sequential fractional differential equations sup-
plemented with closed boundary conditions has been studied in this paper. We apply Leray-Schauder’s
alternative to prove an existence result for the given problem, while Banach’s contraction mapping principle
is used to establish the uniqueness of solutions to the problem at hand. Several results follow from the
obtained ones as special cases by fixing the parameters appearing in the boundary conditions. Some of these
results are listed below.

(i) By setting α1 = 1 = α2, β1 = 0 = β2, γ1 = 0 = γ2 and δ1 6= 1 6= δ2, we obtain the results for a nonlinear
sequential fractional-order coupled system (1) with semi-periodic coupled boundary conditions of the
form: x(0) = y(T ), x′(T ) = δ1y

′(0), y(0) = x(T ), and y′(T ) = δ2x
′(0);

(ii) Letting β1 = 0 = β2, γ1 = 0 = γ2 and by choosing α1 = 1 = α2 and δ1 = −1 = δ2, our results
specialize to the ones for semi-periodic coupled boundary conditions of the form: x(0) = y(T ), x′(T ) =
−y′(0), y(0) = x(T ), and y′(T ) = −x′(0);
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(iii) Our results correspond to the combination of coupled periodic and anti-periodic boundary conditions of
the form: x(0) = y(T ), x′(0) = y′(T ), y(0) = −x(T ), y′(0) = −x′(T ) for α1 = −1, α2 = 1, β1 = 0 = β2,
γ1 = 0 = γ2 and δ1 = −1, δ2 = 1;

(iv) Our results become the ones associated with the boundary conditions: x(0) = −y(T ), x′(0) = −y′(T ),
y(0) = x(T ), y′(0) = x′(T ) when α1 = 1, α2 = −1, β1 = 0 = β2, γ1 = 0 = γ2 and δ1 = 1, δ2 = −1.

Acknowledgements. The authors would like to thank the referee and the handling editor for their
work.
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